Review of Submissions

AMENDMENT TO THE IMPORT HEALTH STANDARDS FOR FRESH CAPSICUMS (CAPSICUM ANNUUM) AND TOMATOES (LYCOPERSICON ESCULENTUM) FROM AUSTRALIA

July 2013
Ministry for Primary Industries
Te Manatū Ahu Atua
Pastoral House
25 The Terrace
PO Box 2526
Wellington
New Zealand

Telephone: +64 4 894 0100
Facsimile: +64 4 894 0662
Internet: http://www.mpi.govt.nz

Plants, Food & Environment Directorate
Standards Branch

REVIEW OF SUBMISSIONS ON:

AMENDMENT TO THE IMPORT HEALTH STANDARDS FOR FRESH CAPSICUMS (CAPSICUM ANNUUM) AND TOMATOES (LYCOPERSICON ESCULENTUM) FROM AUSTRALIA

July 2013

Approved for general release

Peter Thomson
Director Plants, Food & Environment
Ministry for Primary Industries
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Acronyms</td>
<td>1</td>
</tr>
<tr>
<td>Review of Submissions</td>
<td>2</td>
</tr>
<tr>
<td>Pipfruit New Zealand Inc</td>
<td>2</td>
</tr>
<tr>
<td>Horticulture Access Solutions Pty Inc</td>
<td>4</td>
</tr>
<tr>
<td>Steritech Pty Inc</td>
<td>4</td>
</tr>
<tr>
<td>DAFF</td>
<td>5</td>
</tr>
<tr>
<td>NZFPIA</td>
<td>7</td>
</tr>
<tr>
<td>HortNZ</td>
<td>8</td>
</tr>
<tr>
<td>Annex 1: Amended IHSs for re-issuance</td>
<td>11</td>
</tr>
<tr>
<td>Annex 2: Submissions Received</td>
<td>16</td>
</tr>
<tr>
<td>Annex 3: MPI proposed actions for pests detected at DAFF phytosanitary inspection</td>
<td>35</td>
</tr>
</tbody>
</table>
Introduction
The Ministry for Primary Industries (MPI) consulted with interested parties from 15 May to 14 June 2013, on a proposal to amend the import health standard (IHS) 152.02: Importation and clearance of fresh fruit and vegetables into New Zealand and its individual import health standards (IHSs) for fresh capsicums and tomatoes from Australia, in accordance with Section 24 of the Biosecurity Act 1993 and the associated consultation requirement.

MPI proposes to amend the IHSs for capsicum and tomatoes from Australia to provide an alternative fruit fly treatment to the dimethoate dip/spray treatment specification which has been suspended from use in Australia with:

- Irradiation (Appendix 12, BQA)

TREATMENT APPENDICES (NZ MPI/DAFF BILATERAL QUARANTINE ARRANGEMENT)

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Treatment</th>
<th>Specification</th>
<th>Commodity</th>
</tr>
</thead>
</table>
| 12 | Irradiation | Irradiation with a minimum dose of 150Gy for fruit flies. | Tomato (*Lycopersicon esculentum*)
| | | | Capsicum (*Capsicum annuum*) |

In addition to proposing an alternative fruit fly treatment, the Australian Department of Agriculture, Fisheries and Forestry (DAFF) also proposed optional phytosanitary measures for the risk management of *Conogethes punctiferalis*, yellow peach moth, on fresh capsicums for MPIs consideration as follows:

- Maintain in-field controls
 or
- Irradiation 250Gy

Phytosanitary certification additional declarations are required for treatment specifications on the fresh capsicum and tomato pathways from Australia (Annex 1).

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQA</td>
<td>Bilateral Quarantine Arrangement</td>
</tr>
<tr>
<td>DAFF</td>
<td>Department of Agriculture, Fisheries and Forestry (Australia)</td>
</tr>
<tr>
<td>FreshPAC</td>
<td>Fresh Produce Advisory Committee</td>
</tr>
<tr>
<td>IHS</td>
<td>Import health standard</td>
</tr>
<tr>
<td>IPPC</td>
<td>International Plant Protection Convention</td>
</tr>
<tr>
<td>ISPM</td>
<td>International Standard for Phytosanitary Measures</td>
</tr>
<tr>
<td>MPI</td>
<td>Ministry for Primary Industries</td>
</tr>
<tr>
<td>NZFPIA</td>
<td>New Zealand Fresh Produce Importers Association (Inc.)</td>
</tr>
<tr>
<td>RMP</td>
<td>Risk management proposal</td>
</tr>
<tr>
<td>PFA</td>
<td>Pest Free Area</td>
</tr>
</tbody>
</table>
Review of Submissions
This document summarises comments received from submissions (Annex 2) and presents MPI’s responses.

MPI received six submissions from the following:

Dr Michael Butcher, Pipfruit New Zealand Incorporated 27 May 2013
Michael Daysh, Horticulture Access Solutions Pty Ltd 10 June 2013
Glenn Roberston, Steritech Pty Ltd 12 June 2013
David Heinrich, Australian Department of Agriculture, Fisheries and Forestry (DAFF) 14 June 2013
Kevin Nalder, New Zealand Fresh Produce Importers Association (NZFPIA) 14 June 2013
Peter Silcock, Horticulture New Zealand (HortNZ)/ Tomatoes New Zealand 14 June 2013

PIPFRUIT NEW ZEALAND INC
1. *Pipfruit New Zealand Inc commented on a need to formalise ‘season long maintained commercial in-field controls for fruit flies’ in addition to irradiation on the capsicum and tomato pathways.*

MPI response:
Irradiation is a known efficacious treatment for fruit flies. In over ten years of trade in fresh tomatoes and capsicums from Australia, there has been nil detection of fruit flies alive or dead on these pathways. MPI does not consider it necessary to formalise field control programmes for fruit fly management, as

MPI has outlined the specific import requirements for economically significant fruit flies and *Conogethes punctiferalis* in the RMP. In addition to these specific requirements, appropriate pest control activities and standard commercial production practices including pre and post-harvest handling practices are currently in place for the management of fruit flies and other regulated pests, for commercially produced fresh capsicums and tomatoes.

2. *Pipfruit New Zealand Inc commented that the ‘agreed appropriate pest control activities’ are not specified for *C. punctiferalis* in the RMP and do not feature on the pathway diagram (RMP Appendix 3).*

MPI response:
MPI has specified in-field controls (insecticide control for *Lepidopteran* species - status quo) or irradiation at 250 Gy as appropriate pest control activities for *C. punctiferalis*. Standard post-harvest practices and inspections also contribute to this risk management. This is indicated in the pathway diagram (see RMP Appendix 3) as pest control activities for RG2 arthropods and as an irradiation treatment option.
3. Pipfruit New Zealand Inc commented the RMP does not contain ‘agreed appropriate pest control activities’ for the RG2 regulated pests – Bemisia tabaci, Phyllophaga spp. and Thrips palmi. A request was made for evidence to support irradiation efficacy of these pests.

MPI response:
There have been no changes to the risk management for RG2 and RG1 pests on the capsicum and tomato pathways, with the exception of an irradiation option for C. punctiferalis; hence the regulated pests referred to in the submission above are not subject to this consultation.

To clarify, the current RG2 risk management requirements include but are not limited to non-preferred host status, pest monitoring and management, pre-export inspections and historical interception data of nil detections. If these regulated pests are detected on the pathways, the corrective action will be either to treat (where an approved treatment is available), reship or destroy and/or pathway suspension. DAFF will perform a pre-export phytosanitary inspection and certify that these pests have been managed appropriately with an additional declaration to the phytosanitary certificate.

RG2 regulated pest irradiation efficacy data is not provided in the RMP as it is out of scope for this assessment and is not the proposed measure; appropriate pest control activities remain status quo. However, if Australian exporters were to select the 400 Gy generic irradiation dose for treatment against all regulated pests associated with the Australian capsicum and tomato export pathways, the risk of all RG2 pest groups associated with tomatoes and capsicums would be managed (see RMP para 27).

4. Pipfruit New Zealand Inc provides a suggestion to further define treatment facility product security.

MPI response:
All registered irradiation treatment facilities have documented systems for the identification, segregation, process controls and pre and post treatment security of treated and untreated export commodities. These systems are auditable by DAFF and MPI. Pest proof packaging and shrink wrapping is currently utilised for fruit fly host commodities exported to New Zealand, further assuring product security integrity.

5. Pipfruit New Zealand Inc comments that the use of the word ‘trash’ with regard to verification inspection on arrival in New Zealand is not a defined term with regard to unwanted plant material outside of the commodity descriptions.

MPI response:
MPI agrees the use of the word ‘trash’ is not internationally recognised and will amend the RMP to use the word ‘contamination’ as defined by IPPC. MPI only permits the importation of fresh capsicum and tomatoes from Australia as specified by the commodity descriptions (see RMP paragraph 5 and 6). Any other contaminants are not permitted (e.g. other plant parts or soil).

MPI also specifies non-compliance contingencies in the IHS 152.02: Importation and clearance of fresh fruit and vegetables into New Zealand, which is the overarching IHS for the individual capsicum and tomato IHSs. IHS 152.02 section 7.4: Soil and Foliage Contamination provides the MPI performance measure for soil and foliage contamination at verification inspection on arrival in New Zealand.
HORTICULTURE ACCESS SOLUTIONS PTY INC

6. Horticulture Access Solutions Pty Inc expresses support for the proposed IHS amendments to offer irradiation as an alternative fruit fly treatment on the fresh capsicum and tomato pathways from Australia.

MPI response:
Noted.

STERITECH PTY INC

7. Steritech Pty Inc requests MPI consider options to allow phytosanitary inspection both pre and post treatment to facilitate operational process flow with alignment to other fresh produce commodities irradiated and exported from Australia to New Zealand.

MPI response:
MPI agrees to allow the option of phytosanitary inspection both pre and post treatment for consistency with operational processes for existing fresh produce commodities exported from Australia to New Zealand.

8. Steritech Pty Inc requests MPI reconsider consignment rejection upon detection of RG3 regulated pests when irradiation is an efficacious treatment that is available to manage said risk.

MPI response:
MPI recognises irradiation as an efficacious treatment which will manage the risk of specified regulated pests detected at phytosanitary inspection when the consignment has or will be treated at rates specified in the amended Table 5 of the RMP (Annex 3).

MPI has amended Table 5 of the RMP (Annex 3) to recognise irradiation at a minimum dose of 150 Gy for RG3 pests, the DAFF action ‘Reject lot, not eligible for export’ has been removed. Likewise, the DAFF rejection action has also been removed upon detection of non-vectoring RG2 pests that have approved corrective actions.

9. Steritech Pty Inc proposes the future development of corrective actions for detection of RG1 vectors at DAFF phytosanitary inspection.

MPI response:
MPI will consider alternative corrective actions for RG1 vectoring pests in conjunction with a proposal from DAFF that is based on scientific evidence for effective risk management of RG1 vectors.

10. Steritech Pty Inc advised their position to encourage exporters to utilise the generic 400 Gy irradiation dose for all regulated pests on the capsicum and tomato export pathways to facilitate DAFF phytosanitary inspection and certification processes.

MPI response:
MPI acknowledges Steritech’s position.

11. Steritech Pty Inc request the development of a feedback mechanism to report on MPI biosecurity clearance and pest interceptions of irradiated fresh produce commodities exported from Australia to New Zealand, for the purpose of ensuring export commodities are ‘fit for treatment’, including low pest loading.
MPI response:
MPI has agreed to provide regular biosecurity clearance and pest interception feedback to DAFF for the new capsicum and tomato irradiation export pathways. DAFF will communicate this information to Steritech to ensure commodities are fit for treatment (irradiation) and export to minimise disruption to MPI’s biosecurity clearance procedures.

DAFF

12. **DAFF requests MPI reconsider consignment rejection upon detection of RG3 regulated pests when irradiation is an efficacious treatment that is available to manage said risk.**

MPI response:
MPI recognises irradiation as an efficacious treatment which will manage the risk of specified regulated pests detected at phytosanitary inspection when the consignment has or will be treated at rates specified in the amended Table 5 of the RMP (Annex 3).

MPI has amended Table 5 of the RMP (Annex 3) to recognise irradiation at a minimum dose of 150 Gy for RG3 pests, the DAFF action ‘Reject lot, not eligible for export’ has been removed. Likewise, the DAFF rejection action has also been removed upon detection of non-vectoring RG2 pests that have approved corrective actions.

MPI recognises that when regulated pests are detected at phytosanitary inspection, the consignment is not considered to be non-compliant if treated with an irradiation dose that manages risk. Phytosanitary certification can proceed when DAFF reconciles that the detected pest has been effectively treated.

13. **DAFF requests MPI reconsider the generic 400 Gy irradiation dose as a contingency/corrective action upon detection of non-vectoring RG2 and RG1 regulated pests and requests the inclusion of corrective actions using lower irradiation doses for specific pest groups.**

MPI response:
MPI recognises a minimum dose of 400 Gy as an efficacious generic contingency/corrective treatment for regulated pests on the Australian capsicum and tomato export pathways. Regulated pests of the class Insecta not specified on the pest lists are also considered to be managed using this dose, with the exception of adult or pupal Lepidoptera species and some mites, which are unlikely to follow the capsicum and tomato pathways due to post-harvest handling practices (see RMP para 27 and 28).

MPI’s use of the generic 400 Gy irradiation dose is consistent with recent risk management decisions made for new irradiation import pathways and is in alignment with the generic irradiation treatments utilised domestically in Australia (i.e. interstate irradiation protocols) and other countries import requirements.

14. **DAFF comments on MPI’s proposed on-arrival verification procedures with regard to actions upon interception of regulated pests referenced in Tables 7 and 8 of the RMP.**

MPI response:
There are currently two approved treatment pathways – 1) PFA (Appendix 2, BQA) and 2) dimethoate dip/spray (Appendix 4, BQA) + field controls programmes (Appendix 10, BQA) (suspended); in addition to the proposed irradiation pathway under which fresh capsicums and
tomatoes may be exported from Australia to New Zealand. Tables 7 and 8 reflect the actions on interception for regulated pests across treatment pathways indicated in the tables by a coding system.

15. **DAFF has requested MPI provide clarification for use of the phytosanitary certificate additional declaration for freedom from visually detectable pests on irradiated commodities.**

MPI response:
As with the on-arrival verification procedures that consider all treatment pathways, MPI has maintained use of the generic phytosanitary additional declaration “been inspected in accordance with appropriate official procedures and found to be free from regulated pests specified by the New Zealand Ministry for Primary Industries”. However, MPI will provide an explanatory note to accompany this declaration clarifying its use when the irradiation treatment pathway is utilised, as below.

NOTE: Compliance with this additional declaration is not necessary if the Australian NPPO certifies export of this consignment under Appendix 12; the consignment may contain live (but non-viable) regulated pests.

16. **DAFF has requested MPI provide clarification of phytosanitary certification requirements with regard to the risk management of RG2 regulated pests that require the status quo additional declaration “undergone appropriate pest control activities that are effective against those risk group 2 regulated pests specified by NZ MPI”.

MPI response:
There have been no changes to the risk management for RG2 regulated pests (except the additional irradiation option for C. punctiferalis) on the capsicum and tomato export pathways. Appropriate pest control activities remain status quo and include, but are not limited to non-preferred host status, pest monitoring and management, pre-export inspections and historical records of nil detection. If RG2 regulated pests are detected on a pathway the corrective action will be to either treat (where an approved treatment is available), reship or destroy and/or pathway suspension. DAFF will perform a pre-export phytosanitary inspection and certify that these pests have been managed appropriately with an additional declaration to the phytosanitary certificate.

17. **DAFF requests MPI consider options to allow phytosanitary inspection both pre and post treatment to facilitate operational process flow with alignment to other fresh produce commodities irradiated and exported from Australia to New Zealand.**

MPI response:
MPI agrees to allow the option of phytosanitary inspection both pre and post treatment for consistency with operational processes for existing fresh produce commodities exported to New Zealand.

18. **DAFF has requested MPI consider their assessments for certain regulated Bactrocera species recorded outside of major production areas, for removal from the fresh capsicum and tomato IHS pest lists.**
MPI response:
The IHSs for fresh capsicum and tomatoes exported from Australia to New Zealand are not state or production area specific, but contain import requirements for all States and Territories of Australia. MPI intends to review the regulated status and classification of these pests as part of a larger project for all Australian fruit fly host commodity pathways. This project has been included in the 2013/2014 Fresh Produce Imports work programme.

NZFPIA

19. NZFPIA requests MPI reconsider consignment rejection upon detection of RG3 regulated pests when irradiation is an efficacious treatment that is available to manage that risk.

MPI response:
MPI recognises irradiation as an efficacious treatment which will manage the risk of specified regulated pests detected at phytosanitary inspection when the consignment has or will be treated at rates specified in the amended Table 5 of the RMP (Annex 3).

MPI has amended Table 5 of the RMP (Annex 3) to recognise irradiation at a minimum dose of 150 Gy for RG3 pests, the DAFF action ‘Reject lot, not eligible for export’ has been removed. Likewise, the DAFF rejection action has also been removed upon detection of non-vectoring RG2 pests that have approved corrective actions.

20. NZFPIA suggests MPI remove reference to “Appendix 4 and Appendix 10 (related to Dimethoate dip/spray in the list of fruit fly treatment appendices)” from the fresh capsicum and tomato IHSs as well as the IHS 152.02 Treatment Appendices.

MPI response:
The IHS 152.02 Appendix 4 (dimethoate dip/spray) and Appendix 10 (field control programmes) treatment pathway remains suspended until the Australian Pesticides and Veterinary Medicines Authority (APVMA) finalises their review of dimethoate use, in October 2013. Upon finalisation of the APVMA review MPI will amend IHS 152.02 and relevant individual commodity IHSs as necessary.

21. NZFPIA requests MPI include reference to the use of the generic 400 Gy irradiation dose in the fresh capsicum and tomato IHSs, as a response to the MPI proposed DAFF pre-treatment phytosanitary inspection and to facilitate MPI biosecurity clearance in New Zealand if any regulated pests are detected on arrival.

MPI response:
MPI has specified the generic 400 Gy irradiation dose as a contingency/corrective treatment upon detection of non-vectoring RG2 and RG1 regulated arthropods at DAFF phytosanitary inspection (see RMP Table 5). Australian exporters may select to utilise 400 Gy as their preferred dose (see RMP paragraphs 29) to facilitate DAFF phytosanitary inspection and MPI biosecurity clearance at the New Zealand border. MPI has approved the minimum 400 Gy dose rate for regulated non-vectoring arthropod pests specified in the Australian fresh capsicum and tomato IHS pest lists, this is now included in the IHSs.

MPI has agreed to allow the option of phytosanitary inspection both pre and post treatment for consistency with operational processes for existing fresh produce commodities exported to New Zealand.
22. NZFPIA requests clarification for the generic 400 Gy irradiation dose for all regulated pests on the fresh capsicum and tomato IHS pest lists, considering existing irradiation doses for other fresh produce commodities exported from Australia to New Zealand.

MPI response:

MPI’s decision to utilise the generic 400 Gy irradiation dose is consistent with recent risk management decisions made for new irradiation pathways, ISPMs, published efficacy research across relevant pest groups and is in alignment to the generic irradiation treatments utilised domestically in Australia (i.e. interstate irradiation protocols) and other countries import requirements.

MPI recognises a minimum dose of 400 Gy as an efficacious generic contingency/corrective treatment effective against all regulated pests on the Australian capsicum and tomato export pathways. Regulated pests of the class Insecta not specified on the pest lists are also considered to be managed using this dose, with the exception of adult or pupal Lepidoptera species and some mites, which are unlikely to follow the capsicum and tomato pathways due to post-harvest handling practices (see RMP para 27 and 28).

Fresh produce commodities currently exported under irradiation from Australia to New Zealand have been included in the 2013/2014 Fresh Produce Imports work programme for review.

23. NZFPIA advised their position to encourage their members to utilise the generic 400 Gy irradiation dose for all regulated pests on the capsicum and tomato export pathways as standard procedure.

MPI response:

MPI acknowledges NZFPIA’s position.

24. NZFPIA requests the development an improved feedback mechanism to report on MPI biosecurity clearance and pest interceptions of irradiated fresh produce commodities to accurately report non-compliant consignments and associated corrective actions.

MPI response:

MPI has agreed to provide regular biosecurity clearance and pest interception feedback to DAFF for the new capsicum and tomato irradiation export pathways. MPI will also communicate this information to domestic stakeholders via the government-industry committee, FreshPAC, (of which NZFPIA is a member) to provide assurance that phytosanitary risk on these pathways are being appropriately managed and consistency of MPI’s biosecurity clearance procedures is being maintained.

HORTNZ

25. HortNZ advises it accepts the technical justification for irradiation of fruit flies and supports the requirement for FSANZ mandatory labelling.

MPI response:

Noted.

26. HortNZ comments that there is potential for higher pest infestation levels of RG2 and RG1 regulated pests on the fresh capsicum and tomato export pathways given the removal of Appendix 4 (dimethoate dip/spray) and Appendix 10 (field control...
programmes), stating MPI needs to consider past infestation levels of regulated pests on the pathways.

MPI response:
The BQA Appendix 10 field control programmes only targeted fruit flies on the fresh capsicum and tomato export pathways. However, MPI has confidence that Australia’s appropriate pre-harvest pest control activities, standard commercial production practices and other export system activities for RG2 and RG1 regulated pests adequately manage the risk on these pathways.

Australian capsicum and tomato growers have used fruit fly specific insecticides and standard cover sprays for field controls, as part of standard commercial production practices and within New Zealand export programmes (Appendix 10 field control programmes) for many years. A recent study by the Queensland Department of Agriculture, Fisheries and Forestry (QLD DAFF) monitored fruit fly infestation levels across Bowen/Gumlu production sites, a major production area. Over a three year sampling period, 21,383 tomatoes were collected from blocks using standard cover sprays and 7,998 from blocks that received fruit fly specific sprays. Similarly 14,287 capsicums were collected from blocks using standard cover sprays and 6,015 from blocks that received fruit fly specific sprays. No fruit fly infested fruit were found during the entire sampling program.

This QLD DAFF study reports broad spectrum insecticides (methomyl and bifenthrin) were sprayed on a regular basis to control a range of insect pests, from fruit to final harvest. Narrow spectrum insecticides (spinosad and abamectin) were also used for the control of specific pests such as Heliothis spp., thrips and mites.

As HortNZ stated, fresh capsicum and tomato consignments from Australia are treated when accurate pest identification cannot be achieved. It is MPI’s policy to take a precautionary approach and treat a pest as regulated when it cannot be identified to species level and there are regulated pests in the same genera. This is the case for the majority of pathway interceptions and resultant corrective actions.

Upon commencement of trade MPI intend to survey consignments of fresh capsicum and tomato from Australia for the first import season. This survey will provide MPI assurance that irradiation provides an equivalent level of phytosanitary protection to the suspended dimethoate and field control programmes treatment specification.

27. **HortNZ requested MPI clarify the RG2 regulated pests “appropriate pest control activities” which are not stated in the RMP.**

MPI response:
There have been no changes to the risk management for RG2 regulated pests (except the additional irradiation option for *C. punctiferalis*) on the capsicum and tomato export pathways. Appropriate pest control activities remain status quo and include, but are not limited to non-preferred host status, pest monitoring and management, pre-export inspections and historical records of nil detection. If RG2 regulated pests are detected on a pathway the corrective action will be to either treat (where an approved treatment is available), reship or destroy and/or pathway suspension. DAFF will perform a pre-export inspection and certify that these pests have been managed appropriately with an additional declaration to the phytosanitary certificate.
For more than 10 years, there have been no detections of RG2 pests on these pathways, with the exception of *C. punctiferalis* on capsicums. Consequently there is specific pest control activities required for this pest on the capsicum pathway.

28. *HortNZ comments they had expected MPI to classify Scirtothrips dorsalis as an RG2 regulated pest on the fresh capsicum and tomato export pathways.*

MPI response:
MPI has previously assessed the risk of *S. dorsalis* and found it is mainly a tropical species that occurs on shoots, leaves, flowers and young fruits; therefore it is unlikely to be present on mature capsicum and tomatoes. Should *S. dorsalis* enter New Zealand, the likelihood of establishment is considered low due to unfavourable environmental conditions. MPI currently considers *S. dorsalis* is an RG1 regulated pest based on this information and with alignment with other MPI IHSs. However, MPI is currently undertaking a pest risk analysis (PRA) of *S. dorsalis* risk on other import pathways and may review this classification following analysis.

29. *HortNZ requests MPI clarify its position for consignment rejection upon detection of RG3 regulated pests at DAFF phytosanitary inspection.*

MPI response:
MPI agrees to recognise irradiation as an efficacious treatment which will manage the risk of specified regulated pests detected at phytosanitary inspection when the consignment has or will be treated at rates specified in the amended Table 5 of the RMP (Annex 3).

MPI has amended Table 5 of the RMP (Annex 3) to recognise irradiation at a minimum dose of 150 Gy for RG3 pests, the DAFF action ‘Reject lot, not eligible for export’ has been removed. Likewise, the DAFF rejection action has also been removed upon detection of non-vectoring RG2 pests that have approved corrective actions.

30. *HortNZ requests MPI clarify the product security measures utilised at the treatment facility to prevent re-infestation of fresh capsicums and tomatoes following DAFF phytosanitary inspection.*

MPI response:
All registered irradiation treatment facilities have documented systems for the identification, segregation, process controls and pre and post treatment security of treated and untreated export commodities. These systems are auditable by DAFF and MPI. Pest proof packaging and shrink wrapping is currently utilised for fruit fly host commodities exported to New Zealand, further assuring product security integrity. MPI will update the RMP to more accurately reflect these systems and processes.
Annex 1: Amended IHSs for re-issuance

LIST OF TREATMENT APPENDICES (NZ MPI/DAFF BILATERAL QUARANTINE ARRANGEMENT)

<table>
<thead>
<tr>
<th>APPENDIX NUMBER</th>
<th>TREATMENT</th>
<th>SPECIFICATION</th>
<th>COMMODITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fruit Fly Pest Free Area</td>
<td>“Country freedom” from exotic fruit flies</td>
<td>All fruit fly host material covered by a valid import health standard</td>
</tr>
<tr>
<td>2</td>
<td>Fruit Fly Pest Free Area</td>
<td>“In country” pest free areas [Parts of New South Wales, South Australia, Victoria, Tasmania and Western Australia]</td>
<td>All fruit fly host material covered by a valid import health standard</td>
</tr>
</tbody>
</table>
| 3 | Methyl Bromide Fumigation | 48 g/m³ for 3 hrs at a flesh temperature >15°C at a loading of not greater than 50% chamber capacity
32 g/m³ for 4 hrs at a flesh temperature of 21-26°C at a loading of not greater than 50% chamber capacity | Strawberry (Fragaria sp.)
Watermelon (Citrullus lanatus) |
| 4 | Dimethoate Dip/Spray | Dipped or flood sprayed in Dimethoate at 400ppm active ingredient for 1 minute | Capsicum (Capsicum annuum)
Cucumber (Cucumis sativus)
Honeydew Melon (Cucumis melo)
Rockmelon (Cucumis melo)
Scallopini (Cucurbita pepo)
Tomato (Lycopersicon esculentum)
Zucchini (Cucurbita pepo) |
| 5 | Cold Disinfestation | The core temperature of the fruit to be held continuously at one of the following temperature/time combinations immediately before export or in-transit.
0°C or below for 13 days or 1°C+/- 0.6°C for 16 days
1°C+/- 0.2°C for 16 days
2°C+/- 0.5°C for 18 days or 3°C+/- 0.5°C for 20 days (contingency treatment for Mediterranean fruit fly (Ceratitis capitata) outbreak).
3°C+/- 0.5°C for 16 days (contingency treatment for Queensland fruit fly (Bactrocera tryoni) outbreak). | Citrus spp., including:
Tangelo (Citrus reticulata x paradisi)
Lime (Citrus aurantifolia)
Grape (Vitis vinifera)
Pear (Pyrus sp.)
Avocado only (Persea americana)
Grapefruit (Citrus paradisi)
Mandarins (Citrus reticulata)
Oranges (Citrus sinensis)
Tangerine (Citrus reticulata)
Tangors (Citrus reticulata x sinensis)
Mandarins (Citrus reticulata)
Oranges (Citrus sinensis)
Tangerine (Citrus reticulata)
Tangors (Citrus reticulata x sinensis) |
<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>SPECIFICATION</th>
<th>COMMODITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-field controls</td>
<td>Lepidoptera field control programmes throughout the production season for Conogethes punctiferalis</td>
<td>Capsicum (Capsicum annuum)</td>
</tr>
<tr>
<td>Irradiation</td>
<td>Irradiated with a minimum dose of 250 Gy for Conogethes punctiferalis</td>
<td>Capsicum (Capsicum annuum)</td>
</tr>
<tr>
<td></td>
<td>Irradiated with a minimum dose of 400 Gy for regulated arthropod pests</td>
<td>Capsicum (Capsicum annuum)</td>
</tr>
</tbody>
</table>

These regulated pests include those listed on the commodity IHS that are not known to vector diseases.
Scientific Name: Capsicum annuum

Common Name: Capsicum

Country: Australia

PHYTOSANITARY CERTIFICATE - ADDITIONAL DECLARATIONS

The capsicums in this consignment have:

(i) been inspected in accordance with appropriate official procedures and found to be free from regulated pests specified by the New Zealand Ministry for Primary Industries.

NOTE: Compliance with this additional declaration is not necessary for arthropods if the Australian NPPO certifies export of this consignment under Appendix 12; the consignment may contain live (but non-viable) regulated arthropod pests.

AND

(ii) undergone appropriate pest control activities that are effective against those risk group 2 regulated pests specified by NZ MPI.

AND

(iii) been treated by irradiation at a minimum absorbed doses of 250 Gy for Conogethes punctiferalis

OR

have been managed using in-field controls for Conogethes punctiferalis

AND

(iv) been treated in accordance with Appendix 2 or 12 of the Arrangement between the New Zealand Ministry for Primary Industries and the Australian Department of Agriculture, Fisheries and Forestry concerning the access of host material of fruit fly species of economic significance into New Zealand from Australia.

Note: Full details of the irradiation treatment, including dosage must be included in the “Disinfestation and/or Disinfection Treatment” area of the phytosanitary certificate or as an endorsed attachment to the phytosanitary certificate.

OTHER INFORMATION:

- Specific import health standard available at:
Scientific Name: *Lycopersicon esculentum*

Common Name: Tomato

Country: Australia

PHYTOSANITARY CERTIFICATE - ADDITIONAL DECLARATIONS

The tomatoes in this consignment have:

(i) been inspected in accordance with appropriate official procedures and found to be free from regulated pests specified by the New Zealand Ministry for Primary Industries.

NOTE: Compliance with this additional declaration is not necessary for arthropods if the Australian NPPO certifies export of this consignment under Appendix 12; the consignment may contain live (but non-viable) regulated arthropod pests.

AND

(ii) undergone appropriate pest control activities that are effective against those risk group 2 regulated pests specified by NZ MPI.

AND

(iii) been treated in accordance with Appendix 2 or 12 of the Arrangement between the New Zealand Ministry for Primary Industries and the Australian Department of Agriculture, Fisheries and Forestry concerning the access of host material of fruit fly species of economic significance into New Zealand from Australia.

Note: Full details of the irradiation treatment, including dosage must be included in the “Disinfestation and/or Disinfection Treatment” area of the phytosanitary certificate or as an endorsed attachment to the phytosanitary certificate.

OTHER INFORMATION:

- Specific import health standard available at:

Annex 2: Submissions Received

All submitters have given permission for their consultation submissions to be included in this response document.

27 May 2013

Plant Imports
Import & Export Standards
Ministry of Primary Industries
P O Box 2526
Wellington 6140

To Whom It May Concern

Re: Submission on the following documents:

"Risk Management Proposal – Alternatives to dimethoate to manage the export of fruit fly host commodities: Irradiation of fresh *Capsicum annuum* L (capsicum) and *Lycopersicon esculentum* L (tomato) for human consumption from Australia to New Zealand"

AND

Import Health Standard Commodity sub-class: Fresh fruit/vegetables – *Capsicum (Capsicum annuum)* from Australia

AND

Import Health Standard Commodity sub-class: Fresh fruit/vegetables – *Tomato (Lycopersicon esculentum)* from Australia
Submitter details:

Dr Michael R Butcher
Technical Manager

Submitting on behalf of

Pipfruit New Zealand Incorporated

Physical Address: Eastbourne House
507 Eastbourne Street West
HASTINGS 4122

Postal Address: P O Box 11094
HASTINGS 4158

Office phone: 06 8737080
DDI: 06 8738086
Fax: 06 8737089
Mobile: 021 406 018
Email: mike.butcher@pipfruitnz.co.nz
Work Skype: mb butcher2009

This submission is public information

Submission:
I would like to thank the Ministry of Primary Industries (MPI) for the opportunity to comment on the proposed amendments to the Import Health Standards (IHS) for Capsicum and Tomato for Australia and to the Risk Management Proposal (RMP) for alternative treatments to dimethoate to manage fruit fly host commodities.

Changes to any regulation that may impact border import management of the economically damaging Tephritidae (fruit flies) is of serious concern to any New Zealand based export horticultural sector.

It is also important that MPI does not unrealistically and unilaterally relax import requirements for significant pest risks at a time when it is negotiating with New Zealand primary industries to cost/share any incursion response under a Government Industry Agreement (GIA) scenario.

Risk Management Proposal
Clause 21:
Options 1 and 2 for both capsicum and tomato appear to contradict and minimise the requirements in clause 23 in their wording and I request they be reworded specifically to include all requirements as follows:

Capsicum
Option 1
- Irradiation at 150Gy for fruit flies following season long maintained commercial in-field controls + maintain in-field controls for C. punctiferula
Or
Option 2
- Irradiation at 250Gy for fruit flies and C. punctiferalis following season long maintained commercial in-field controls for all fruit flies and C. punctiferalis

Tomato
- Irradiation at 150Gy for fruit flies following season long maintained commercial in-field controls

My reasoning for this is that; Clause 21 implies irradiation only is satisfactory and that Clause 23 only ‘proposes’ combination and does not insist on it to protect New Zealand to its Appropriate Acceptable Level of Protection.

No where in the document does it state what the "agreed appropriate pest control activities are" for Risk Group 2 organisms including Conogethes punctiferalis. There is much implied but little stated.

In relation to Conogethes punctiferalis could you also please clarify where these agreed appropriate pest control activities are verified in the “Proposed capsicum/tomato export pathway” (Appendix 3), as these activities do not appear to be included in the pathway diagram.

In relation to other Risk Group 2 organisms the RMP appears to be completely silent; (Phylloxera spp., Thrips palmi, Bemisia tabaci). As RG2 organisms present in Australia and may be found on Tomatoes and Capsicums these organisms should be afforded appropriate redress in the RMP. This redress should state all required activities for each organism as I understand one, Thrips palmi, will require a higher irradiation level (350Gy) than is proposed (250Gy) to inhibit larval development (see IAPA-TECD-C-1427; Irradiation as a phytosanitary treatment of food and agricultural commodities Nov 2004).

Please advise and provide evidence that the proposed irradiation treatments for Fruitfly (150Gy) and C. punctiferalis (250Gy) will address Phylloxera spp., and Bemisia tabaci to an acceptable level of protections for NZ.

Clause 32
The clause needs to define acceptable ‘security’ and ‘segregation’ under both ambient and cool store conditions. As worded this is open to an interpretation that may not be sufficiently rigorous.

I would suggest inserting:

32a Segregate at all times phytosanitary inspected & passed packed <crop> eligible for export from <crop> not eligible for export to New Zealand by:
- a minimum of 100mm in cool store
- a minimum of 100mm when under ambient temperature for less than 1 hour
- a minimum of 800mm when under ambient temperatures for 1 hour or longer
Alternatively, insert a pest proof barrier between pallets eligible for New Zealand and those that are not eligible.
The ambient temperature segregation applies to inspected <crop> on the pack house floor and includes distances between pallets being dispatched to the cool store or loaded into container and in any other ambient situation.

The 100mm is a measure applied all around the boxes and pallets the packaged <crop> is in/on at all times while in the cool store.

Clause 37
This clause is problematic as it assigns a probability measure — the Maximum Pest Limit (MPL) to 'trash'— 'trash' although undesirable is not a target quarantine organism and cannot have probability of detection assigned it must be an absolute reference; additionally, the clause does not define 'trash'.

The process is to permit export of capsicums and tomatoes to New Zealand NOT other plant parts. ISPM 05 “Glossary of Phytosanitary Terms” does NOT include a definition of ‘trash’ and therefore New Zealand must make it very clear that any plant material additional to the export commodity <crop> is unacceptable unless a full Pest Risk Analysis (PRA) has been performed on that plant part (including tomato ‘russes’). There is no evidence in the documentation supplied for review that this has been undertaken.

I suggest Clause 37 is reworded as follows:
37. MPI requires, with 95% confidence, that no more that 0.5% of the units in a consignment are infested with visually detectable, viable, regulated pests. To achieve this, New Zealand MPI will sample and inspect 600 units with an acceptance level of zero infested units (or equivalent) from the homogeneous lot. Such an inspection sample may not include more than zero units in each and every 600 unit sample of plant material additional to the exportable crop (i.e., trash, leaf litter, branches, stems, roots, leaves or flowers or parts thereof). No consignment may contain soil.

Clause 41
Second line insert ‘to’ as in
“...... produce for export TO New Zealand......”

Import Health Standards (Capsicum and Tomato)
In line with the suggested changes mentioned for the Risk Management Proposal, the Import Health Standards need to be modified for the appropriate inclusions.

In short, the RMP as presented for comment falls far short of delivering the level of protection for the NZ border than is warranted against these very significant pests and pest threats.
10 June 2013

Plant Imports
Import & Export Standards
Ministry of Primary Industries
Wellington
New Zealand

By email

Dear Plant Imports

Re: Comments on draft IHS for Capsicum & Tomatoes from Australia

We refer to the draft IHS for capsicum and tomatoes from Australia circulated in your email of 15 May and express our support for the draft and the proposed amendments.

The proposed treatment is, we understand, the least restrictive with the available science, consistent with MPI's existing IHSs and treatments from Australia and compliant with New Zealand's international obligations.

Yours faithfully

[Signature]

Michael Daysh
CEO
Glenn Robertson
General Manager (QLD)
Steritech Pty Ltd
PO Box 376
Burpengary, QLD 4505
AUSTRALIA
12th June 2013

Plant Imports
Import & Export Standards
Ministry for Primary Industries

RE: Steritech’s response to the draft Risk Management Proposal (RMP) and Import Health Standard (IHS) amendment to permit the trade of irradiated capsicum and tomato from Australia to New Zealand.

To Whom It May Concern,

Steritech wishes to thank the Ministry for Primary Industries (MPI) for the opportunity to respond to the draft RMP and IHS amendments. The proposed amendments which are of concern to Steritech are detailed below.

1. Options for completing the phytosanitary inspection pre or post treatment

Steritech request the amendments include options to complete phytosanitary inspections pre or post treatment.

Tomatoes and capsicums are susceptible to degradation if not stored in an appropriate cool environment and Steritech has recently invested in infrastructure (new cool storage facilities) to manage the environmental sensitivities associated with these commodities. This infrastructure has been installed in line with current approved Import Health Standards where inspection has been conducted post treatment for the past eight years.

The process flow for treatment starts with treatment of fresh produce soon after receipt of the consignment, followed by post treatment storage of the consignment in a cool room which is on the physically segregated ‘Treated Product’ side of the warehouse pending the Exporter and DAFF inspections. Steritech wishes to keep the current approved process flow for all commodities with the options to complete the phytosanitary inspection pre or post treatment coupled with relevant contingency options.

Enforcing a single pre treatment option for the phytosanitary inspections, given Steritech’s current infrastructure, would cause disruption and delays to the processing of fresh produce consignments and holding the produce outside of cool storage facilities. This would inevitably lead to degradation of produce quality and associated economic loss.

Steritech requests the option of pre treatment inspections remain in place. Once significant volumes of these commodities have been traded under the irradiation pathway, Steritech will...
be prepared to make the capital investment to install additional cool room facilities on the ‘Untreated Side’ of the warehouse – it may take several season to reach this point. Installation of these cool rooms will enable performing the pre treatment phytosanitary inspection in a managed environment, making this option Steritech’s preferred and the most efficient option.

2. Rejection of consignments upon the detection of pests for which irradiation is an efficacious treatment

It is Steritech’s belief that, if accepted, the proposed RMP and IHS amendments would implement a policy that would lead to the rejection of consignments upon the detection of pests despite irradiation being an efficacious treatment for such pests (e.g. RG3 Queensland fruit fly). Section 26 requires that consignments “be free from any visually detectable quarantine pests” during the phytosanitary inspection despite sections 25, 27 & 28 of the RMP accepting the efficacy of irradiation treatment (at various doses for various pests). Table 5 of the RMP and various sections of the draft Import Health Standards for Tomatoes and Capsicums also assert and/or stipulate consignment rejection upon detection of such pests despite both the RMP and IHSs accepting the efficacy of irradiation treatment for these pests.

Steritech does not support any amendment that would intentionally or otherwise implement such as policy. Steritech requests the RMP and IHS be amended to support irradiation as a standalone phytosanitary treatment, when treated at pest appropriate doses, and not reject consignments upon detection of pests for which irradiation is an efficacious treatment.

Steritech’s rationale for this request is explained with the following points:

i. Section 12 of the RMP states “Where possible, phytosanitary measures are aligned with international standards, guidelines, and recommendations as per New Zealand’s obligation.” These international standards include the IPPC ISPMs adopted by both Australia and New Zealand, yet the proposed policy contradicts these ISPMs and other international standards used by MPI to assess irradiation as referenced in section 11 of the RMP. MPI have not provided evidence or justification as to why the international standards were not adhered to in this regard.

ii. The proposed policy is inconsistent with measures in the existing irradiation treatment pathway for the other approved commodities (mango, lychee and papaya).

iii. The proposed policy would not result in the least trade restrictive measures, in comparison to the currently approved irradiation pathway for other approved commodities, for tomato and capsicum.

iv. The deviation from international norm and existing approved pathways would set a trade precedent which will raise issues concerning harmonisation for other country/crop treatment combinations, including exports from New Zealand.

v. The proposed policy, if implemented, could result in extra commercial costs for the irradiation treatment pathway and add another significant barrier to trade.
3. Development of a corrective action contingency for regulatory pest interceptions

Steritech can work with the proposed doses as specified in table 5. We note that there is provision for MPI to specify further approved corrective actions. Steritech would like to work with MPI to develop an approved irradiation based corrective action for the interception of RG1 vectors. A separate proposal will be developed for further consideration in due course.

4. Efficacious treatment of RG1 pests and other regulated organism at a dose of 400Gy

Steritech is in agreement with section 29 of the RMP which states "exporters can choose to irradiate produce infested with RG1 pests or other regulated organisms at a dose of 400Gy." Whilst maintaining the options to irradiate at 150Gy or 250Gy, Steritech is encouraging exporters to irradiate at 400Gy as a 'generic' treatment option for both tomatoes and capsicums. This approach will ensure efficacious treatment for all regulated pest vectors. Further, if the consignment is inspected post treatment (see point 1 of this response), treating at 400Gy will reduce risk of the lot being rejected after the cost to irradiate has been incurred.

To date, industry feedback is supportive of this approach.

5. Establishment of a feedback mechanism between Steritech and MPI

Steritech would like to develop better communications with MPI and establish a timely feedback reporting structure in response to pest interceptions. Past incorrect reporting of non-conformances due to pest interceptions on the irradiation pathway could possibly have been avoided had there been such a feedback mechanism in place.

Such a feedback mechanism could possibly be included as part of Appendix 1: Verification activities on arrival in New Zealand (Draft IHS Capsicum annum from Australia & Draft IHS Lycopersicon esculentum from Australia). Steritech supports feedback reporting and has implemented stringent pre-treatment assessment criteria for ensuring a commodity is 'fit for treatment' including requirements for low pest loading.

Steritech continues to actively work with DAFF, growers and exporters, and remains ready to implement the requirements of the Risk Management Proposal, Import Health Standards and the ANZ BQA Systems Operations Manual as soon as practical into our existing commercial systems. If required, Steritech welcomes MPI to conduct a timely audit of Steritech’s implementation of these regulatory/protocol instruments into our systems.

Yours sincerely,

Glenn Robertson,
General Manager (QLD).
The Department of Agriculture, Fisheries and Forestry's (DAFF) comments against the draft risk management proposal (RMP) and import health standard (IHS) amendment to permit the irradiation of capsicum and tomato from Australia to New Zealand.

1. Actions proposed upon the detection of regulated pests during pre-treatment inspection procedures

DAFF has significant concerns regarding the actions proposed by MPI following the detection of non-vectoring RG3, RG2 (except yellow peach moth) and RG1 pests during pre-treatment phytosanitary inspection procedures by DAFF. In our view, the proposal does not recognise irradiation sterility treatment doses established under the international standards for phytosanitary measures (ISPM18 & ISPM28) developed by the International Plant Protection Convention (IPPC) as an effective stand-alone mitigation treatment for target regulated pests.

By way of example, lots detected with an RG3 pest pre-treatment will not be eligible for export under the current proposal. It is DAFF’s view that where an irradiation dosage rate has been established as effective in achieving sterility of a target pest, irrespective of its risk group classification, this should be made available to exporters as a corrective treatment option. Accordingly, and in the case of RG3 pre-treatment detections, this should enable lots to remain eligible for export once treatment at the appropriate minimum dosage has been delivered to that lot. Further, since Queensland fruit fly is the most likely species to be associated with the pathway(s), the 150Gy is considered a conservative dose as 100Gy is known to be effective (ISPM 28 Annex 5). Therefore, DAFF is seeking to have the draft IHS amended to permit the use of internationally recognised irradiation dose rates as an available treatment option for RG3 pests.

For non-vectoring RG2 and RG1 pests detected pre-treatment, we note that other than lot rejection and methyl bromide fumigation, the remedial irradiation treatment defaults to a 400Gy dosage rate. Similarly to the above, DAFF considers that where a lower dose has been established as effective in sterilising the target pest detected at inspection, this dose should also be made available as a corrective treatment option. For example, following the detection of an RG2 Bactrocera species pre-treatment, a rate of 150Gy should apply instead of the default 400Gy. Notwithstanding MPI’s consideration of how the detection of RG3 pests are managed, DAFF is seeking to amend the corrective actions for RG2 and RG1 pests to include scope for irradiation at doses lower than the mandatory 400Gy where these have been deemed as effective in achieving sterility.

Further, DAFF understands that to gain access under the default 150Gy/250Gy treatment pathways, MPI requires a 0% infestation rate of sampling lots pre-treatment, irrespective of whether 150Gy would serve as an effective sterility dose for any regulated pest(s) identified through phytosanitary inspection procedures (e.g. fruit flies). It is important to emphasise that irradiation is a quarantine treatment supported by Probit 9 efficacy data. Sterility doses across pest groups are recognised internationally and assessed as an appropriate treatment for mitigating the risks posed by target pests of quarantine concern. To require a zero pest detection level prior to the application of a Probit 9 treatment is in our view, technically unjustified.

To address the issues raised above, DAFF is seeking to amend the proposed actions list for pests detected pre-treatment to include all currently recognised pest sterility dosage rates across all risk group classification pests. Whilst DAFF acknowledges that for "All regulated plant pathogens" and "RG1 regulated vectors", the actions would remain unchanged, we consider that the default 150Gy (capsicum and tomato) or 250Gy (capsicum – where in-fields are not undertaken for yellow peach moth) would apply to all lots, unless a specific pest detection pre-treatment warranted a higher dose or an irradiation dose was not established as an effective remedial option. Should concerns arise around the
effectiveness of an applied sterility dose where high infestation rates of target regulated pests are encountered during on-arrival verification procedures, the expectation would be that these would be dealt with on a case-by-case basis. DAFPs view in this respect has been that the extremely high infestation rates required to call into question the effectiveness of an internationally accepted sterility dose, would not be encountered in a commercial production context. For example, Landolt et al. (1984) evaluated the utility of applying the Probit 9 standard to quarantine treatments and estimated the probabilities of encountering fruit fly mating pairs in Probit 9 treated grapefruit consignments under varied pest infestation rates. It was estimated that at a 10% infestation rate, a Probit 9 treatment would equate to a probability of 0.0032 – one mating pair per 312.5 truck loads1 of fruit (OR 1 mating pair in 11.25 million pieces of fruit). At a 1% pest infestation rate, the probability of finding a mating pair would be reduced to 0.0000657, or one mating pair per 15,221 truckloads1 of fruit (OR one mating pair in 547,956 million pieces of fruit). Furthermore, the authors comment that this estimated risk probability is even lower when considering the additional post-entry factors that must occur to allow for a successful incursion event, including surviving to reproductive maturity, finding a suitable mate and an appropriate fruiting host etc. In considering the pest infestations associated with the Australian tomato and capsicum pathways, no detections in over ten years of trade, the risk associated with the irradiated pathway is considerably lower than estimated by Landolt et al. (1984).

2. Actions upon interception of regulated pests

Similar to the issues raised in section 1 of this attachment, DAFPs have concerns regarding the actions proposed by MPI upon the interception of regulated pests during on-arrival verification procedures in New Zealand (Tables 7 & 8 in Appendix 1 of the risk management proposal). Not considering insect vectors and fungi, DAFPs is seeking further clarification from MPI on how this will be practically applied, particularly where one or more of the options is assigned as a ‘2a’ or ‘3’ - which prescribe for reshipment, destruction, further treatment [2a only], and potential pathway suspension. DAFPs is seeking to ensure that where a regulated pest is encountered on-arrival, but the treatment has been certified to have been applied at an approved minimum dose for that pest, that no further actions are required for that lot. It is understood that a ‘4’ action is also outlined for the majority of these pests and as such, it is assumed that it would not necessitate any undue on-arrival treatments where target regulated pests are encountered, and have been treated for. However, clarification from MPI would be greatly appreciated.

3. Clarification around phytosanitary certification requirements

DAFPs is seeking clarification from MPI regarding the additional declaration requirements for both Australian tomato and capsicum to New Zealand. We note that for both commodities, the phytosanitary certificate states that the articles have been inspected and “found to be free of any visually detectable quarantine pests, specified by the New Zealand Ministry for Primary Industries” [see appendix four Part (i)]. In the context of an irradiation treatment objective aimed at achieving sterility, DAFPs considers that a pest irradiated at an approved dose is sterile and therefore is not considered a quarantine pest. Otherwise, this requirement would be met only with a zero regulated pest detection level, despite whether an effective sterility dose is to be applied. Should this be the case, and as raised above, the requirement for 0% infestation prior to a recognised effective quarantine treatment is in our view unjustified. Further clarification from MPI on this would be appreciated.

In addition, DAFPs also notes that in appendix four of the draft RMP, part (ii) of the phytosanitary certificate also requires that the commodity has “undergone appropriate pest control activities that are effective against those risk group 2 regulated pests specified by NZ MPI”. Our understanding of measures required for trade of Australian tomato and capsicum under the suspended dimethoate pathway, was that specific pest management measures were required only for yellow peach moth on Australian

1 Landolt et al. (1984) define 1 truckload as 1 semi-trailer loaded with 1000 cartons of No. 36 grapefruit with N = 36,000 pieces of fruit
capsicum. It is unclear as to whether this requirement refers to the implementation of specific pest management measures for all specified RG2 pests, or if it simply refers to the application of generic integrated pest management strategies, consistent with standard commercial production. This certification requirement is inconsistent with existing pathways for irradiated fruit from Australia and Vietnam.

4. Timing of DAFF offshore pre-clearance inspection

The requirement for mandatory pre-treatment inspection is also inconsistent with the inspection requirements for existing access of Australian tropical fruits, and mangoes from Vietnam, exported to New Zealand under the irradiation treatment pathway. These pathways only require post treatment phytosanitary inspection. DAFF is seeking to have flexibility in the protocol to allow for the timing of the phytosanitary inspections to occur either before or after the irradiation treatment has been applied. This option will provide flexibility to exporters due to the limited cold storage capacity at the Australian irradiation facility. For example, the irradiation facility operates 24 hours a day and fruit deliveries to the facility typically occur in the early hours of the morning when DAFF officers aren’t available for inspection. The option to commence treatment upon product arrival will reduce treatment delays that mandatory pre-shipment inspection would impose and enable a more practical option for treatment operators.

5. Changes to the regulated pest lists under the proposed treatment pathway

DAFF acknowledges that MPI is conducting a risk assessment for tomatoes and capsicums under an irradiation treatment for all of Australia. However, we would appreciate if MPI took into account the location of the well established export areas for Australian product in developing final import conditions. The vast majority of exports from Australia occur from the Bowen/Gumlu and Bundaberg production areas in Queensland or further south in Australia. No exports occur north of Bowen/Gumlu production area. DAFF notes that a number of pests have been added to the regulated pest list for both tomato and capsicum. For some of these, DAFF contends that there is little evidence to justify their association with the export pathway and should be removed from further consideration. These are addressed by species below:

a. Bactrocera aquilonis

MPI’s position: B. aquilonis is listed as RG3 pest for capsicum.

DAFF’s position: B. aquilonis be removed from the RG3 pest list for capsicum

Bactrocera aquilonis is recorded only from the northern regions of Western Australia (WA) and the Northern Territory (NT) (Drew and Lambert 1986; Drew 1989; Hancock et al. 2000; Raphael et al. 2004). A recent study showed B. aquilonis has not been found in the commercial capsicum and tomato production areas at Bowen and Gumlu in Queensland during 2007 and 2008 fruit flies trapping network (Subramaniam et al. 2012).

Initially B. aquilonis was not considered to be a horticulture pest (Drew 1989) having been reared from just four commercial crops: peach, guava and two species of citrus (Allwood and Angeles 1979). However, B. aquilonis is considered by some to now be a pest species with a host range including cultivated fruits in Darwin area of NT (Smith et al. 1988). It has been hypothesised that the expansion in host range was due to a distinct new strain of B. aquilonis adapted to utilise commercial crops and hosts (Wang et al. 2003; Raphael et al. 2004), or as the result of a hybridisation event between B. aquilonis and invading B. tryoni (Osborne et al. 1997; Morrow et al. 2000; Yu et al. 2001).

Given the lack of records of B. aquilonis's association with capsicum, and its distribution outside of export areas, DAFF respectfully requests that B. aquilonis be removed from the regulated pest list, or at least re-classified into lower risk groups for New Zealand.

b. Bactrocera frauenfeldi
MP1's position: *B. frauenfeldi* is listed as RG3 pest for capsicum.

DAFF's position: *B. frauenfeldi* be removed from the RG3 pest list for capsicum

In Australia, *B. frauenfeldi* is distributed through the Torres Strait Island and in northeast Queensland, as far south as Townsville (Hancock et al. 2000). A recent study showed *B. frauenfeldi* has not been found in the commercial capsicum and tomato production areas at Bowen and Gungal in Queensland during 2007 and 2008 fruit flies trapping network (Subramaniam et al. 2012).

Bactrocer a frauenfeldi's preferred hosts include mango, breadfruit, common guava and species of tropical almond (Drew et al. 1982; Drew 1989; White and Elson-Harris 1994). The existing record for a plant with the scientific name of *Capsicum annum* in Hancock et al. (2000) is for ripe chilli not capsicum.

Given *B. frauenfeldi* is recorded for ripe chilli not capsicum, and the its distribution outside of export areas, DAFF respectfully requests that *B. frauenfeldi* be removed from the regulated pest list, or at least re-classified into lower risk groups for New Zealand.

c. *Bactrocera kraussi*

MP1's position: *B. kraussi* is listed as RG3 pest for capsicum.

DAFF's position: *B. kraussi* be removed from the RG3 pest list for capsicum

Bactrocera kraussi has limited distribution, with records from the Torres Strait Island and rainforests of northeast Queensland, ranging as far south as Townsville (Drew 1989; Hancock et al. 2000). A recent study showed *B. kraussi* has not been found in the commercial capsicum and tomato production areas at Bowen and Gungal in Queensland during 2007 and 2008 fruit flies trapping network (Subramaniam et al. 2012).

The primary host for *B. kraussi* include guava and non-economic hosts such as cassowary pine, plum boxwood (Hancock et al. 2000), lucky nut and ylang-ylang (May 1953). Hancock et al. (2000) list two records for ripe chilli not capsicum.

Given *B. kraussi* is only recorded from ripe chilli, not capsicum, and the its distribution north of export areas, DAFF respectfully requests that *B. kraussi* be removed from the regulated pest list, or at least re-classified into lower risk groups for New Zealand.

d. *Bactrocera bryonae*

MP1's position: *B. bryonae* is listed as RG2 pest for capsicum

DAFF's position: *B. bryonae* be removed from the RG2 pest list for capsicum

Bactrocera bryonae occurs in the northern coastal areas of WA, NT, Torres Strait island and eastern Australia from north Queensland to as far south as Sydney, New South Wales (Drew 1989). A recent study showed *B. bryonae* was only recorded in a small proportion of the trap catches in 2007 (1.7%) and 2008 (3.9%) in our major commercial capsicum and tomato producing areas at Bowen and Gungal in Queensland (Subramaniam et al. 2012).

Preferred host fruit for *B. bryonae* are the non-commercial native plants *Diplocyclos palmatus* (striped cucumber) and *Passiflora suberosa* (corky passionfruit) and existing records of capsicum as a host plant are considered to be unreliable. There is significant doubt concerning the only record for capsicum listed in Hancock et al. (2000), which is indicated as 'probable error'. Smith et al. (1988) (cited by Hancock et al. 2000) reported that the identification was incorrect and there were no records of this species being reared from edible fruits. The other record in Hancock et al. (2000) is listed with the common name of chilli not capsicum. Hamacek et al. (1997) has also listed multiple records of this species in chillies but no records in capsicum. In all cases the chilli records were from feral plants, not from cultivated plants (Hamacek et al. 1997).
Given *B. bryoniæ* is recorded for ripe chilli, not capsicum, and its low population density within the
capsicum growing areas, DAFF respectfully requests that *B. bryoniæ* be removed from the regulated
pest list, or at least re-classified into lower risk groups for New Zealand.

e. *Bactrocera musae*

MPI’s position: *B. musae* is listed as RG2 pest for both capsicum and tomato

DAFF’s position: *B. musae* be removed from the RG2 pest list for both capsicum and tomato

Bactrocera musae has a limited distribution in Australia and has not been recorded south of
Townsville in northern Queensland (Drew 1989; Hancock et al. 2000). A recent study showed *B. musae*
has not been found in the commercial capsicum and tomato production areas at Bowen and Gunlu in

Bactrocera musae is a specific pest of bananas in northern Queensland (Drew et al. 1982; Clift et al.,
1999) that is also known to attack common guava and papaya (Drew 1989), Hancock et al. (2000) list
a single record of *B. musae* attacking ripe tomato, while Hamacek et al. (1997) recorded this species
infesting ripe and over-ripe chillies not capsicum. Neither record is of commercial quality fruit but is
incidental records of *B. musae* attacking ripe and over-ripe fruits.

Given *B. musae* is recorded for ripe chilli not capsicum and only one record for ripe non commercial
tomato, and its distribution north of export areas, DAFF respectfully requests that *B. musae* be
removed from the regulated pest list, or at least re-classified into lower risk groups for New Zealand.
14 June 2013

Plant Imports Team
Ministry for Primary Industries
PO Box 2526
WELLINGTON 6140

By Email: plantimports@mpi.govt.nz

To Whom It May Concern

New Zealand Fresh Produce Importers Association (NZ FPIA)

Submission on the Draft Import Health Standards (IHSs)
for Capsicum (Capsicum annuum)
and Tomatoes (Lycopersicon esculentum)
from Australia

On behalf of the New Zealand Fresh Produce Importers’ Association (NZFPIA) I wish to thank the Ministry for the opportunity to comment on the draft import health standards for capsicums and tomatoes from Australia as well as the supporting information provided in the accompanying risk management proposal, RMP – Irradiation of fresh capsicum and tomatoes for human consumption from Australia to New Zealand (May 2013).

Risk Management Proposal

NZ FPIA supports most of the proposals contained in the risk management proposal dated May 2013. NZ FPIA does however note that Table 5 proposes the implementation of a significant new policy. This new policy requires that the detection of certain regulated pests will lead to the rejection of affected lots (not eligible for export) prior to the application of an approved an efficacious treatment.

NZ FPIA believes there are potential and important trade issues associated with this new policy. Normally the interception of a regulated pest results in a direction for (an efficacious) treatment rather than a rejection from (an efficacious) treatment. This is therefore a significant deviation from currently accepted import practices and the relevant international standards and source documents mentioned in the risk management proposal document.

As pointed out in the MPI consultation documents, the actual detection of the target pests of concern on tomatoes/capsicums from Australia occur very infrequently (e.g. records will demonstrate that on average once every 10+ years). Consequently, this new policy will have little (or no) commercial impacts for these pathways. However, there are wider policy implications that need to be carefully considered.
NZ FPIA is concerned that the major issues associated with this new policy will revolve around:

- The lack of any clear rationale and/or scientific basis to justify immediate implementation of this policy for tomatoes and/or capsicums or other affected pathways.
- Consistency of application (i.e. the Australian tomato and capscicum pathways would be managed significantly differently to other pathways with a similar risk profile).
- The new measures being more restrictive than is necessary to prevent the entry and establishment of the listed regulated pests.
- Setting a policy and operational precedent for a number of other country:commodity and import/export pathways.
- Potential export trade issues should other countries choose to harmonise with New Zealand on a new approach that involves a [product inspection] + [detection] + [reject from being treated with an efficacious and internationally recognised treatment].
- Potentially exposing New Zealand to a technical trade challenge/s under the IPPC and/or WTO dispute procedures.
- The lack of proactive consultation regarding this new policy with affected and interested parties outside of MPI.

In consideration of the above issues, NZ FPIA requests that MPI does not implement this new policy. Instead the full rationale for considering and imposing these measures, coupled with further debate on wider implications, should at least be undertaken to ensure any "NZ Inc" impacts are understood and dealt with. At the very least, the "proposed" new policy should only proceed following a formal consultation process with all stakeholders.

NZ FPIA considers that there is no justification in delaying the issuance of the respective import health standards because of this issue. The IHSs can be issued and implemented in accordance with current measures for pathways of similar risk and profile (e.g. mangoes from Australia). Furthermore, the required pre-export systems are already in place to give effect to these measures. These systems are already well established and have been successfully implemented for many years.

Draft IHSs

In relation to the draft IHS for tomatoes and capsicums, NZ FPIA considers that some of the detail represented in the draft import health standards (IHSs) requires further clarification and specification. Specifically, NZ FPIA makes the following comments that should be addressed in the commodity IHSs for capsicum and tomatoes:

1. Remove any reference to "Appendix 4 and Appendix 10" (relating to Dimethoate dip/spray in the list of fruit fly treatment appendices) in both the Draft IHS Capsicum annuum from Australia and Draft IHS Lycopersicon esculentum from Australia, as well as Draft IHS 152.02 Treatment Appendices.

2. Include reference to the application of a pre-export generic irradiation treatment in Part C of both the Draft IHS Capsicum annuum from Australia and Draft IHS Lycopersicon esculentum from Australia, as a response to DAFF pre-treatment phytosanitary inspection requirement and/or to facilitate clearance of any consignment if any regulated pests are detected on arrival.
3. Clarify the need for an irradiation treatment of 400 Gy as the minimum absorbed dose “considered to be effective to prevent the introduction and spread of capiscum and tomato regulated pests (Follett, 2009), including economically significant fruit flies (IPPC, 2009c).”

NZ FPIA notes inconsistencies arising between different irradiation treatments specified in different MPI IHSs, and those recommended in the literature.

It is noted in paragraph 28 of the RMP for irradiation of capiscum and tomatoes that “Adult or pupae Lepidoptera species are unlikely to follow the capiscum and tomato pathways because none pupate in fruit and adult external feeders are likely to be removed during post-harvest processing. Likewise, mites are also likely to be removed during post-harvest processing.” Nevertheless, a minimum absorbed dose of 400 Gy is proposed to prevent introduction and spread of capiscum and tomato regulated pests.

In contrast, the IHS *Litchi chinensis* from Australia (MPI, 2009) and IHS *Mangifera indica* from Australia (MPI, 2010) specify a minimum dose rate of 250 Gy as a treatment for all arthropod pests. The literature (ISPM 18 Appendix 1, 2003; Corcoran and Waddell 2003) provides an alternative recommendation of 350 Gy to sterilize actively reproducing adult mites.

In summary, NZFPIA suggests that to be consistent with ISPM 18 and other MPI IHSs that minimum absorbed doses of 350 Gy and 250 Gy be specified in the IHS *Capsicum annuum* from Australia and IHS *Lycopersicon esculentum* from Australia, respectively, as effective to prevent the introduction and spread of listed regulated pests. No regulated pest mites are listed in the Draft IHS *Lycopersicon esculentum* from Australia.

4. NZ FPIA agrees with the “generic treatment” approach outlined in section 29 of the RMP and will encourage all members to use the agreed minimum effective dose as a matter of standard procedure (see also comments in (3) above).

5. NZ FPIA agrees with “Appendix 1: Verification activities on arrival in New Zealand. In particular, “...the detection of live stages of regulated pests in import inspection should not be considered to represent treatment failure resulting in non-compliance unless evidence exists to indicate that the integrity of the treatment system was inadequate.” NZ FPIA notes that some MPI officials have struggled with the practical implementation of this under commercial trading conditions. This has led to some inaccurate reporting of non-compliances and associated contingency actions for affected consignments. NZ FPIA requests that MPI develops better and more proactive data collection and feedback communications with NZ FPIA to ensure accurate reporting of conformance/non-conformance against irradiation treatments.
NZ FPIA looks forward to the issuance of the revised capsicum and tomatoes IHSs and hopes that the comments above can be addressed as they are finalised.

Yours sincerely,

[Signature]

Kevin Nalder
Chief Executive Officer
New Zealand Fresh Produce Importers’ Association (Inc.)
Submission to: Fresh Produce Imports
Import & Export Standards Branch
Ministry for Primary Industries
plantimports@mpi.govt.nz

Joint Submission from: Horticulture New Zealand Inc (HortNZ)
TomatoesNZ
Contact: Peter Sitzock
Chief Executive
Horticulture New Zealand
PO Box 10232, The Terrace, Wellington 6143
04 472 3753 Mobile: 0274 487 038
peter.sitzock@hortnz.co.nz

Horticulture New Zealand Submission on the Risk Management Proposal Alternatives to dimethoate to manage the export of fruit fly host commodities: Irradiation of fresh Capsicum annuum L. (capsicum) and Lycopersicon esculentum L. (tomato) for human consumption from Australia to New Zealand.

Horticulture New Zealand welcomes the opportunity to comment on this risk management proposal. The proposal represents a fundamental change to the way the risk of fruit flies entering and establishing New Zealand through this import pathway is managed. But as the irradiation treatment is based on the fruit fly irradiation treatments specified in the annexes to ISPM No. 28, at a dose intended to prevent the emergence of adult fruit fly, Horticulture New Zealand accepts the technical justification of fruit fly irradiation. We also support the requirement for FSANZ mandatory labelling requirements to be followed. However we do have a number of comments on the way the treatment is to be implemented and the flow-on effects of other quarantine pests of concern to the horticulture industry.

The removal of verified in-field control programmes and the post-harvest dimethoate insecticide treatment for fruit flies has the potential to lead to a higher incidence of other quarantine pests in this import pathway. We have previously noted that although the RMP states that “The capsicum and tomato export pathways from Australia have been compliant for more than 10 years”, our analysis of interception data suggests a high level of on-arrival fumigation of capsicums and tomatoes. Although no fruit flies have been detected during this period, twenty five per cent of Australian capsicums imported in 2008 and 2009 were treated, and 17% in 2007 (the proportion was much higher for sea-freight – 60% in 2010). For Australian tomato imports treatment levels were 14.1% in 2011 (sea-freight), 8.5% in 2010 (sea-freight), 5% in 2009, 14% in 2008, and 12% in 2007. In many cases these consignments were treated without accurate post identification. The presence of pests in the field control / post-harvest treatment pathway suggests there is potential for there to be an increase in pest infestation following the removal of mandatory in-field controls and post-harvest treatment.
Irradiation at the prescribed fruit fly dose is not sufficient to kill all of the pests listed in the RMP, so it is important that phytosanitary measures designed to manage these other pests are reviewed and modified accordingly. We are concerned that our previous request for these risks to be reviewed was not addressed and we were advised that “There have been no changes to the risk management for RG2 and RG1 pests on the capsicum and tomato pathways, with the exception of an irradiation option for C. punctiferalis; hence they are not subject to this consultation”. We respectfully submit that the risk from RG2 pests has changed due to the removal of mandatory in-field controls and post-harvest dimethoate treatment, and as a consequence the appropriateness of risk management measures for RG2 pests needs to be re-assessed.

A number of Risk Group 2 (RG2) pests are identified in the RMP, and are required to undergo “appropriate pest control activities that are effective against those risk group 2 regulated pests specified by NZ MPI”. There is no information in the RMP as to what these measures are (other than for C. punctiferalis), or how effective they are in managing RG2 pests. Industry concerns could be addressed by explaining the specific phytosanitary measures being applied to manage the risks posed by these RG2 pests.

We note that the pest list has been updated, and now includes Scirtothrips dorsalis as requested by Horticulture New Zealand, but no specific risk management measures have been proposed and it has not been categorised as a RG2 pest. Given the vector capabilities of this pest and its known impact we believe it should be included in the RG2 pest list and specific phytosanitary measures prescribed.

We would like to draw attention to an inconsistency within the RMP (and the Import Health Standards) regarding actions to be taken upon detection of pests at DAFF pre-treatment phytosanitary inspection. Table 5 indicates that if fruit flies are detected at DAFF phytosanitary inspection they must be rejected and are not eligible for irradiation. Paragraph 36 (and also the IHS) specifies that “Where a regulated arthropod pest is detected on the commodity, irradiation efficacy and dosage for the pest must be confirmed by DAFF”. This suggests that irradiation is available upon detection of fruit flies. This could be clarified by making a clear statement that upon detection of fruit flies during DAFF inspection irradiation is not available, if this is what MPI intends.

A further inconsistency arises in that phytosanitary security measures (e.g., prevention of infestation) are only required to be applied after irradiation. It would be normal practice for these measures to be applied from the first point of phytosanitary inspection. We have been advised that this is because irradiation is an end-point treatment. However, as the RMP prohibits produce in which fruit flies have been detected at DAFF inspection from being irradiated, it seems inconsistent to not have in place measures to prevent infestation immediately after inspection. The wording of paragraph 32 could be clarified by removing reference to irradiated and untreated produce and requiring that all produce under this RMP be kept secure and segregated from other produce from the point of phytosanitary inspection to arrival in NZ.

Ends
Annex 3: MPI proposed actions for pests detected at DAFF phytosanitary inspection

MPI recognises irradiation as an efficacious treatment which will manage the risk of specified regulated pests detected at phytosanitary inspection when the consignment has or will be treated at rates specified in the amended Table 5 of the RMP.

Table 5: MPI proposed actions for pests detected at DAFF phytosanitary inspection

<table>
<thead>
<tr>
<th>Organism detected</th>
<th>Reference</th>
<th>Actions by DAFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG3 pest</td>
<td>Table 3</td>
<td>Irradiation at a minimum dose of 150 Gy</td>
</tr>
<tr>
<td>RG2 pests (excluding Conogethes punctiferalis)</td>
<td>Table 4</td>
<td>Irradiation at a minimum dose of 400 Gy for non-vectoring RG2 pests or methyl bromide fumigation (MPI, 2012c) for vectoring RG2 pests</td>
</tr>
<tr>
<td>All regulated plant pathogens</td>
<td>IHS Australia capsicum & tomato pest lists¹</td>
<td>Reject lot, not eligible for export</td>
</tr>
<tr>
<td>RG1 regulated vectors</td>
<td>IHS Australia capsicum & tomato pest lists; BORIC</td>
<td>Reject lot, not eligible for export OR Treat with methyl bromide fumigation (MPI, 2012c)</td>
</tr>
<tr>
<td>RG1 and other regulated arthropods (regulated organisms not specified on pest list)</td>
<td>IHS Australia capsicum & tomato pest lists; BORIC; Points 27-31 below</td>
<td>Irradiate at a minimum absorbed dose of 400 Gy for all RG1 and other regulated arthropods (excluding Lepidoptera pupae and adults and other Acari) OR Treat with methyl bromide (MPI, 2012c)</td>
</tr>
<tr>
<td>Non-regulated pests OR None detected</td>
<td>IHS Australia capsicum & tomato pest lists; BORIC</td>
<td>Capsicum: Irradiate at a minimum dose of 150 Gy for RG3 pests OR Irradiate at a minimum dose of 250 Gy for RG2 pest C. punctiferalis Tomato: Irradiate at a minimum dose of 150 Gy for RG3 pests</td>
</tr>
</tbody>
</table>