REVIEW OF SUBMISSIONS ON:

DRAFT IMPORT HEALTH STANDARD FOR TURKEY MEAT AND MEAT PRODUCTS
DRAFT IMPORT RISK ANALYSIS: TURKEY MEAT
DRAFT RISK MANAGEMENT PROPOSAL FOR TURKEY MEAT AND MEAT PRODUCTS

Biosecurity New Zealand
Ministry of Agriculture and Forestry
Wellington
New Zealand

March 2011
REVIEW OF SUBMISSIONS ON:

DRAFT IMPORT HEALTH STANDARD FOR TURKEY MEAT AND MEAT PRODUCTS
DRAFT IMPORT RISK ANALYSIS: TURKEY MEAT
DRAFT RISK MANAGEMENT PROPOSAL FOR TURKEY MEAT AND MEAT PRODUCTS

March 2011

Approved for general release

Matthew Stone
Animal Imports Exports Group Manager
Biosecurity New Zealand
Table of contents

Acronyms used in the document: .. 6
Review of submissions .. 10
1. Poultry Industry Association New Zealand and Egg Producers Federation (PIANZ/EPF) 10
2. European Union ... 32
3. USDA ... 37
Appendix 1: Copies of Submissions .. 46

The Poultry Industry Association of New Zealand (PIANZ) and Egg Producers Federation of New Zealand (EPF) 46
The European Union, European Commission .. 62
United States Department of Agriculture (USDA) .. 66
Introduction

The development of an Import Health Standard (IHS) for turkey meat was identified as a priority for MAF. It was proposed that the highly specific Import Risk Analysis (IRA) developed in 1999 for Bernard Matthews Foods Limited (BMFL) be updated to examine the risks associated with turkey meat and meat products from all countries. This updated IRA was completed in May 2010 and the draft IHS was completed in October 2010.

Under the new MAF process the IHS and IRA along with a risk management proposal (RMP) were provided to stakeholders. MAF released the draft documents Import Health Standard: Turkey Meat and Meat Products, Import Risk Analysis: Turkey Meat, and the Draft Risk Management Proposal: Turkey Meat and Meat Products for public consultation on 7th October 2010. The closing date for public submissions on these documents was 15th November 2010. To meet New Zealand’s international obligations, notification was also made to the World Trade Organisation (WTO), with a closing date of 8th December 2010. Three submissions were received.

The submitters and the organisations represented were as follows:

- Michael Brooks representing the Poultry Industry Association of New Zealand (PIANZ) and Egg Producers Federation of New Zealand (EPF)
- Ella Strickland (European Union Notification Authority and Enquiry Point of the WTO Agreement on SPS measures) representing the European Union, European Commission
- Laura Scandurra representing the United States Department of Agriculture (USDA)

Acronyms used in the document:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Avian influenza</td>
</tr>
<tr>
<td>APMV</td>
<td>Avian paramyxovirus</td>
</tr>
<tr>
<td>BMFL</td>
<td>Bernard Matthews Food Limited</td>
</tr>
<tr>
<td>EPF</td>
<td>Egg Producers Federation</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FSIS</td>
<td>Food Safety Inspection Service</td>
</tr>
<tr>
<td>GMP</td>
<td>Good Management Practice</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard Analysis Critical Control Point</td>
</tr>
<tr>
<td>HPNAI</td>
<td>Highly pathogenic notifiable avian influenza</td>
</tr>
<tr>
<td>IBDV</td>
<td>Infectious bursal disease virus</td>
</tr>
<tr>
<td>ICIPI</td>
<td>Intracerebral pathogenicity index</td>
</tr>
<tr>
<td>IHS</td>
<td>Import Health Standard</td>
</tr>
<tr>
<td>ILT</td>
<td>Infectious laryngotracheitis</td>
</tr>
<tr>
<td>IRA</td>
<td>Import Risk Analysis</td>
</tr>
<tr>
<td>LPNAI</td>
<td>Low pathogenicity notifiable avian influenza</td>
</tr>
<tr>
<td>MAF</td>
<td>Ministry of Agriculture and Forestry</td>
</tr>
<tr>
<td>MHS</td>
<td>Meat Hygiene Service</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle disease virus</td>
</tr>
<tr>
<td>NPIP</td>
<td>National Poultry Improvement Plan</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organisation for Animal Health</td>
</tr>
<tr>
<td>PIANZ</td>
<td>Poultry Industry Association of New Zealand</td>
</tr>
<tr>
<td>RMP</td>
<td>Risk Management Proposal</td>
</tr>
<tr>
<td>TCV</td>
<td>Turkey coronavirus</td>
</tr>
<tr>
<td>TVH</td>
<td>Turkey viral hepatitis</td>
</tr>
<tr>
<td>vvIBDV</td>
<td>Very virulent infectious bursal disease virus</td>
</tr>
</tbody>
</table>
As a result of comments made, the following is a summary of amendments to be made to the *Import Health Standard for Turkey Meat and Meat Products*:

- The RMP to no longer refer to options as ‘equivalent’, but rather refer to the options all effectively managing the risk.

- The scope of the product in the IHS will include the following with regards to whole turkey carcasses:
 - Whole turkey carcasses that have been subject to routine evisceration procedures (including head-and-feet-on carcasses)

- A definition included in the IHS for reconstituted meat.

- Removal of the term ‘offal’ contained within the definition of carcass.

- The flock testing requirements for Newcastle disease and avian influenza to be removed from the IHS.

- The IHS to include the words “samples were collected under the supervision of the Official Veterinarian”.

- Appendix 1, production system outline requirements, to include vaccination systems used in turkey farm health programmes: “Vaccination (including details about all vaccines administered to birds for slaughter e.g. type, manufacturer’s recommendation, registration for the use in turkeys etc.)”.

- Regarding turkey viral hepatitis, a liver condemnation rate of <2% to replace 30% in the IHS.

- Regarding *Salmonella arizonae*, ‘salmonella culture’ to replace ‘bacteriology culture’.

- Regarding time/temperature requirements to manage the risk of *Salmonella arizonae* in turkey meat. The following thermal treatment options (which will achieve a 7 Log reduction in *Salmonella* in turkey meat with 12% fat) to be included in the IHS:
 - 60°C for 2030 seconds; or
 - 62°C for 1073 seconds; or
 - 65°C for 370 seconds; or
 - 70°C for 41 seconds; or
 - 72°C for 19 seconds; or
 - 74°C for 9 seconds; or
 - 76°C for 4 seconds; or
 - 79°C for 1 second.

- The IHS to provide for alternate security features offered by paper certificates as stated in the response to 3.3 of the review of submissions.

- The IHS to include the provision for the transport container seal to be applied “under Veterinary Authority supervision.”

- All documents to reference the correct OIE recommended thermal treatment for the inactivation of AI virus in poultry meat.
• The RMP to reference the correct Article number 10.4.26. for the inactivation of AI virus in poultry meat.

This review of submissions document will review each submission in turn. The submissions are broken down into numbered paragraphs. Each paragraph is an extract from the submitters’ letters, no amendments have been made. It should be noted that any grammatical errors from the submissions have not been corrected in the document.

Internal submissions

According to MAF process an internal review period is available to staff of MAF to comment and recommend changes prior to public consultation on an import health standard. One internal submission was received after the internal review deadline. The recommendations as a result of this submission are included in this document.

• All definitions specific to the regulatory requirements in the import health standard to be moved into the IHS. This will include zone, compartment, flock, biosecurity plan, carcase, reconstituted meat.

• The IHS to be changed to omit the words “may be” and replace with “means” regarding the following clause: “For the purposes of this standard, turkey meat and meat products means one or more of the following”.

• The IHS to be changed to omit the words “shall” and replace with “must” for the following: “Turkey meat and meat products imported into New Zealand must be:”

also, insert ‘and’ after each bullet point in the list that follows, as the list is cumulative.

• Delete the following clause in its entirety from the IHS which does not contain any regulatory requirements. “MAF and the Veterinary Authority of the exporting country will negotiate the content of the zoosanitary certificate to determine how the level of risk management specified by the standard will be achieved, taking into account:” This information will be contained in the guidance information for the IHS.

• To replace the word ‘eligible countries’ with ‘approved countries’.

• Delete the commodity eligibility clause of the IHS as this clause is superfluous.

• Documentation requirements in the IHS to be amended with the following:
 o “Permit to Import issued under the Biosecurity Act”.
 o To be concise, remove the word “specified” and replace with “the documentation must be”.
 o The documentation specified must be “attached to the imported goods”.

• The second option under Newcastle disease in Part C of the IHS, and the first option under Avian Influenza to have “from ND” and “from HPNAI” inserted at the end of the clauses respectively.

• The second clause under turkey viral hepatitis to read “Veterinary Authority approved abattoir” in reference to the approved abattoir.
As a result of modifications to the presentation of documents under the new MAF Border Systems Programme the documents will have the following amendments:

- Deletion of the italicised text “See Guidance Document for permit to import information and model documentation.” The permit to import information will be contained in guidance information available either on the web or in a generic guidance document for animal products.

- Deletion of “See Guidance Document on how to apply for equivalence.” Under Part D.

- Deletion of the words “including definitions of common import health standard terms used in this standard.” Common IHS definitions will be located in generic guidance information available on the MAF website and not in the specific guidance for this Standard. Definitions relating to regulatory requirements will be placed into the Standard.

- “Zoosanitary certificate (Negotiated export certificate)” will be replaced with “veterinary certificate”.

- Where ‘shall’ is used in the Standard ‘must’ will replace the term. This provides for the mandatory nature of the requirements stated in the IHS.

- References to Appendix 1 and Appendix 2 in the IHS will be modified to ensure they are properly referenced.

- The following generic clause to be included in the background section of the import health standard:
 - A biosecurity clearance, under section 26 of the Biosecurity Act 1993, may be issued when the turkey meat and meat products meet all the requirements of this import health standard.

- The following generic clause to be included under the title “Inspection”:
 - Any documentation accompanying the consignment must be inspected on arrival by an inspector. The inspector may also inspect the consignment, or a sample of the consignment on arrival.

Copies of all external stakeholder submissions in their entirety are presented in Appendix 1.
Review of submissions

1. Poultry Industry Association New Zealand and Egg Producers Federation (PIANZ/EPF)

1.1. Document complexity: There are 4 documents published by MAF at the one time. The risk analysis, the IHS, the draft risk management proposal and the guidance document. The comments in this submission are referenced to one of these four documents, generally the IHS or IRA but address issues in either one or all of the documents. The new process that MAF has developed where all four documents are required to be commented on at the one time is not in our submission user friendly and is complex for submitters.

MAF Response: MAF has recently reviewed the nature and purpose of the consultation documents provided to stakeholders, in response to concerns over the size and technical complexity of the documents MAF used in the past. MAF has also considered how to be more transparent in decision-making, and more efficient and timely in the way standards are updated. The two key changes are:

- Guidance or non-regulatory information has now been moved out of the import health standard (IHS) into a guidance document. This guidance material can now be updated separately from and more easily than the legal requirements held in the IHS.

- The specific factors considered and rationale used in making the regulatory decisions reflected in the IHS is summarised into a separate document called the Risk Management Proposal (RMP). The RMP is intended to enhance the ability of stakeholders to find the essential information considered in drafting the proposed import requirements.

The changes, while not altering significantly the depth or scope of information provided to stakeholders during consultation, are intended to present that information in a manner more suitable to their diverse consultative needs. MAF will continue to engage with key affected stakeholders through the development process to ensure that their views are considered.

The status of IHSs has not changed with the new process. The IHS still sets out the requirements to be met and compliance with these is necessary prior to clearance.

1.2. Information sources. (Page 5. Guidance document.): Industry notes the total reliance placed on the exporting countries Veterinary Authorities to source relevant information from the commercial poultry companies who wish to export. The process outlined in the IHS requires the poultry companies to report changes in the health status of all the flocks within the exporting country/zone/compartment. The basis of the permit issue by the appropriate Veterinary Authority is totally dependant on this company supplied information. That requires the company to ensure that a number of actions are completed by them every day but gives no process to provide proof that daily collection of information occurs.
MAF Response: As a member country of the World Organisation for Animal Health (OIE) MAF assesses the quality of Veterinary Services in the exporting country according to the OIE Terrestrial Animal Health Code. The OIE provides a general information document International trade: Rights and obligations of OIE Members, the last paragraph states “Confidence in the quality of veterinary services is the cornerstone of international trade. Good governance, ensuring transparency in disease reporting, efficiency in disease management and reliability in veterinary certification, is key to provide the necessary assurances to trading partners”. All international trade is dependant on mutual trust and this IHS is no different to any other in this respect. The IHS also states “MAF reserves the right to audit facilities from countries approved to export product to New Zealand.”

1.3. **If in the process of collecting information if a non – compliance was detected by the company what safeguards are in place to ensure it is reported? In such a situation a non – compliance could mean that the company cannot export for up to twelve months therefore the pressure not to report will be very high. This scenario does not appear to be addressed or accounted for in the Biosecurity plans or Veterinary Authority oversight. PIANZ submits this is fundamental weakness that must be addressed.**

MAF Response: Biosecurity Plans of a compartment must follow OIE guidelines and an essential part of this is clarifying the reporting procedures in the plan. With regard to Veterinary Authority oversight, MAF relies on the Official Veterinarian to certify the product and offers flexibility to determine exactly how the Veterinary Authority will ensure all clauses of the standard are met. This is in line with what New Zealand regulatory authorities expect from partner authorities accountable for safe importation of products. In addition please see the response to 1.2.

1.4. **Non Notification. (Page 56, 59 Risk analysis.): The risk analysis considers IBDV-1 as a non risk organism. PIANZ therefore asks how will a change in the status of IBDV-1 by findings of IBDV-1 in imported turkey meat ever be considered and re-evaluated as a different risk. Exporting countries are not required to undertake any surveillance. Even if detected there is no requirement to report the presence of IBDV-1 in turkey flocks supplying turkey meats to New Zealand. This is a major area of risk that is not addressed within the IHS and risk analysis. PIANZ submits that MAF should reconsider the decision to classify IBDV-1 as a non risk organism.**

MAF Response: There is currently no published evidence to indicate that IBDV-1 should be considered a risk organism associated with turkey meat from commercial flocks.

With the exception of the report by Owoade et al (2004) there is no evidence of natural infection of turkeys with IBDV-1. As discussed at some length in the IRA, IBDV-1

1. http://www.oie.int/index.php?id=169&L=0&htmfile=chapitre_1.4.4.htm

seropositivity has only been recorded in commercial turkey flocks that have a history of breeder hens being vaccinated with chicken IBDV vaccines (Jackwood et al 1982\(^3\); Barnes et al 1982\(^4\); Chin et al 1984\(^5\)). Furthermore, Eddy et al (1985)\(^6\) surveyed 32 turkey flocks in England and found widespread seropositivity to IBDV-2 but no serological evidence of IBDV-1 despite widespread infection of chickens in England with IBDV-1.

The IRA considers the likelihood of natural infection of commercial turkeys with IBDV-1 in some depth and it should also be noted that, as indicated on page iii of the IRA, the IBDV chapter of this document was subject to additional external scientific review by Professor Yehia Mohamed Saif, a recognised OIE expert on this disease who heads an OIE reference laboratory for IBD.

MAF has the flexibility to review new material, reassess risk, and amend IHSs if future publications question previously published scientific findings.

1.5. **Carcass definition and Offal. (Page 4 Guidance documents.):** The definition of carcasses in the IHS states that it is a processed body of a slaughtered animal after evisceration procedures to ensure the removal of all offal. The conditions of the IHS allow entire turkey carcasses with head and feet on or without head and feet to be imported. Bone in turkey product is also able to be imported. As the cervical (neck bones) and long bones (leg bones) may contain respiratory tissue, which is commonly defined as offal, then the import of these products would not be possible under this IHS.

MAF Response: In turkeys, the anterior thoracic air sac and the paired posterior thoracic and thoraco-cervical air sacs are combined as an aggregate sac which communicates with the anteroventral portion of the lung. A large ventral diverticulum from the aggregate sac pneumatises the sternum through several foramina on its dorsal surface and a diverticulum from the dorsal surface of the aggregate sac communicates with the spine from the second cervical vertebra to the fourth coccygeal vertebra, with numerous pneumatic foramina in each thoracic and coccygeal vertebra. A dorsal extension of the aggregate sac also pneumatises the humerus. The pelvic bones are also pneumatised from the greater abdominal air sacs (Cover 1953)\(^7\).

Of all the hazards identified in the IRA, freedom from respiratory tissue was presented as a risk management option component only for APMV-2 and APMV-3. The exposure

\(^7\) Cover MS (1953) Gross and microscopic anatomy of the respiratory system of the turkey III. The air sacs. *American Journal of Veterinary Research* 14, 239-245.
assessment (Section 6.2.2) stated “Any respiratory or intestinal tissue remnants in imported turkey carcases would be unlikely to be removed prior to cooking although, in the absence of any data to support this, it is assumed that some of this may be discarded as raw tissue prior to cooking and therefore accessible to backyard poultry”. MAF recognises that some air sac tissue may remain in carcases after routine evisceration, hence the requirement that entire turkey carcases be from flocks free from APMV-2 and APMV-3 or be heat treated. However, it is reasonable to assume that there is a negligible likelihood that susceptible species will be exposed to air sac remnants associated with pneumatised bones in bone-in turkey products prior to cooking.

1.6. The IHS, Guidance documents and OIE codes do not offer a definition of offal so MAF needs to provide a definition in order to clarify this point. To assist on this important issue PIANZ provided the following definition of offal to MAF in April 2010. “Offal includes giblets, the bursa of Fabricius, respiratory tissue, crop, gizzard, heart, intestine, kidney, proventriculus and spleen. “PIANZ again recommends that this definition be adopted by MAF and included in the IHS.

MAF Response: To avoid ambiguity, the term ‘offal’ will be removed from the definition of carcass contained within the Guidance Document. Instead, “carcass” will be defined as “the processed body of a slaughtered animal after routine evisceration procedures”.

1.7. **Export systems/Compartments (Pages 15 Risk management documents):** PIANZ is extremely concerned at the option offered in the IHS and Risk management Documents. (Page 15 of 21.) “For exported product produced in systems that may not be aligned with OIE Code requirements systems, a specific flock testing option aligned with sampling requirements for other risk organisms is included”. The export of product from a system that is not aligned to OIE code requirements is a fundamental defect in the IHS. It offers to exporters a reduction in the requirements required to export to New Zealand. It is a reduction in the standards recommended for international trade by the OIE code. It has been previously accepted by MAF that the OIE code recommendations are the minimum required for import of animal products into New Zealand. The concept that the OIE Code recommendations are not to apply to imports (or in this case a selected product) to New Zealand appears to signal a new policy stance by MAF that has not been consulted on or notified by any policy announcements or discussion with New Zealand Agricultural Industries.

MAF Response: The wording PIANZ have quoted above is taken from the RMP and relates to the options assessment for *Salmonella arizonae*. As stressed in the IRA, *S. arizonae* is not an OIE listed disease, so there are no specific recommendations made by the OIE for this disease. However the IRA states the risk estimation as non-negligible and *S. arizonae* is classified as hazard in the commodity.

Although *S. arizonae* is not an OIE listed disease the flock testing option for *S. arizonae* provided in the IHS (clause 37) does reflect recommendations specified in the OIE Code regarding poultry for the production of meat, Chapter 6.5 (Prevention, detection and control of *Salmonella* in poultry). The Code recommendation is stated as follows:
c. “Poultry for the production of meat

i. Flocks should be sampled at least once before slaughter.

ii. When sampling occurs on farms and when there is a long period (2 weeks or more) between thinning and final depopulation, further testing should be considered.

iii. When sampling occurs on farms, flocks should be sampled as late as possible before the first birds are transported to the slaughterhouse. In order to allow for the implementation of control measures during processing, this should be done at a time that ensures the results are available before slaughter.”

It should also be noted that the flock testing option for *S. arizonae* provided in the IHS (clause 37) meets the sampling recommendations specified in the OIE Code regarding poultry for the production of meat, Chapter 6.4. The Code recommendation is stated as follows:

4. “The total number of samples to be taken on each occasion is shown in Table 2 and is based on the random statistical sample required to give a probability of 95% to detect one positive sample given that infection is present in the population at a level of 5% or greater.

Table 2. Number of samples

<table>
<thead>
<tr>
<th>Number of birds in the flock</th>
<th>Number of samples to be taken on each occasion</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-29</td>
<td>20</td>
</tr>
<tr>
<td>30-39</td>
<td>25</td>
</tr>
<tr>
<td>40-49</td>
<td>30</td>
</tr>
<tr>
<td>50-59</td>
<td>35</td>
</tr>
<tr>
<td>60-89</td>
<td>40</td>
</tr>
<tr>
<td>90-199</td>
<td>50</td>
</tr>
<tr>
<td>200-499</td>
<td>55</td>
</tr>
<tr>
<td>500 or more</td>
<td>60</td>
</tr>
</tbody>
</table>

5. All samples should be selected at random to represent the house or in the case of samples taken at the hatchery to represent the hatching eggs from that poultry flock.”

1.8. PIANZ has said in previous submissions that a production plan should also be submitted to MAF pre the issue of the permit to import to ensure that the biosecurity/production system can meet and maintain the disease freedom claims. The concept of a production plan was in addition to the OIE code requirements, not a substitution. PIANZ submits that alternative an exporting system that is not meet OIE code recommendations is not acceptable.

MAF Response: Where the IRA identified specific hazards, the options for risk management have been applied in the IHS. The submission of the production system plan is *in addition* to these requirements and is a pre-requisite to trade in turkey meat and meat products. The exporting system must meet the requirements as set out in the IHS; the risk
management measures, specified in the standard, provide at least the appropriate level of protection to effectively manage the biosecurity risk.

The requirements in the IHS for all non OIE listed diseases comply with OIE guidelines (please see response to 1.7.). For further discussion on OIE listed diseases please see the response to 1.9 and 1.11.

1.9. **Within 7 days testing of 60 Birds.** *(IHS pp 7, 8, 9.):* The IHS proposes an option of testing 60 birds in a shed within 7 days of processing for a range of the risk organisms notified in the IHS. The draft risk management proposal at pages 12, 14, -17, and 19 states that: “Options 1, 2, 3, and or 4 are considered to offer equivalent levels of protection”. MAF is thus saying in the IHS that end point testing of 60 birds within 7 days of slaughter is equivalent to a country, zone, compartment freedom or cooking the product for a specified temperature and for a specified time. PIANZ submits that this equivalency argument is not valid and if adopted would represent a dramatic and unacceptable risk.

MAF Response: Options 1, 2, 3 and 4 all effectively manage the risk by providing at least the appropriate level of protection for the following non OIE listed diseases:

- *Salmonellae arizonae*
- APMV-2 and -3
- TCV

Please see the response to 1.10. and 1.11. for further discussion on OIE listed diseases.

1.10. **The risk analysis states** *(page 48, page 24??):* “However, antibodies are unlikely to be detected until at least 7 days following infection, so serological assays alone cannot reliability demonstrate freedom from infection at the point of slaughter. However, serology may be used as a component of a surveillance programme to demonstrate country, zone, or compartment freedom”.

MAF Response: The option to demonstrate flock freedom from HPAI presented in the draft IHSs required testing based on virus isolation and not serology for antibodies as quoted by the submitter. (Section 8, p48 IRA)

1.11. **The Risk Analysis and the OIE does not support within 7 days testing of 60 birds** as stated in the IHS as an option for risk mitigation because of the fundamental issue of unreliability, yet it appears in the IHS, the guidance document and the draft management proposal as an equivalent. The purpose of the risk analysis is to identify the risk organism in the proposed imported product and to offer risk management options. This IHS has developed a risk mitigation step that is not supported by the risk analysis. PIANZ understands that this is a major deviation from accepted MAF policy. When has the policy change occurred? How was this option developed outside the risk analysis? How will it be evaluated? What
specific criteria will be evaluated to ensure it is equivalent to the OIE Code Requirements? PIANZ submits that an outcome that does not require OIE Code requirements to be met is not acceptable for New Zealand. As with the option of the production plan a lesser standard is being offered as equivalent to or in place of OIE code requirements in our submission. PIANZ submits that this is a fundamental biosecurity and trading issue and a dilution of the protective steps that are MAF is required and obliged to take to protect New Zealand under section 22 of the Biosecurity Act 1993.

MAF Response: The IRA provides options for the management of risk organisms in the commodity. The options provided in the IRA have been incorporated into the IHS. The IHS risk mitigation measures have not been developed outside the risk analysis, as stated by the submitter. See the response to 1.10.which clarifies that the proposed options of demonstrating flock freedom for HPAI and NDV required the use of virus isolation (not serology).

The establishment of flock freedom, by testing at slaughter, is provided as an option in the IRA for Newcastle disease virus, APMV-2 and -3, HPAI, TCV and *Salmonella arizonae*. The options in the IHS have considered the degree of specification required regarding timing of sampling in relation to slaughter.

MAF recognises the specification of flock freedom is not a recommended measure in the OIE Code for avian influenza and Newcastle disease. However, the demonstration of flock freedom, as described in the draft IHS, may be used to verify disease freedom as a component of an application to establish a recognised disease-free compartment.

It is recommended that requirements relating to individual flock freedom from Newcastle disease and avian influenza based on virus isolation within 7 days of slaughter be removed from the IHS.

1.12. **Equivalency of options in IHS. (COOKING VS TESTING):** The IHS offers a number of conditions for each particular risk organism and the guidance document states that these selected options are considered to be equivalent. The risk management proposal pages 12, 14,15,16,17, and 19 states that: “Options 1, 2, 3, and or 4 are considered an equivalent level of protection. The IHS accepts that a country, zone, compartment freedom, testing of 60 birds within 7 days of slaughter and is equivalent to cooking the product for a specified temperature and for a specified time. PIANZ submits that cooking time and temperature criteria give the highest degree of confidence in the treatment of turkey meats or indeed other poultry meats to destroy organisms of concern. PIANZ submits to claim equivalence of time and temperature with testing of 60 birds within 7 days of processing is not credible. This is further supported by the Risk Analysis and the OIE Code not recommending this as acceptable for trade. The NZ Poultry Industry is an industry that has not had to contend with imports of raw poultry products. The low number of endemic avian diseases present in New Zealand and the naivety of the avian population mean any introduction of an endemic avian disease will result in a very large production and welfare impact on avian
populations, both farmed and wild. PIANZ submits that as a minimum all risk organism mitigations are required to meet conditions equivalent to or higher than OIE requirements for trade in turkey meat products. PIANZ would support the extra risk mitigation step of testing 60 birds as a supplementary test in addition to the other IHS requirements to supplement country/zone/compartment freedom or cooking.

MAF Response: Please see the response to 1.8, 1.9 and 1.11.

1.13. IBDV types 1 and 2. Risk analysis document. (Page 53-, 62.): PIANZ submits that the MAF should reconsider the risk analysis decision that determines IBDV-1 and IBDV-2 as non specified risk organisms. PIANZ questions the suggestion that IBDV-1 is not present in turkeys and submits there is no evidence to disprove that it is or maybe present.

MAF Response: Please see the response to 1.4.

1.14. There is no surveillance for IBDV-1 or a requirement to control IBDV-1 in turkey’s worldwide, and information as to the status of IBDV-1 in turkeys is limited. The risk analysis references a limited number of papers that report the presence and absence of IBDV-1 in turkeys and turkey meats. This limited information needs to be reconsidered and a case for further investigation is compelling to demonstrate the actual picture in the exporting countries.

MAF Response: The IRA has gone to some length to consider the available evidence regarding whether IBDV-1 should be considered as a pathogen of turkeys. Please see the response to 1.4.

1.15. Giambrone et al. (1978) observed microscopic lesions in lymphoid tissues of infected turkey poults and also in uninfected contacts and concluded that IBDV-1 in turkeys is infectious and can spread horizontally in turkey flocks. The authors concluded that there remains a definite possibility that turkeys may serve as a reservoir for IBDV-1.

MAF Response: The publication by Giambrone et al (1978)\(^8\) describes the experimental infection of turkeys that required the IBDV isolate to be passaged six successive times in poults in order to increase the isolate pathogenicity. Although the conclusion that there was a “definitive possibility that turkeys may serve as a natural reservoir for IBDV” was reasonable when this work was published over thirty years ago, subsequent studies (as reviewed in the IRA) have not supported this conclusion.

1.16. Oladele et al. (2009) has also reported that IBDV-1 can infect turkeys. This work is evidence that IBDV-1 does transfer by natural routes to turkeys.

MAF Response: Oladele et al (2009)\(^9\) demonstrated experimental infection of turkeys following the administration of 2\(\times 10^{3.5}\) LD\(_{50}\) of IBDV-1 via the conjunctival route. In reviewing the available literature no evidence of naturally-occurring infection of commercially-reared turkeys with IBDV-1 has been found.

1.17. There is little requirement for any country in the world apart from New Zealand to have an interest in IBDV-1 in turkey and turkey meats. It is accepted that IBDV-1 causes little clinical disease in turkeys which results in little interest in surveillance for this disease but there is still a possibility that IBDV-1 can be present in turkeys and turkey meats resulting in the possibility of tissue containing IBDV-1 being exported legally into NZ.

MAF Response: As indicated in 1.4., MAF has reviewed the published literature on this subject and concluded that there is no evidence for natural infection of turkeys with IBDV-1. Furthermore, these conclusions were not challenged when they were subject to technical review by Prof Saif. MAF also notes that its assessment of the likelihood of IBDV-1 being present in commercial turkey meat was not challenged by the external technical reviewer of the IRA nominated by PIANZ.

1.18. The MAF risk analysis notes most birds in flocks would be infected between 4 and 7 weeks of age (Chattel et al 1985; MAF 1999) and that IBDV-1 and IBDV-2 is recoverable from muscle tissue of chickens or turkeys for 2-6 days post infection. The 1999 risk analysis assumes processing at 12 weeks of age and a probability of turkey muscle meat being infected with IBDV at .001 (<0.1%) The proposed IHS allows the turkeys to be processed from 8 weeks of age thus increasing the possibility of IBD virus being present in turkey meats. This is not modelled in the risk analysis (May 2010) as it assumes the same risk factors for the possibility of imported turkey meats containing IBDV. PIANZ contends that this significant change in the processing dates from 12 weeks reducing to 8 weeks has not been taken into consideration in the 2010 risk analysis.

MAF Response: No quantitative modelling has been undertaken in the 2010 IRA due to the number of assumptions that would be required to successfully characterise the risk pathway. Section 9.2.1 of the IRA makes it clear that the 0.1% likelihood of a turkey muscle meat being infected at the time of slaughter was based on modelling undertaken in 1999 which assumed that all birds would be slaughtered at 12 weeks with most birds being infected between 4 and 7 weeks old, and virus being recoverable from muscle tissue for 2-6 days post infection.

This model in 1999 was constructed in the following way:

| A1, age of turkey at slaughter, in days | 84 |

At each of 20,000 iterations the model asked the question “Is the turkey muscle tissue infected at the time of slaughter?” using the algorithm;

If A1 is greater than A2, use (if A1 is less than A2+D, use 1, else use 0), else use 0.

An answer of 1 meant that the turkey meat was infected, an answer of 0 meant that it was not infected. That is, an answer of 1 was returned on each occasion when the time of slaughter was after the tissue became infected but before virus was eliminated.

The mean output of the model provided the probability that the turkey meat was infected at the time of slaughter. Running this model which assumes all birds will be slaughtered at 12 weeks returns a mean probability of 0.001 (0.1%) as indicated in Section 9.2.1 of the IRA.

The requirement in the IHS that birds be slaughtered after eight weeks reflects the assumption in Chapter 14 of the IRA, which assessed the likelihood of Astrovirus infection. Given the concern raised above, it is relatively straightforward to amend this 1999 model to accommodate for birds being slaughtered as low as 8 weeks.

The following calculation therefore assumes that birds may be slaughtered from eight weeks of age. Most hens in the EU reach market age at 12 weeks, whilst hens in the US reach market age between 14-16 weeks. Reflecting this the age of turkeys at slaughter (in days) could be modelled as PERT (56, Uniform (84, 98), 112).

Using:

<table>
<thead>
<tr>
<th>A1, age of turkey at slaughter, in days</th>
<th>PERT (56, Uniform (84, 98), 112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2, age of turkey at infection, in days</td>
<td>PERT (1, Uniform (28, 49), A1)</td>
</tr>
<tr>
<td>D, duration of infectivity in muscle tissue, in days</td>
<td>Uniform (2,6)</td>
</tr>
</tbody>
</table>

20,000 iterations of this model now returns a mean value of 0.0012 (0.12%). It would be reasonable to suggest that this represents a very low but non-negligible likelihood consistent with Section 9.2.1 of the IRA.

1.19. This 1999 particular quantitative risk assessment was based on United Kingdom data and then extrapolated to all countries assuming the prevalence and infectivity of IBDV-1 and IBDV-2 are the same for all countries. The possibility of viable IBDV virus being present in the imported turkey meat and thus present in New Zealand is increased.
MAF Response: As discussed in 1.4, there is no evidence to suggest that IBDV-1 is likely to be associated with imported turkey meat. The IRA recognises that IBDV-2 is widespread in commercial turkey flocks (Section 9.1.5) and that there is a very low but non-negligible likelihood that viable virus may be present in turkey meat at the time of slaughter (Section 9.2.1).

1.20. The presence of IBDV-1 and IBDV-2 virus in New Zealand is a major concern to PIANZ. The equivalent situation for red meats would be meats containing foot and mouth disease virus present in New Zealand but MAF considering it not an issue, as the risk exposure pathways are considered to be negligible.

MAF Response: As described in the IRA (and please see the response in 1.4.), after reviewing the available literature and subjecting this review to scrutiny by internationally-recognised expertise, MAF has concluded that the entry assessment for IBDV-1 in turkey meat should be considered negligible. The IRA recognises that IBDV-2 may be associated with imported turkey meat although the consequences of introduction were assessed to be negligible.

1.21. PIANZ submits that MAF do not seem to be taking a precautionary approach on this issue. MAF states that “where biosecurity risk management measures are adopted in situations where there is not sufficient scientific evidence necessary for a comprehensive analysis of risks, biosecurity departments will take appropriate steps to seek the additional information necessary for a more objective assessment of risk, and review these measures accordingly within a reasonable period of time”. PIANZ considers that MAF has not fulfilled this need for additional information to make a more objective assessment of risk. It seems that the risk is totally borne by the NZ Poultry industry. MAF needs to reconsider IBDV as a risk organism.

MAF Response: The above quote is taken from the Position Statement on the Application of Precaution in Managing Biosecurity Risks Associated with the Importation of Risk Goods. This position statement also observes that it is impossible to have a perfect understanding of every situation and the amount of variation that exists. It is likely that all risk analyses will be conducted in situations where there is incomplete scientific evidence, and a balance must be sought between trying to acquire complete knowledge and obtaining reasonable estimates upon which predictions can be based with a reasonable level of confidence. Deciding at what point scientific evidence is sufficient is a judgment to be made by appropriately-qualified specialists, and will be different for different situations. Biosecurity departments build a level of precaution into such determinations. The key point is deciding when scientific evidence is sufficient to be the basis for risk management measures; science can never prove a complete absence of risk, but it can assist in assessment of risk and providing measures to manage uncertainty.

This position statement also states that All relevant scientific opinion should be considered in a risk analysis and judged on the weight of available scientific evidence. Restrictive

regulatory measures will not be imposed simply on the basis of minority scientific opinion about perceived risks.

In this case, MAF has reviewed the available published information concerning the risk posed by IBDV-1 and IBDV-2 in turkey meat and subjected its findings to review by local poultry veterinarians (including one appointed by PIANZ) as well as by internationally-recognised experts.

Given the findings of the IRA (which reflect MAF’s consideration of published literature and comments from expert reviewers) MAF has concluded that there is sufficient scientific evidence to demonstrate that sanitary measures for IBDV-1 in turkey meat cannot be justified.

1.22. IBDV-2 as a confounder in Industry Surveillance: PIANZ submits that IBDV-2 will be a possible confounder in the IBDV surveillance programme that the N.Z. Poultry industry (meat and egg) has fully funded and maintained for the last 11 years. IBDV-2 is reported as present in most turkey establishment’s world-wide therefore the potential for IBDV-2 to be present in imported turkey meats is non-negligible. (IRA page 56)

MAF Response: The IRA recognises that there is a very low but non-negligible likelihood of IBDV-2 being present in imported turkey meat (Section 9.2.1) and industry concerns regarding ongoing testing of chicken flocks for IBDV-1 is also acknowledged in the IRA (Section 9.2.3). However, as there is a negligible likelihood of exposure for commercial poultry, there is considered to be a negligible likelihood of IBDV-2 introduction into commercial poultry flocks associated with the importation of turkey meat.

1.23. The risk analysis assessment that IBDV-2 is considered a negligible risk is entirely dependant on the assumptions that the likelihood of exposure is negligible. PIANZ contends that this exposure risk is underestimated in the risk analysis due to increasing free range birds numbers and the absence of any controls on the distribution of turkey meat waste. The proposed IHS allows the import of turkey products that will result in the production of turkey meats waste which further increases the risk of imported turkey waste being fed to poultry.

MAF Response: The conclusion that the risk assessment for IBDV-2 is estimated to be negligible is drawn from the negligible likelihood of entry into commercial poultry flocks and the negligible consequences if free-living avian species were to be exposed to the virus.

Before finalising the risk analysis, MAF contacted PIANZ to clarify the likelihood that commercial poultry farms registered with PIANZ/EPF would be fed food scraps (specifically meat scraps). At that time PIANZ responded that any commercial producers (i.e. those possessing a risk management plan) will not be feeding scraps to their birds, although there is a strong risk that small backyard operators could be.

PIANZ also suggested at that time that another issue to consider is what happens to any imported turkey meat which passes its use-by date or which must be disposed of as there is currently no legal requirement that poultry is not fed to poultry (although there is a
voluntary agreement between feed manufacturers) and consequently, such product could end up being rendered and fed back to poultry. MAF has previously considered the effect of rendering on IBDV11 and concluded that, even under the least stringent conditions likely to be used for rendering; at least 99.99% of IBDV will be denatured.

As indicated in 1.4. MAF has the flexibility to amend risk analyses or IHSs if future publications question previously published scientific findings.

1.24. The risk analysis has no evaluation of the risk exposure for the risk organisms on the assumption that a number of Industry practices are static. The Industry is evolving and practices are changing and IRA risk evaluations may longer be current due to these changes as are mentioned above. Pianz submits that the IRA needs to readdress these increased exposure risks.

MAF Response: Please see the response to 1.22 and 1.23.

1.25. IBDV eradication of a vaccine strain IBDV: The risk analysis notes IBDV was eradicated from New Zealand farms in the 1990s. However the risk analysis makes no reference that the eradication was of an attenuated IBDV vaccine. This live vaccine virus had reduced infectivity and virulence compared to field strain IBD viruses. The IBD virus’s ability to extend from farm to farm in the 1990’s in N.Z. was due to vaccinated birds being placed on these farms, not infectivity and virulence. The risk analysis notes IBDV did not re establish itself in poultry and concluded the risk of IBDV as negligible. Is such a statement justifiable for a more infective and virulent strain of virus?

MAF Response: The example of IBDV eradication following its introduction in 1993 illustrates the likelihood of commercial poultry being exposed to IBDV if scraps of meat from infected birds are fed to backyard poultry. Between 1993 and 2001 it has been estimated that 8 million processed broilers from IBD-positive flocks were sold into the New Zealand market as fresh or frozen broilers with no further controls and IBDV did not re-establish in commercial birds.

As noted in the IRA, although IBDV-2 may be associated with imported turkey meat, there is no evidence of commercial turkeys being infected with IBDV-1 or the very virulent strains of this virus (vvIBDV).

1.26. Exposure Considerations. (Pages 56, 58 Risk analysis): PIANZ submits that risk analysis underestimates the possible exposure pathways of infected turkey meats to N.Z. poultry and thus the level of risk. The N.Z. poultry industry takes major biosecurity steps to reduce exposure to wild birds and vermin but there is no guarantee that exposure will not take place. There are an estimated 480 sheds on N.Z. poultry meat farms and between an estimated 320 and 500 layer hen sheds and the possibility of a biosecurity failure on such a large number of sites cannot be discounted.

MAF Response: The publications considered in the IRA (Campbell 2001\(^{12}\); Hofle et al 2001\(^{13}\); van den Berg et al 2001\(^{14}\); Kasanga et al 2008\(^{15}\); Jeon et al 2008\(^{16}\); Ogawa et al 1998\(^{17}\); Gough et al 2002\(^{18}\)) demonstrate that there is a very low likelihood that wild avian species could be infected with IBDV-2, either following exposure to an infected backyard flock or through consumption of kitchen waste.

Whilst on-farm biosecurity will minimise the biosecurity risk posed by wild birds, the risk analysis recognises that that there remains a very low likelihood that commercial poultry could be exposed to free-living avian species. However, there is only one report of wild birds with a productive IBDV infection (van den Berg et al 2001) which was achieved through using very high doses of vvIBDV. Although other studies have shown evidence of seroconversion to IBDV in wild birds, no studies have shown a natural productive infection of wild birds with this virus.

The risk analysis also notes that Biosecurity Australia also concluded that spread of IBDV from wild birds to poultry was extremely unlikely.

Similarly, the risk analysis notes that only one publication\(^{19}\) has described rats that were seropositive to IBDV although no virus antigen was recovered from the sampled rats in this study. There is no further evidence that vermin should be considered to act as vectors of IBDV (Eterradossi and Saif 2008\(^{20}\)).

1.27. There is also an increasing trend to free range in meat poultry farming in NZ. In New Zealand there is a projected 150% increase in free range meat poultry numbers in the next 18 months. It is estimated that could be up to 20% of bird numbers or 3,000,000 birds at any one time. Currently 11% of commercial layers are free range or 320,000 birds with an estimated 300,000 extra birds in backyard flocks. Thus the assumption of negligible exposure based on limited numbers of birds being farmed in free range production systems is not credible and needs to be reassessed.

MAF Response: The assessment of a negligible likelihood of commercial poultry being exposed to IBDV-2 from free-living birds is not based on there being limited numbers of birds being farmed in free range production systems. Rather, this assessment is based on the negligible likelihood that free-living birds could be productively infected with IBDV-2. Please also see the response to 1.26.

1.28. This results in a larger risk population that is both exposed to wild birds and vermin and also to feeding of imported turkey meat scraps. The IHS also refers to a ban of feeding of poultry meat to poultry and refers to this as another reason for identifying exposure as a limited risk pathway. The ban on the feeding of poultry meat to poultry species is a voluntary ban only and there is no legislative or regulatory ban. One feed company has used poultry protein in poultry feed for a number of months in 2009/10 for cost reasons and has not ruled out returning to such practice.

MAF Response: The IRA acknowledges that there is a voluntary agreement in place between feed manufacturers to prevent the feeding of poultry meat to poultry and it also recognises that there are no legislative controls to prevent such practices. The IHS does not refer to a ban of feeding of poultry meat to poultry. Please also see the response to 1.23.

1.29. The risk analysis (page 56) states that “In New Zealand, commercial producers are required to have a risk management programme (RMP) prescribing how their products are processed to meet the requirements of the Animal Products Act 1999. Such commercial producers will not feed food scraps to their birds whereas non-commercial poultry flocks containing 100 or fewer birds are not required to have an RMP and are likely to feed scraps to their birds”. The RMP does not prohibit this feeding of scraps to commercial flocks as the risk analysis suggests. The option of feeding meat scraps including importing turkey meats is still available for commercial producers and as noted in the risk analysis possibly widespread in the backyard poultry sector. The driver of the use of scraps as a feed alternative for poultry is driven by the costs of manufactured poultry feeds. When these are driven higher by increasing raw material costs the option of scrap feeding to more poultry flocks becomes a major consideration for poultry farmers. This in turn increases the risk exposure to poultry of possible imported risk organisms in the imported turkey meats.
MAF Response: Please see the response to 1.23.

1.30. The IHS allows an extended commodity range to be imported that includes whole carcases and offal. This will result in increased waste and off cuts and therefore an increased possibility that poultry may be fed turkey meat wastes.

MAF Response: The IRA acknowledges that there is a greater likelihood that scraps will be generated from the commodity under consideration compared to the consumer-ready product (BMFL) previously considered (Section 9.2.2).

1.31. MAF’s conclusion is that “Such measures ensure that the likelihood of commercial poultry being exposed to free living avian species is low, very low” but PIANZ submits that this needs to be readdressed in light of the information supplied above.

MAF Response: The IRA notes that surveys of commercial poultry farms have shown a generally high level of compliance with biosecurity measures to prevent the introduction of exotic and endemic disease agents (Rawdon et al 2007; Rawdon et al 2008). Such measures will limit the exposure of commercial poultry to free-living avian species. However, as noted in 1.26., there is a very low likelihood that wild avian species could be infected with IBDV-2, either following exposure to an infected backyard flock or through consumption of kitchen waste and no studies have shown a natural productive infection of wild birds with this virus.

1.32. Biosecurity on commercial poultry farms: The risk analysis (page 47) states that recommended biosecurity standards for domestic producers include measures to minimise the biosecurity risk posed by wild birds and vermin. Standard biosecurity practices on commercial farms include a prohibition of staff to have regular contact with other poultry livestock, pigs, racing pigeons and operations that use poultry manure.

MAF Response: Noted

1.33. The risk analysis does not factor in the possibility of dealing with an agent of the robust nature of IBDV. Poultry farmers in New Zealand have not factored in a biosecurity programme that has to deal with an agent on this magnitude as they do not have this virus present in New Zealand. The recent Infectious laryngotracheitis (ILT) outbreak reported in MAF Surveillance (September 2010) conclude that “It seems very likely that the disease was spread between the sheds and between the two farms by equipment, workers and possibly vehicles. This highlights the importance of strict biosecurity between poultry sheds to

minimise impacts in a highly integrated industry.” Given the outcome stated here does MAF still consider that on farm biosecurity results can reduce the risk of exposure to very, very low?

MAF Response: The example of the recent ILT investigation highlights the need for commercial poultry producers to observe good basic biosecurity measures to prevent the spread of endemic disease between sheds and farms. The risk analysis notes that surveys of commercial poultry farms have shown a generally high level of compliance with biosecurity measures to prevent the introduction of exotic and endemic disease agents (Rawdon et al 200723; Rawdon et al 200824).

The IRA does not consider the ability of such measures to prevent the spread of IBD between commercial poultry units as the available evidence indicates that IBDV-1 is not a risk in imported turkey meat and there is a negligible likelihood of IBDV-2 being introduced into commercial poultry properties.

1.34. Based on the assumptions in the IHS MAF appears unlikely to revisit the IHS or risk analysis on an ongoing basis for IBDV. The exporting countries are not required to notify any change in disease status with IBDV-1 or IBDV-2 in turkeys and there is no active surveillance for IBDV in turkeys in exporting countries. Therefore the first evidence of IBDV in New Zealand may be when the PIANZ/EPF surveillance scheme detects IBDV in poultry. PIANZ believes the risk of IBDV exposure from imported turkey waste meats is understated in the risk analysis and mitigation measures do not provide an acceptable level of risk and requests that MAF re evaluate this part of the risk analysis process.

MAF Response: With the exception of West Africa, IBVD-1 is not considered to be a potential hazard in turkey meat (Section 9.1.5 of the IRA). The risk estimation for IBDV-2 in turkey meat was found to be negligible (Section 9.2.4 of the IRA). Therefore there is no justification for the imposition of any risk management measures against IBDV in imported turkey meat from commercial flocks.

MAF’s assessment of the risks associated with IBDV-1 and IBDV-2 in imported turkey meat has considered all the published evidence cited in Chapter 9 of the IRA and these conclusions have been subject to peer review by domestic poultry veterinarians, and internationally-recognised experts in poultry disease. Stakeholder submissions on this analysis have not identified any new information that MAF has not already considered in their assessment of these risks. If further information concerning the risks of IBDV in turkey meat is presented, this will be considered by MAF and IHSs can be amended if appropriate.

1.35. The concept that there are risk organisms present in imported products but MAF accepts that the safeguard is exposure to New Zealand agricultural populations

is negligible means a major risk is placed on the Poultry Industry in our submission.

MAF Response: As noted in Section 4.3 of the IRA, the overall risk estimation for a potential hazard is based on the release, exposure and consequence assessments. Therefore, if either the release, exposure or consequence assessments for a potential hazard are negligible then the overall risk estimate will be negligible. In this case, the risk analysis has assessed that there is a negligible likelihood of commercial poultry being exposed to IBDV-2 from the importation of turkey meat and a non-negligible likelihood of either backyard poultry or wild birds being exposed through this pathway.

1.36. **Section 1. Import Health Standard. Part A. Scope. (Page 3 of 14 IHS):** It is not clear from the current definition whether meat preparations are defined and include reconstituted turkey meat or not. PIANZ submits that reconstituted turkey meat should be included in the definition section of the IHS, as it may contain remnants of the bursa of Fabricius, respiratory tissue, kidney and other internal organs. All these tissues are identified as high risk by the risk analysis. PIANZ has previously submitted that these reconstituted turkey meats should not be permitted entry as they may contain turkey tissues that have been identified as high risk of containing risk organisms.

MAF Response: Reconstituted meat is part of the commodity definition in the IRA (Section 3) “Reconstituted turkey meat products comprised of turkey meat and skin” and this commodity definition is applied in the IHS.

It is recommended that the definition of reconstituted turkey meat products be included in the import health standard definitions. It should be noted that the Veterinary Authority must certify either the risk tissues are excluded from the commodity for export or the risk tissues are present and the measures applied appropriately to meet the standard requirements (clauses 39 and 41 of the IHS).

1.37. **Outcomes. (Page 4 of 14 IHS):** PIANZ notes the absence of IBDV-1 and IBDV-2 and maintains these should be part of the risk organisms subject to specific risk management requirements within this IHS. (See previous comments).

MAF Response: As discussed above, after having regard to studies referenced in Chapter 9 of the IRA, MAF has concluded that it is reasonable to consider that there is a negligible likelihood of IBDV-1 being associated with imported turkey meat and that the consequences of introducing IBDV-2 would be negligible. Reflecting these assessments, sanitary measures for IBDV-1 or IBDV-2 in imported turkey meat cannot be justified.

1.38. **Clause 11. (Page 4 IHS):** PIANZ notes with concern that the negotiation process for the zoo sanitary certificate is not transparent. PIANZ submits that given the importance of these Biosecurity plans to the establishment of an IHS this information should be available for scrutiny by an independent poultry expert agreed to by the exporters and the Regulatory Authorities.
MAF Response: The biosecurity plan must provide MAF with adequate assurance that the biosecurity requirements of the IHS are met by the exporter. MAF and the recognised Government Veterinary Authority are required to approve the biosecurity plan prior to export of product. MAF also reserves the right to audit facilities if deemed necessary.

The production system outline is consistent with an official assurance programme. Country-to-country negotiated official assurance programmes can play an important role in ensuring risks are managed largely offshore.

For many animal products, veterinary certification is necessary to assure MAF that the required risk management processes have been carried out by the exporting country during rearing, slaughter, packing, and transport.

When such agreement(s) are required before trade occurs, these requirements must be stated in the IHS. The negotiations MAF undertakes with the exporting country are to determine the most practical and sensible ways it can meet the requirements of the IHS (i.e. the how), and not to re-negotiate the requirements of the standard itself. Often, the IHS will provide a number of different approaches showing how to meet the requirements. This reflects the reality that our different trading partners have different needs, and a ‘one-size fits all’ approach is not appropriate.

1.39. **Part B General Requirements. Approval of export systems. / Biosecurity Plans.** The process of approval of the production system will require a level of knowledge of commercial poultry systems worldwide. The regulatory bodies have very little daily and or ongoing relationship with these poultry systems. How will the exporting countries Veterinary Authority and MAF ensure the system is robust, present and working for the entire period of the current permit to import?

MAF Response: MAF rely on the Official Veterinarian to certify the product and the Veterinary Authority must determine how they will ensure all clauses of the standard are met. Please see the response to 1.38.

1.40. **PIANZ submits that given the importance of these Biosecurity plans to the establishment of an IHS this information should be available for scrutiny by an independent poultry expert agreed to by the exporters and the regulatory authorities.**

MAF Response: Please see the response to 1.38.

1.41. **The Bernard Matthews plant in Suffolk was under Department for the Environment, Food and Rural Affairs (DEFRA) and the Meat Hygiene Service (MHS) supervision when an out break of HPAI occurred in 2007. Reports issued by these agencies concluded that all food importing processes at the plant were in line with EU law. Ongoing problems at this plant and adjoining farm were identified but again the published reports indicate that these were not considered to be of major concern. PIANZ notes with concern that this plant was on the brink of exporting turkey meats to New Zealand yet was able to process turkey meats containing avian influenza virus. Given that this was an example of an EU turkey**
processing plant and turkey farm meeting normal practice and having regulatory oversight how will MAF have confidence that all that is required to be done on a continual basis to the required standard to maintain the required disease free status is actually completed? The regulatory authority’s controls for this plant and farm were met yet they did not stop an Avian Influenza outbreak.

MAF Response: The avian influenza outbreak in Holton was diagnosed quickly and notified appropriately and there was a suspension of exports of affected commodities to all third countries on day zero until it could be confirmed that it did not contain meat from the avian influenza restricted zone in Hungary where the infected meat was imported from. This demonstrates to MAF that the system of notification worked in this instance and provides assurance that a similar outbreak in the United Kingdom would be quickly notified and trading partners alerted. Lessons learned and a time line from the Holton outbreak can be found on the DEFRA website: http://www.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/ai/documents/holtonlessonlearned-070803.pdf

1.42. PIANZ has previously submitted, and does so again, that a mechanism that could give MAF and the Poultry industry extra confidence in the processes surrounding the export of turkey meat is a production plan that is submitted by the exporting company. This plan would then be approved by the exporting Veterinary Authorities and MAF and then audited as part of the exporting process by the exporting Veterinary authorities. This plan is an additional requirement and not an alternative to OIE code requirements. PIANZ submits that the evidence of the AI outbreak in Suffolk makes such an addition necessary.

MAF Response: MAF agrees the production system outline is an additional requirement and not an alternative to OIE Code requirements.

1.43. Laboratory testing requirements. (Page 6 of 14, IHS) Clause.22: The IHS states a requirement for randomised testing. PIANZ submits that such testing must to be undertaken done by the exporting government veterinary officers to give the appropriate levels of confidence.

MAF Response: The wording “samples were collected under the supervision of the Official Veterinarian” has been inserted in the IHS.

1.44. PIANZ would support the extra risk mitigation step of testing 60 birds as a supplementary test on top of the other IHS requirements to further increase risk mitigation measures

MAF Response: Noted. Please see the response to 1.11.

1.45. Part C. Specified requirements for identified risk organisms. Clause 28. Poultry Vaccines used in Turkeys. (Page 7 IHS): For exporting countries that have licensed genetically modified live vaccines for poultry and poultry vaccines that are used off label in turkey production PIANZ asks how these will be handled by
the MAF. It is possible that some of the viable viruses from vaccination may be present in the imported meats. PIANZ has previously submitted to MAF is that this should be part of the production plan and general information supplied pre-permit issue and again submits this proposal is adopted.

MAF Response: Flock management practices are a requirement of the production system outline. It is recommended that Clause 2, Part E, Appendix 1 of the IHS be amended with dot point 6 to include vaccination as an example.

1.46. **Highly pathogenic notifiable avian influenza (HPNAI) Clause 33. (Page 7 IHS.):** PIANZ again is concerned that the IHS options offered include testing 60 birds within 7 days, for HPNAI yet the OIE code Article 10.4.19/20 for importing poultry meats requires a country/zone or compartment free from HPAI. The option of a further testing 60 birds is not an OIE option and MAF has not shown that this is an equivalent measure. PIANZ would support the testing of 60 birds as a supplementary test on top of the other IHS requirements to further increase the risk mitigation procedures.

MAF Response: Please see the response to 1.11.

1.47. **Exposure. (Page 46 IRA.):** The risk analysis states that: “Such measures ensure that the likelihood of commercial poultry being exposed to free living avian species is low, very low. With the increase in free range poultry numbers does MAF consider that this exposure risk has moved from low, very low? Given that free range poultry numbers is an expanding area of poultry meat production and it has been suggested that upwards of 25% of the national commercial flock (meat and eggs) may be farmed as free range is it not appropriate to readdress this likely exposure of commercial poultry flocks to free living avian species and the likely introduction of disease from these free living avian species. In the N.Z. turkey industry one of the three commercial turkey producers is entirely free range. PIANZ submits that this exposure risk must be considered.

MAF Response: The IRA considers that there is a non-negligible likelihood of commercial poultry being exposed to AI from free living avian species. The risk mitigation options presented address the exposure risk associated with free range production systems.

1.48. **Salmonella arizonae. (Page 8 of 14 IHS.):** PIANZ notes that S.arizonae is not a notifiable organism in most countries and as such official surveillance will not exist. The risk analysis note that the testing of turkey flocks for arizonosis is difficult. (Page114. IRA.) The inclusion of the testing of 60 birds within 7 days of slaughter for S.arizonae is not supported by the risk analysis. PIANZ would again reiterate that any requirements must not be less than the OIE Code requirements. PIANZ would support the extra risk mitigation step of testing 60 birds as a supplementary test on top of the other IHS requirements to further increase risk mitigation measures.
MAF Response: Please see the response to 1.7 and 1.11.

1.49. **Avian paramyxovirus. (AMPV-2 and APMV-3). (Page 8 of 14 IHS):** The Draft Risk management proposal states that options 1, 2, 3, and 4/5 are stated as equivalent. PIANZ does not agree that the testing of 60 birds in the flock within 7 days of export provides the same risk controls as correctly cooked product or country/zone/compartment provides. PIANZ would support the extra risk mitigation step of testing 60 birds as a supplementary test on top of the other IHS requirements to further increase risk mitigation measures.

MAF Response: Please see the response to 1.11.

1.50. **Turkey corona virus. (TCV). (Page 9 of 14. IHS.):** Industry notes that TCV is not a notifiable disease and as such the default position would be for the exporter and exporting veterinary authority to provide a country/zone/compartment freedom. The inference from the IHS guidance is such that the countries would simply sign as they know of no case of TCV being recorded. This is a default position giving no safeguard at all. PIANZ would expect MAF to require acceptance that a country/zone/compartment freedom statement supported by surveillance requirements to OIE Code recommendations was a minimum requirement for trade and a basis on which to base a freedom from disease statement.

MAF Response: Passive surveillance in New Zealand has not identified the presence of TCV in this country although further investigation of New Zealand’s status for this organism is under consideration. MAF considers the requirement in the IHS demonstrates equivalent health status.

1.51. **Turkey viral hepatitis. (TVH). (Page 10 of 14 IHS.):** The IHS has no controls in place for TVH. A turkey flock with 29% liver condemnation is considered not a risk yet a turkey flock with 30% liver condemnation is considered a risk. Given the unknown prevalence of TVH in the exporting countries of flocks how a cut off of 30% is selected is not explained in the IHS. A 30% liver condemnation rate in a New Zealand turkey flock would render the turkey meat unsuitable for human consumption. Indeed in NZ, 2-3 % levels of liver condemnation, which are rare, would be the basis to consider the product possibly not fit for human consumption. This level of condemnation would require further investigation under the Whole Flock Health Scheme that controls the ability of flocks to be presented for processing in New Zealand. As the IRA has determined that TVH is a risk to New Zealand turkeys and poultry in general, PIANZ would expect MAF to have required acceptance that a country/zone/compartment freedom statement supported by surveillance requirements to OIE code recommendations was a minimum requirement for trade.

MAF Response: Monthly liver condemnation data from turkeys in Canada (see: http://www.agr.ca/poultry-volaille/condmn_eng.htm) from January 1999 to October 2010
shows the mean number of condemnations per 10,000 birds at slaughter can be expected to be around 8.1, with a standard deviation of approximately 3.54.

It is recommended that the above suggestion of requiring a liver condemnation rate of <2% be inserted in the IHS.

2. European Union

2.1. The European Union (EU) congratulates the Ministry of Agriculture and Forestry – Biosecurity New Zealand for the impressive work with a clear and logical Import Risk Analysis for turkey meat and meat products including the exhaustive review of scientific literature. The EU further welcomes the proposal of an Import Health Standard for these commodities.

MAF Response: Noted.

2.2. However, the EU would like to submit comments on the Import Health Standard developed for the 5 viral and 1 bacteriological agents that have been identified by New Zealand (NZ) as potential hazards for introduction into NZ by imports of turkey products. The EU would like to be further informed about NZ's justification of laying down import standards for the listed disease agents mentioned below. The EU questions whether the production losses or human health risks justify such standards. Has an estimation of the costs of the possible introduction into NZ and subsequent eradication of these agents been carried out, and if so what were the conclusions?

MAF Response: New Zealand’s Biosecurity Act requires IHSs to consider issues beyond production losses and human health risks. Under Section 22a of the Act, when making a recommendation regarding IHSs, the Chief Technical Officer must have regard to the following matters:

- the likelihood that goods of the kind or description to be specified in the IHS may bring organisms into New Zealand;

- the nature and possible effect on people, the New Zealand environment, and the New Zealand economy of any organisms that goods of the kind or description specified in the IHS may bring into New Zealand;

- New Zealand’s international obligations;

- Such other matters as the chief technical officer considers relevant to the purposes of this Part.

Regarding the specific hazard identified in the IRA for turkey meat:

- APMV 1 could have serious consequences for the poultry industry and could also result in substantial mortalities in wild and/or caged birds, with possible minor public health consequences.

- AMPV 2-3 could affect egg production in poultry and has been associated with severe respiratory disease in psittacine species. New Zealand’s endemic fauna includes a number of psittacine birds, including several for which the population is
considered to be under threat. New Zealand places a very high value on the preservation of native threatened psittacine species (especially kakapo, kea, and kaka) and assurances that importations do not threaten such endangered species are necessary.

- The introduction of HPAI in domestic poultry could result in widespread disease with high mortalities and disruption of the poultry industry.
- *S. arizonae* can cause severe disease in turkey flocks and has been associated with fatal hepatitis in psittacines.
- TCV may cause an acute highly contagious enteric disease of turkeys.
- THV may cause up to 100% morbidity and 25% mortality in infected turkey flocks.

2.3. It is the view of the EU that disease agents that have been identified as a serious hazard should either require notification, official national control measures or otherwise the control should fall under the responsibility of the poultry producers by keeping these agents out of their flocks by observing strict biosecurity measures. Are preparedness and disease awareness programmes and appropriate diagnostic procedures in place to allow early detection of these agents?

MAF Response: Preparedness and disease awareness programmes and appropriate diagnostic procedures are in place to allow early detection of these agents.

2.4. The EU would like to receive additional information about the real risks of disease transmission through turkey carcasses, taking into account that the carcasses enter the food chain first and appropriate waste management could effectively minimise the remaining risk. In particular, it is questionable that evisceration is seen as one of the most important risk factors in the risk assessment to justify laying down additional rules for entire carcasses which is not the case in the EU, neither is it recommended by the OIE.

MAF Response: Non-commercial poultry flocks containing 100 or fewer birds are considered likely to feed food scraps to their birds. Raw scraps may be generated from imported carcasses prior to cooking so there is a non-negligible likelihood of such small flocks being exposed to any of the hazards that may be present in imported turkey meat.

The IRA has assessed the likelihood that risk material may be left behind in entire carcasses following automatic evisceration. Given the quoted inefficiency of automated lung removal machinery and automatic eviscerators it is reasonable to conclude that relying on such machinery alone to ensure imported carcasses are free from lung or intestinal material would not effectively manage the risk.

2.5. It also appears that there is no sufficient clear evidence for the confirmation of the oral route of infection by these pathogens via meat. In the EU's view the described pathways seem quite hypothetical, and are not supported by quantitative data for maintaining the chain of transmission. The introduction of the agents via raw swill consumed by wild birds or backyard flocks and the necessary indirect transmission to commercial flocks described in the risk assessment process has also to be seen under the aspect of the producers' own
responsibility to avoid breaches in biosecurity, instead of putting the burden on the exporters to NZ.

MAF Response: MAF accepts that, for many of the identified hazards, there is very little quantitative information. However, the IRA has reviewed the available publications concerning these hazards and where such publications have demonstrated that transmission though the oral route seems likely then risk management measures have been proposed. See comments below regarding specific pathogens.

2.6. The proposed standards set out below make it difficult for the EU Member States to export whole turkey carcasses to NZ, which means that export of whole turkeys e.g. for Christmas, which might be of interest to the EU producers, is excluded, even, if all other conditions for diseases notifiable to the OIE are met.

MAF Response: The IHS includes options that allow for the importation of turkey carcasses from any EU member state.

2.7. The EU questions therefore whether the measures for the prevention of introduction of the agents below into NZ turkey flocks are proportionate to the significance of the diseases.

MAF Response: In the MAF risk analysis process, risk is assessed as a measure of likelihood and consequence, and risk mitigation measures proposed seek to effectively manage the risks identified.

2.8. *Salmonella arizonae:* This disease is not notifiable to the OIE. The EU therefore wonders, if it is notifiable to the NZ authorities. NZ states that *Salmonella arizonae* has never been reported in NZ. The EU would therefore be interested which data support NZ’s free status.

MAF Response: *S. arizonae* is listed on MAF’s unwanted organisms register as an unwanted exotic organism. *S. arizonae* has not been identified from the salmonella isolates recovered in veterinary diagnostic laboratories in New Zealand. Investigations into cases of suspect exotic salmonella in animals are recorded in the ‘Quarterly report of investigations of suspected exotic disease’ in the Surveillance issue for the relevant period http://www.biosecurity.govt.nz/publications/surveillance/index.htm

2.9. Are results of surveillance in turkey flocks and testing for that agent in the frame of differential diagnosis available to back up the above statement, in particular in light of the agent’s worldwide distribution and as being recognised also in the risk assessment as an opportunistic pathogen in humans which could equally introduce the agent to NZ.

MAF Response: Please see the response to 2.8.

2.10. The requirement for country/zone/compartment freedom for this agent appears therefore excessive.

MAF Response: Other options are available in the IHS for *Salmonella arizonae*. The other options presented are as follows:

EITHER
The product for export is derived from turkeys in a country/zone/compartment free from
S. arizonae as demonstrated by surveillance, conducted in accordance with Chapter 6.4 and 6.5 of the OIE Code, and approved by MAF;

OR

The product for export is derived from turkey breeding flocks, hatcheries, and rearing farms free from *S. arizonae*, as demonstrated by surveillance conducted in accordance with Chapter 6.4 and 6.5 of the OIE Code;

OR

The turkey meat is derived from flocks demonstrated to be free of *S. arizonae* by testing at least 60 birds within the 7 day period before slaughter with either:

(i) Salmonella culture on samples of pooled faeces or intestinal content; or
(ii) A MAF approved diagnostic test;

OR

The product for export has been cooked and reached a core temperature of one of the following:

(i) 60°C for 2030 seconds; or
(ii) 62°C for 1073 seconds; or
(iii) 65°C for 370 seconds; or
(iv) 70°C for 41 seconds; or
(v) 72°C for 19 seconds; or
(vi) 74°C for 9 seconds; or
(vii) 76°C for 4 seconds; or
(viii) 79°C for 1 second.

‘Salmonella culture’ will replace ‘bacteriology culture’ as advice from laboratory experts in New Zealand states that ‘bacteriology culture’ is not specific.

2.11. In the EU disease surveillance programmes for Salmonella arizonae in hatcheries, breeding and productive turkey flocks is required by the EU legislation.

MAF Response: Noted.

2.12. Avian paramyxovirus -2 and -3: This disease is not notifiable to the OIE. The EU would therefore like to know, if it is notifiable to the NZ authorities. It appears that the last survey in poultry/turkeys for Paramyxoviruses dates from 2001/02. The EU would therefore welcome more recent information that would give evidence for NZ’s freedom of these agents.

MAF Response: Although there have been no further surveys specifically for APMV-2 or APMV-3 since those mentioned above, there is ongoing industry surveillance for APMV-1. As serological cross reactions are seen between APMV-3 and APMV-1 antigens, this ongoing surveillance provides some further evidence for continuing freedom from APMV-3.

2.13. Turkey coronavirus (TCV): This virus is not notifiable to OIE. The EU is interested to know, if it is notifiable to NZ authorities and how the statement "it has not been recorded in NZ's turkey population" can be supported by data, to prove that TCV is indeed an exotic agent to NZ.

MAF Response: Although there have been no specific studies to look for TCV in New Zealand turkeys, passive surveillance has not recognised this agent here. As noted in 1.50, further investigation of New Zealand’s status for this organism is under consideration. There have been no imports of live turkeys into New Zealand since TCV was first described, with imports limited to hatching eggs (TCV is known to not be transmitted by this pathway).

2.14. For the risk assessment process the EU notes that infection with TCV via the oral route has not been demonstrated. The species specificity limits infections only to turkeys and therefore transmission to wild birds is negligible. Furthermore infection of backyard flocks would only concern those of turkeys, which are usually not numerous and of which the numbers are not available to NZ. The EU suggests that the overall risk estimation should be re-considered.

MAF Response: Several experimental studies cited in the IRA have demonstrated successful infection of turkeys with TCV with inoculation via the oral route.\(^{26,27,28,29}\)

2.15. As regards Option 2, the EU assumes that the statement "TCV has not been recognised in the exporting country" means 'never' or if a time period could be identified since the last recorded case?

MAF Response: The IHS assumes the exporting country has not recognised the disease in the exporting country ever. The IHS states “The turkey carcasses are derived from birds in a country/zone/compartment where no known case of TCV has been recorded;” For those countries where the disease has been reported in the past, the IHS provides an option for testing for TCV presence by RT-PCR on samples of pooled faeces or intestinal contents from the flock of origin.

2.16. Turkey viral hepatitis (TVH) The agent is not notifiable to the OIE. The EU questions the justification of laying down Import Health Standards for a disease agent that has not been fully identified yet, for which diagnostic tests are not sufficiently robust to give evidence of absence of the agent and for which the economic consequences are not yet known.

MAF Response: The findings of the IRA are consistent with those of MAF’s 1999 *Import Risk Analysis: chicken meat and chicken meat products*; Bernard Matthews Foods Ltd turkey meat preparations from the United Kingdom, and the proposed risk management measure in the IRA is the same as that suggested in 1999. MAF considers the proposed risk management measures for this disease to be appropriate to effectively manage the risk. Please also see response to 1.51. for the recommendation for this clause in the IHS.

2.17. The EU would be interested to learn, on what findings the NZ status "no records of THV" is based upon.

MAF Response: Although there have been no specific studies to look for TVH in New Zealand turkeys, this disease has not been recognised here through passive surveillance activities.

3. USDA

3.1. Under “Outcomes”, number 11, [the IHS] states that “MAF and the Veterinary Authority of the exporting country will negotiate the content of the zoosanitary certificate...” taking into account several factors pertaining to the health status and veterinary infrastructure and capabilities of the exporting country. The United States is pleased that New Zealand intends to negotiate country-specific zoosanitary certification requirements, and notes that the United States Department of Agriculture (USDA) is willing to work with MAF to provide the information needed to successfully negotiate requirements that will allow market access for U.S. origin turkey meat and meat products.

MAF Response: Noted

3.2. Comments on Part B – General Requirements, Approved countries (#13): MAF indicates that “A list of eligible countries is included in the Guidance Document for this standard”. The United States notes that the Guidance Document states that no countries are currently approved to export turkey meat and meat products to New Zealand, and respectfully requests clarification on requirements for attaining approval. As noted above, the USDA is willing to work with MAF to attain market access for U.S. origin turkey meat and meat products.

MAF Response: Country eligibility is confirmed following MAF's approval of an Official Assurance Programme (production system outline) submitted by the Veterinary Authority of the exporting country describing the mechanisms for verification of the IHS requirements.

3.3. Documentation Requirements (#15): This section states that zoosanitary certificates must be “signed and stamped on every page by an Official Veterinarian of the Veterinary Authority of the exporting country.” The United States understands the need for security and to prevent fraudulent certificates.
However, there is no mention of electronic certification, where protection against fraud can be provided using secure internet sites and watermarked (or similarly safe guarded) certificates. Proper safeguards are also possible on paper certificates without the need to sign and stamp every page. The United States therefore requests that New Zealand include text that allows for the added protection provided by electronic certification or alternate security features offered by paper certificates.

MAF Response: Electronic certification systems for incoming goods are under development. The standard will be amended to include the allowance for alternate security features offered by paper certificates such as those used on APHIS Veterinary Services security paper.

3.4. **Approval of export systems (#17):** As stated here, and elaborated further in Appendix 1 – Production system outline requirements, New Zealand is requiring approval of individual farms, hatcheries, and slaughter/processing facilities, in addition to country approval. The United States believes that this requirement is unnecessarily restrictive and that a system approach is more appropriate, more effective, and less resource intensive. We believe that U.S. industry practices and USDA regulatory oversight of the turkey slaughter and processing inspection system provides comparable/equivalent animal and public health safeguards to those of New Zealand. Therefore, the United States respectfully requests that New Zealand evaluate and approve the overall U.S. production system.

The U.S. turkey industry is vertically integrated, i.e., the processing companies own the birds and supply feed to growers, who in turn, own the land and housing units and provide daily care. The integrated processors provide veterinary care and require adherence to strict standards verifiable through periodic inspections. The vertically integrated system in the United States ensures consistent health and quality of the birds.

All commercial turkey producers in the United States participate in the National Poultry Improvement Plan (NPIP). The NPIP is an internationally recognized Federal-State-Industry cooperative program designed to monitor and protect the health of all U.S. poultry through consistent disease monitoring and diagnostic standards and requirements which apply to hatcheries, as well as breeding and commercial meat birds.

Additionally, U.S. State and Federal agencies provide regulatory controls on feeds, feed additives, and pesticide/rodenticide use; and ensure the safety, quality, and efficacy of veterinary biologics. The USDA Food Safety and Inspection Service (FSIS) provides regulatory oversight for the slaughter and processing of turkeys for meat production, to include mandatory hazard analysis and critical control points (HACCP) programs, and ante- and post-mortem inspection under veterinary supervision. Disease surveillance and mandatory disease reporting at both the national and State levels provide the monitoring essential to verify disease freedom; accurately assess disease prevalence; and evaluate the effectiveness of disease control programs.

As noted previously, the USDA is willing to support a general evaluation of the U.S. system by MAF. This includes providing information on our poultry health
status, veterinary infrastructure and capabilities, as well as general industry practices (good agricultural practices), NPIP, and regulatory controls over slaughter, processing, and various aspects of production. The USDA and our turkey industry could also support an audit, as deemed necessary by New Zealand to approve the overall U.S. production system.

MAF Response: Noted. MAF expects approval of export systems to be completed on a case by case basis in a manner that takes account of existing systems under the control of trading partner Veterinary Authorities.

3.5. Packaging and storage requirements (#26): The draft IHS requires transportation containers to be sealed by an Official Veterinarian or a veterinarian approved by the Veterinary Authority. The United States notes that this is not a requirement for other products exported to New Zealand (such as spray dried egg powders), and questions why MAF has determined this is necessary for turkey meat and meat products. U.S. turkey slaughter and processing plants operate under the supervision of the USDA FSIS. Commercial seals are applied to containers under FSIS supervision, and the seal numbers are recorded on the commercial documents by the company. The United States respectfully requests that New Zealand allow sealing of transport containers under official FSIS supervision in lieu of requiring an Official or approved veterinarian to actually apply the seals.

MAF Response: MAF agrees. It is recommended that the wording in the standard be changed, allowing seals to be applied under Veterinary Authority supervision.

3.6. Comments on Part C – Specified requirements for identified risk organisms. Avian paramyxovirus (APMV-1), Newcastle disease (ND) (#28): This section provides very specific requirements for the use of vaccines. The United States is free of Newcastle disease (ND) as defined by the World Organization for Animal Health (OIE), and therefore regulates the use of Avian paramyxovirus (APMV-1) vaccines. In accordance with international standards established by the OIE, the USDA only permits the use of inactivated vaccines or live lentogenic vaccine strains. Currently, the USDA has only licensed one live non-recombinant vaccine (B1 Type, LaSota Strain) for use in turkeys. While this LaSota strain vaccine meets New Zealand’s criteria (2 or less basic amino acids between residues 113 and 116 and no phenylalanine at 117), the United States questions why New Zealand is exceeding international standards.

MAF Response: New Zealand poultry surveillance demonstrates no evidence of viral strains with more than 2 basic amino acids between residues 113 and 116 and no phenylalanine at 117. Therefore there is no evidence of strains that meet the OIE criteria for virulence and definition of Newcastle disease. Allowing the use of live lentogenic vaccines for Newcastle disease with more virulent viral strains could introduce these strains into New Zealand compromising our poultry health status. The OIE Code Chapter 10.13. General provisions for Newcastle Disease provide the following:

1) Newcastle disease (ND) is defined as an infection of poultry caused by a virus (NDV) of avian paramyxovirus serotype 1 (APMV-1) that meets one of the following criteria for virulence:

 a) the virus has an intracerebral pathogenicity index (ICPI) in day-old chicks (*Gallus gallus*) of 0.7 or greater; or
b) multiple basic amino acids have been demonstrated in the virus (either
directly or by deduction) at the C-terminus of the F2 protein and
phenylalanine at residue 117, which is the N-terminus of the F1 protein.
The term ‘multiple basic amino acids’ refers to at least three arginine or
lysine residues between residues 113 and 116. Failure to demonstrate
the characteristic pattern of amino acid residues as described above
would require characterisation of the isolated virus by an ICPI test.

MAF notes that the OIE Manual describes the use of live lentogenic and mesogenic
vaccines although the mesogenic viruses used in the latter would fall under the OIE
definition of ND described above. New Zealand is free of any APMV-1 isolates that fall
within the OIE definition of ND so the use of mesogenic vaccines has not been included in
the IHS.

3.7. Live lentogenic vaccine strains should pose no risk for disease transmission.
While gallinaceous birds may shed virus in feces and respiratory secretions for
1-2 weeks (according to the Center for Food Security & Public Health, Iowa State
University, Institute for International Cooperation in Animal Biologics/OIE), the
withdrawal time for live lentogenic vaccines is 21 days. Therefore, birds should
not be shedding virus at the time of slaughter.

MAF Response: MAF requires assurance that any potential circulating virus does not
contain strains of higher virulence than those present in New Zealand.

3.8. Avian paramyxovirus (APMV-1), Newcastle disease (ND) (#28): This section does
not address the use of live recombinant vaccines. The United States requests
clarification regarding New Zealand's requirements for the use of live
recombinant vaccines which include a ND component.

MAF Response: Live lentogenic vaccines where sequence analysis of the F0 gene has
demonstrated no more that two basic amino acids between residues 113 and 116 and no
phenylalanine at residue 117 would be acceptable to MAF as per the IHS. The use of
recombinant vaccines would need further consideration including consultation with other
Government Departments such as ERMA.

3.9. Avian paramyxovirus (APMV-1), Newcastle disease (ND) (#29): This section
requires certification, in lieu of flock testing, that the product is derived from
birds kept in a country/zone/compartment free of ND virus since hatching or for
the 21 days prior to export; and notes that surveillance in accordance with OIE
requirements is necessary to claim freedom.

The United States is free of ND, as defined by the OIE. ND is a mandatory
reportable disease in the United States, and all suspect cases of ND are
investigated. Testing for ND is mandatory for all birds submitted with respiratory
or neurological signs. Commercial turkey producers also routinely test breeder
and production flocks for ND virus titers as part of vaccination follow-up, and
investigate any incidents of unexpectedly elevated titers.

The United States seeks clarification as to whether or not New Zealand
recognizes the United States as free of ND.
MAF Response: Decisions on the freedom status will be made during country-country negotiation.

3.10. **Highly pathogenic notifiable avian influenza (HPNAI) (#34):** This section requires certification, in lieu of flock testing or heat treatment, that the product is derived from birds kept in a country/zone/compartment free from highly pathogenic notifiable avian influenza (HPNAI) since hatching or for the 21 days before export, and notes that surveillance in accordance with OIE requirements is necessary to claim freedom.

The United States is free of HPNAI, as defined by the OIE. Extensive avian influenza (AI) surveillance is conducted through NPIP on all breeder and commercial production poultry flocks. The USDA also does extensive AI surveillance in the live bird marketing system and backyard flocks, as well as wild birds. While low pathogenicity notifiable avian influenza (LPNAI) is occasionally detected and rapidly eradicated in commercial flocks, the United States has not had an occurrence of HPNAI since 2004.

The United States seeks clarification as to whether or not New Zealand recognizes the United States as free of HPNAI.

MAF Response: Decisions on the freedom status will be made during country-country negotiation.

3.11. **For exporting countries that cannot claim country/zone/or compartment freedom from HPNAI and do not want to do flock testing, New Zealand is requiring that the product for export be cooked to reach a core temperature of one of the following:**

- 65°C for 840 seconds; or
- 70°C for 574 seconds; or
- 74°C for 280 seconds; or
- 80°C for 203 seconds.

The above requirements are the OIE guidelines for the inactivation of ND virus in poultry meat. The OIE guidelines for the inactivation of AI virus in poultry meat are addressed in Article 10.4.26 of the OIE Code and are as follows:

- 60°C for 507 seconds; or
- 65°C for 42 seconds; or
- 70°C for 3.5 seconds; or
- 73.9°C for 0.51 seconds.

MAF Response: This error will be amended in the final version to reflect the OIE Code thermal treatment requirements for HPNAI addressed in Article 10.4.26.
3.12. On page 14 of the Draft Risk Management Proposal: Turkey Meat and Meat Products, Option 3 for mitigation of HPNAI risks is described as “Imported turkey meat could be cooked in accordance with Article 10.4.27 of the OIE Code”. The same document, however, then lists the OIE heat treatment guidelines for the inactivation of NDV in meat as noted in Article 10.13.21 of the OIE Code. [Current OIE heat treatment guidelines for the inactivation of the Al virus in meat are found in Article 10.4.26.] Were the OIE heat treatment guidelines for the inactivation of NDV cited by mistake as a risk mitigation option for Al? If not, the United States respectfully seeks clarification as to why New Zealand’s heat treatment risk mitigation measures exceed international standards for the inactivation of Al virus.

MAF Response: This error will be amended in the final version to reflect the OIE Code thermal treatment requirements for HPNAI addressed in Article 10.4.26.

3.13. This section addresses the requirements for the option of certifying that product for export is derived from turkey breeding flocks, hatcheries, and rearing farms free from *S. arizonae*, noting that the guidelines in Chapters 6.4 and 6.5 of the OIE Code must be met to claim freedom. Chapter 6.5, “Prevention, Detection, and Control of Salmonella in Poultry” refers to the Terrestrial Manual for sample size and laboratory methods, noting that both are “under development”.

MAF Response: Noted

3.14. The United States respectfully requests the surveillance data (e.g., frequency of sampling; sampling numbers; species sampled; type of samples; culture methods; production surveys) supporting New Zealand’s claim to be free of *S. arizonae*. We also request clarification on New Zealand’s criteria for sample size and laboratory methods. Will the criteria be the same as those listed for flock testing in option 3 (#37), i.e., testing of at least 60 birds within the 7 day period before slaughter with either (i) bacteriology culture on samples of pooled feces or intestinal content; or (ii) a MAF approved diagnostic test? If so, can New Zealand clarify what other diagnostic tests are approved by MAF?

MAF Response: Please see the response to 2.8. The addition of the term “MAF approved diagnostic test” allows for countries who may request to use a validated test that is not prescribed for international trade by the OIE to be evaluated by MAF IDC (Investigation and Diagnostic Centre).

3.15. In lieu of country/zone/compartment or flock freedom from *S. arizonae*, New Zealand is proposing that the product for export must be cooked and have reached a core temperature of 79°C as a risk mitigation measure.

The USDA FSIS requires ready-to-eat poultry products, including poultry products that have a ready-to-eat appearance to be subjected to a heat treatment sufficient to obtain a 7-log10 lethality of Salmonella. The FSIS standard for Salmonella is based on a given time and temperature, on fat level, and on species. This has been determined to be 165°F (74°C) for <10 seconds (with the required lethality being achieved instantly at 165°F or 74°C internal core temperature). This heat treatment has been shown to effectively inactivate Salmonella in turkey meat with up to 11 percent fat.
The United States respectfully requests that New Zealand accept the USDA FSIS standards for destruction of Salmonella in ready-to-eat poultry products or provide the scientific data supporting the need for the higher requirement of 79°C core temperature.

MAF Response: As indicated in the IRA, the requirement to cook to a core temperature of 79°C was based on the publication of Schnepf and Barbeau (1989)\(^{30}\). This study demonstrated that cooking contaminated chickens (using a conventional oven or convection microwave oven) to a core temperature of 79°C was sufficient to eliminate *Salmonella* whereas viable organisms were recovered when the core temperature was reduced to 77°C.

MAF notes that the USDA FSIS standard referred to above is based on the findings of Juneja et al (2001)\(^{31}\) who estimated (based on extrapolation from studies performed over a temperature range of 58°C to 65°C) that exposure of turkey meat to 74°C for around 9 seconds would be required to ensure a 7 log reduction in *Salmonella*. MAF has reviewed the findings of Juneja et al (2001) and agrees that the non-linear survival curves generated by their modelling (which form the basis of the USDA FSIS standard) are appropriate to specify the time/temperature requirements to manage the risk of *Salmonella arizonae* in turkey meat. Based on these results, the following conditions (which will achieve a 7 Log reduction in *Salmonella* in turkey meat with 12% fat) will be included in the IHS:

- 60°C for 2030 seconds
- 62°C for 1073 seconds
- 65°C for 370 seconds
- 70°C for 41 seconds
- 72°C for 19 seconds
- 74°C for 9 seconds
- 76°C for 4 seconds
- 79°C for 1 second

3.16. **Avian paramyxovirus-2 (APMV-2) and APMV-3 (#39-40):** The occurrence of APMV-2 and APMV-3 is uncommon in the United States since most commercial turkey flocks are currently reared indoors. APMV-3 is occasionally encountered as a regional issue in the United States, and affected areas control the disease through the use of inactivated vaccines in breeders.

The United States would like to confirm that no additional risk mitigation measures would be required for the export of turkey meat and meat products (excluding entire turkey carcasses) free from intestinal and respiratory tissue.

MAF Response: MAF agrees that no additional risk mitigation measures will be required.

3.17. We also request clarification on MAF’s surveillance requirements to prove country/zone/compartment freedom, as well as MAF approved diagnostic tests to prove flock freedom other than virus isolation.

MAF Response: MAF realises there are a variety of ways a country/zone/compartment can achieve freedom from disease by way of surveillance and MAF will assess surveillance regimes broadly based on the OIE Code Chapter 1.4., when presented with a production system outline. As stated above the term “MAF approved diagnostic test” allows for countries who may request to use a validated test that is not prescribed for international trade by the OIE to be evaluated by MAF IDC (Investigation and Diagnostic Centre).

3.18. With respect to virus isolation, the United States notes that this process can take 5-10 days to accomplish; therefore we respectfully request that the time period allowed for testing be extended beyond the proposed “7 day period before slaughter”.

MAF Response: MAF recommend allowing for some flexibility to the timing of slaughter tests and 7 days has been included in the standard, to enable practical obstacles to testing to be managed by the exporter. MAF believes this is an acceptable time frame given the assurances provided for by the IHS.

3.19. Turkey coronavirus (TCV) (#41-42): The United States would like to confirm that no additional risk mitigation measures would be required for the export of turkey meat and meat products (excluding entire turkey carcasses) free from bursal tissue.

MAF Response: MAF agrees, turkey meat products that do not contain remnants of the bursa of Fabricius could be considered eligible for import.

3.20. Turkey coronavirus (TCV) (#41-42): With respect to demonstration of flock freedom, the United States requests information on MAF approved diagnostic tests other than rt-PCR testing of pooled feces or intestinal content.

MAF Response: Please see the response to 3.14.

3.21. The United States also notes that the heat treatment options for risk mitigation for TCV are the same parameters used to mitigate the risk of ND, and we respectfully request the scientific basis for using these criteria.

MAF Response: The IRA page 76 makes the following comments regarding justification for thermal treatment equivalent to that for ND: “Turkey coronaviruses have been shown to be resistant to 50°C for 1 hour (Guy 2008) and no reports of thermal inactivation studies of TCV at higher temperatures have been located. However, most strains of infectious bronchitis virus are inactivated after 15 minutes at 56°C and after 90 minutes at 45°C (Cavanagh and Gelb 2008). Therefore, it is reasonable to assume that cooking imported turkey meat under the conditions described to manage the risk associated with NDV (see Section 5.3.1) would be sufficient to manage the risk of TCV.”

3.22. Turkey viral hepatitis (#43): The United States would like to confirm that no additional risk mitigation measures would be required for the export of turkey meat and meat products (excluding entire turkey carcasses) free from liver, pancreatic, and intestinal tissue.

MAF Response: MAF agrees, turkey meat products that do not contain remnants of liver,
pancreas and intestinal tract could be considered eligible for import.

3.23. The United States respectfully requests additional information on the equivalence process, including the approximate time needed for MAF to complete the process.

MAF Response: The formal equivalence process requires the Veterinary Authority to present a case to MAF for assessment of the proposed equivalent measure. The time frame for assessment will be dependent on the complexity of the decision required and the resource available and will be prioritised. An approved equivalence request may require an amendment of the IHS. Equivalence is provided for under section 22 of the Biosecurity Act 1993 and requires a Chief Technical Officer decision. Article 4 of the SPS Agreement also requires member countries to accept the sanitary and phytosanitary measures of other members as equivalent if the exporting member objectively demonstrates to the importing member that its measures achieve the importing member’s appropriate level of sanitary or phytosanitary protection.

3.24. Please see comments on Part B, #17, Approval of export systems. The United States respectfully requests that New Zealand evaluate and approve the entire U.S. system for producing turkey meat and meat products in lieu of individual production system approvals. Requiring the approval of individual production systems, including hatcheries and growers, as well as slaughter and processing plants is unnecessarily restrictive and will create a technical barrier to trade.

MAF Response: Please see the response to 3.4.

3.25. As noted in #2 under required steps, the timeline for completion of MAF approval of a production system outline “will be subject to available resources”. This requirement would also cause an unnecessary drain on U.S. resources since the USDA will be required to review and approve each production system outline.

MAF Response: Noted

3.26. The commercial turkey industry in the United States is vertically integrated and standardized. The United States is willing to work cooperatively with our industry to provide the necessary information for New Zealand to evaluate and approve the U.S. system. As noted previously, the USDA and industry would also support a systems audit if deemed necessary by New Zealand.

MAF Response: Noted
Appendix 1: Copies of Submissions

The Poultry Industry Association of New Zealand (PIANZ) and Egg Producers Federation of New Zealand (EPF)

Border Standards Directorate
Biosecurity New Zealand
Ministry of Agriculture and Forestry
P.O. Box 2626
Wellington
5140

15 November 2010.

Dear Charlotte,

Introduction.
The Poultry Industry Association of New Zealand (PIANZ), contactable at the above address, represents all of the poultry breeding and processing companies (99% by volume) in New Zealand. The Egg Producers Federation of New Zealand (EPF) represents all commercial egg producers in New Zealand including free range egg farmers. PIANZ and EPF Veterinary Technical Committees, which includes industry vets and food safety personnel, has reviewed the draft Import Health Standard for Turkey Meat and Turkey Meat Products (General), (subsequently referred to as the draft IHS). This submission outlines a series of key points which is followed by a more comprehensive discussion of the IHS.

Summary

Key points:

1. New Zealand Biosecurity policy has been to base all IHS requirements on OIE Code requirements as a minimum. The draft IHS does not follow this long standing practice. PIANZ submits the IHS should have OIE code requirements as a base principle.

2. The concept of a production plan which has been prepared by the exporting poultry industry is designed to provide a set of criteria that provides guidance to veterinary authorities in a niche sector where there is limited expertise in regulatory bodies.
The production plan would be an addition to the OIE Code requirements, not a substitution.

3. The proposal of testing 80 birds within 7 days as a risk mitigation option equivalent to country/zone/compartments freedom or culling to a defined time and temperature is not supported as an option by the Risk Analysis. However, in the IHS, it is deemed equivalent to the above standards.

PIANZ submits that the inclusion of a risk mitigation option in the IHS that is not supported as a credible option in the IRA or the OIE is a major change of policy and one that cannot be supported.

The testing option maybe a useful addition to OIE Code requirements but cannot be a substitution.

4. A fundamental principle of biosecurity is that the purpose of the IRA/IHS consent is to identify risk organisms and put in place practices that prevent the risk organisms entering New Zealand. The IHS in our opinion acknowledges IBDV as a risk organism that will enter New Zealand under the IHS, but the potential presence will be identified either by the fully funded industry surveillance programme or the risk is minimised due to good industry biosecurity practice. The IHS appears to move the risk through the border to be dealt with by NZ poultry industry.

5. The risk of IBDV.2 cannot be considered to be minimal due to the range of New Zealand industry practice and structure as appears to be the position set out in the IHS. PIANZ submits that the IHS position that there is a minimal risk is due to a critical lack of understanding of the potential risks, which will only increase due to changes in industry practices. E.g. The increase in free range poultry bird numbers.

These key points will be expanded on the body of the submission together with the other issues.

Document complexity.
There are 4 documents published by MAF at the one time. The risk analysis, the IHS, the draft risk management proposal and the guidance document. The comments in this submission are referenced to one of these four documents, generally the IHS or IRA but address issues in either one or all of the documents.

The new process that MAF has developed where all four documents are required to be commented on at the one time is not in our submission user friendly and is complex for submitters.

Information sources. (Page 5. Guidance document.)
Industry notes the total reliance placed on the exporting countries Veterinary Authorities to source relevant information from the commercial poultry companies who wish to export. The process outlined in the IHS requires the poultry companies to report changes in the health status of all the flocks within the exporting country/zoo/compartment. The basis of the permit issue by the appropriate Veterinary Authority is totally dependant on the company supplied information. That requires the company to ensure that a number of actions are completed by them every day but gives no process to provide proof that daily collection of information occurs.

If in the process of collecting information if a non-compliance was detected by the company what safeguards are in place to ensure it is reported? In such a situation a non-compliance could mean that the company cannot export for up to twelve months; therefore, the pressure not to report will be very high. This scenario does not appear to be addressed or accounted for in the Biosecurity plans or Veterinary Authority oversight. PIANZ submits this is fundamental weakness that must be addressed.

Non Notification. (Page 55-59 Risk analysis.)

The risk analysis considers IBDV-1 as a non-risk organism. PIANZ therefore asks how will a change in the status of IBDV-1 by findings of IBDV-1 in imported turkey meat ever be considered and re-evaluated as a different risk. Exporting countries are not required to undertake any surveillance. Even if detected there is no requirement to report the presence of IBDV-1 in turkey looks supplying turkey meat to New Zealand. This is a major area of risk that is not addressed within the IHS and risk analysis. PIANZ submits that MAF should reconsider the decision to classify IBDV-1 as a non-risk organism.

Carcass definition and Offal. (Page 4 Guidance documents.)

The definition of carcasses in the IHS states that it is a processed body of a slaughtered animal after evisceration procedures to ensure the removal of all offal. The conditions of the IHS allow entire turkey carcasses with head and feet on or without head and feet to be imported. Bone in turkey product is also able to be imported. As the cervical (neck bones) and long bones (leg bones) may contain respiratory tissue, which is commonly defined as offal, then the import of these products would not be possible under this IHS.
The IHS, Guidance documents and OIE codes do not offer a definition of offal so MAF needs to provide a definition in order to clarify this point. To assist on this important issue PIANZ provided the following definition of offal to MAF in April 2010.

"Offal includes giblets, the curve of Fabricius, respiratory tissue, crop, gizzard, heart, intestine, kidney, proventriculus and spleen."

PIANZ again recommends that this definition be adopted by MAF and included in the IHS.

Export systems/Compartment (Pages 15 Risk management documents)

PIANZ is extremely concerned at the option offered in the IHS and Risk management Documents. (Page 15 of 21.)

- "For exported product produced in systems that may not be aligned with OIE Code requirements systems, a specific flock testing option aligned with sampling requirements for other risk organisms is included."

The export of product from a system that is not aligned to OIE code requirements is a fundamental defect in the IHS. It offers to exporters a reduction in the requirements required to export into New Zealand. It is a reduction in the standards recommended for international trade by the OIE code. It has been previously accepted by MAF that the OIE code recommendations are the minimum required for import of animal products into New Zealand. The concept that the OIE Code recommendations are not to apply to imports (or in this case a selected product) to New Zealand appears to signal a new policy stance by MAF that has not been consulted on or notified by any policy announcements or discussion with New Zealand Agricultural Industries.

PIANZ has said in previous submissions that a production plan should also be submitted to MAF for the issue of the permit to import to ensure that the biosecurity of the production system can meet and maintain the disease freedom claims. The concept of a production plan was in addition to the OIE code requirements, not a substitution. PIANZ submits that an exporting system that is not meet OIE code recommendations is not acceptable.

Within 7 days testing of 50 Birds. (IHS pp 7, 8, 9)

The IHS proposes an option of testing 50 birds in a shed within 7 days of processing for a range of the risk organisms notified in the IHS. The draft risk management proposal at pages 12, 14, 17, and 19 states that "Options 1, 2, 3, and 4 are considered to offer equivalent levels of protection". MAF is thus saying in the IHS that end point testing of 50 birds within 7
days of slaughter is equivalent to a country, zone, compartment freedom or cooking the product for a specified temperature and for a specified time.

PIANZ submits that this equivalency argument is not valid and if adopted would represent a dramatic and unacceptable risk.

The risk analysis states (page 48, page 24??)

- “However, antibodies are unlikely to be detected until at least 7 days following infection, so serological assays alone cannot reliably demonstrate freedom from infection at the point of slaughter. However, serology may be used as a component of a surveillance programme to demonstrate country, zone, or compartment freedom”

The Risk Analysis and the OIE does not support within 7 days testing of 80 birds as stated in the IHS as an option for risk mitigation because of the fundamental issue of unreliability, yet it appears in the IHS, the guidance document and the draft management proposal as an equivalent. The purpose of the risk analysis is to identify the risk organism in the proposed imported product and to offer risk management options. This IHS has developed a risk mitigation step that is not supported by the risk analysis. PIANZ understands that this is a major deviation from accepted MAF policy. When has the policy change occurred?
How was this option developed outside the risk analysis? How will it be evaluated? What specific criteria will be evaluated to ensure it is equivalent to the OIE Code Requirements?
PIANZ submits that an outcome that does not require OIE Code requirements to be met is not acceptable for New Zealand. As with the option of the production plan a lesser standard is being offered as equivalent to or in place of OIE code requirements in our submission.

PIANZ submits that this is a fundamental biosecurity and trading issue and a dilution of the protective steps that are MAF is required and obliged to take to protect New Zealand under section 22 of the Biosecurity Act 1993.

Equivalency of options in IHS. (COOKING VS TESTING)

The IHS offers a number of conditions for each particular risk organism and the guidance document states that these selected options are considered to be equivalent.

The risk management proposal pages 12, 14, 15, 18, 17, and 19 states that:

“Options 1, 2, 3, and or 4 are considered an equivalent level of protection.”
The IHS accepts that a country, zone, compartment freedom, testing of 60 birds within 7 days of slaughter and is equivalent to cooking the product for a specified temperature and for a specified time.

PIANZ submits that cooking time and temperature criteria give the highest degree of confidence in the treatment of turkey moose or indeed other poultry moose to destroy organisms of concern. PIANZ submits to claim equivalence of time and temperature with testing of 60 birds within 7 days of processing is not credible. This is further supported by the Risk Analysis and the OIE Code not recommending this as acceptable for trade.

The NZ Poultry Industry is an industry that has not had to contend with imports of raw poultry products. The low number of endemic avian diseases present in New Zealand and the novelty of the avian population mean any introduction of an endemic avian disease will result in a very large production and welfare impact on avian populations, both farmed and wild.

PIANZ submits that as a minimum all risk organism mitigations are required to meet conditions equivalent to or higher than OIE requirements for trade in turkey meat products. PIANZ would support the extra risk mitigation step of testing 60 birds as a supplementary test in addition to the other IHS requirements to supplement country/zone/compartment freedom or cooking.

IBDV types 1 and 2. Risk analysis document. (Page 53, 62.)

PIANZ submits that the MAF should reconsider the risk analysis decision that determines IBDV-1 and IBDV-2 as non specified risk organisms. PIANZ questions the suggestion that IBDV-1 is not present in turkeys and submits there is no evidence to disprove that it is or maybe present.

There is no surveillance for IBDV-1 or a requirement to control IBDV-1 in turkey's worldwide, and information as to the status of IBDV-1 in turkeys is limited. The risk analysis references a limited number of papers that report the presence and absence of IBDV-1 in turkeys and turkey meats. This limited information needs to be reconsidered and a case for further investigation is compelling to demonstrate the actual picture in the exporting countries.

Giambbone et al. (1978) observed microscopic lesions in lymphoid tissues of infected turkey pouls and also in uninfected contacts and concluded that IBDV-1 in turkeys is infectious and can spread horizontally in turkey flocks. The authors concluded that there remains a definite possibility that turkeys may serve as a reservoir for IBDV-1. Gladele et al. (2009) has also reported that IBDV-1 can infect turkeys. This work is evidence that IBDV-1 does transfer by
natural routes to turkeys. There is little requirement for any country in the world apart from New Zealand to have an interest in IBDV-1 in turkey and turkey meats. It is accepted that IBDV-1 causes little clinical disease in turkeys which results in little interest in surveillance for this disease but there is still a possibility that IBDV-1 can be present in turkeys and turkey meats resulting in the possibility of tissue containing IBDV-1 being exported illegally into NZ.

The MAF risk analysis notes most birds in flocks would be infected between 4 and 7 weeks of age (Chettel et al 1985; MAF 1999) and that IBDV-1 and IBDV-2 is recoverable from muscle tissue of chickens or turkeys for 2-6 days post infection. The 1999 risk analysis assumes processing at 12 weeks of age and a probability of turkey muscle meat being infected with IBDV at 0.001 (<0.1%). The proposed IHS allows the turkeys to be processed from 8 weeks of age thus increasing the possibility of IBD virus being present in turkey meats. This is not modelled in the risk analysis (May 2010) as it assumes the same risk factors for the possibility of imported turkey meats containing IBDV.

PIANZ contends that this significant change in the processing dates from 12 weeks reducing to 8 weeks has not been taken into consideration in the 2010 risk analysis.

This 1999 particular qualitative risk assessment was based on United Kingdom data and then extrapolated to all countries assuming the prevalence and infectivity of IBDV-1 and IBDV-2 are the same for all countries. The possibility of viable IBD virus being present in the imported turkey meat and thus present in New Zealand is increased.

The presence of IBDV-1 and IBDV-2 virus in New Zealand is a major concern to PIANZ. The equivalent situation for red meats would be meats containing foot and mouth disease virus present in New Zealand but MAF considering it not an issue, as the risk exposure pathways are considered to be negligible.

PIANZ submits that MAF do not seem to be taking a precautionary approach on this issue. MAF states that "where biosecurity risk management measures are adopted in situations where there is not sufficient scientific evidence necessary for a comprehensive analysis of risks, biosecurity departments will take appropriate steps to seek the additional information necessary for a more objective assessment of risk, and review these measures accordingly within a reasonable period of time."

PIANZ considers that MAF has not fulfilled this need for additional information to make a more objective assessment of risk. It seems that the risk is totally borne by the NZ Poultry Industry. MAF needs to reconsider IBDV as a risk organism.
IBDV-2 as a confounder in Industry Surveillance.

PIANZ submits that IBDV-2 will be a possible confounder in the IBDV surveillance programme that the N.Z. Poultry industry (meat and egg) has fully funded and maintained for the last 11 years. IBDV-2 is reported as present in meat turkey establishments worldwide therefore the potential for IBDV-2 to be present in imported turkey meat is non-negligible. (IRA page 58) The risk analysis assessment that IBDV-2 is considered a negligible risk is entirely dependent on the assumptions that the likelihood of exposure is negligible. PIANZ contends that this exposure risk is underestimated in the risk analysis due to increasing free range birds numbers and the absence of any controls on the distribution of turkey meat waste. The proposed IHS allows the import of turkey products that will result in the production of turkey meat waste which further increases the risk of imported turkey waste being fed to poultry.

The risk analysis has no evaluation of the risk exposure for the risk organisms on the assumption that a number of industry practices are static. The industry is evolving and practices are changing and IRA risk evaluations may longer be current due to these changes as are mentioned above.

PIANZ submits that the IRA needs to realign these increased exposure risks.

IBDV eradication of a vaccine strain IBDV.

The risk analysis notes IBDV was eradicated from New Zealand farms in the 1990s. However the risk analysis makes no reference that the eradication was of an attenuated IBDV vaccine. This live vaccine virus had reduced infectivity and virulence compared to field strain IBD viruses. The IBD virus's ability to extend from farm to farm in the 1990's in N.Z. was due to vaccinated birds being placed on these farms, not infectivity and virulence. The risk analysis notes IBDV did not reestablish itself in poultry and concluded the risk of IBDV as negligible. Is such a statement justifiable for a more infective and virulent strain of virus?

Exposure Considerations. (Pages 56, 58 Risk analysis)
PIANZ submits that risk analysis underestimates the possible exposure pathways of infected turkey meats to N.Z. poultry and thus the level of risk.

The N.Z. poultry industry takes major biosecurity steps to reduce exposure to wild birds and vermin but there is no guarantee that exposure will not take place. There are an estimated 450 sheds on N.Z. poultry meat farms and between an estimated 320 and 500 layer hen sheds and the possibility of a biosecurity failure on such a large number of sites cannot be discounted.

There is also an increasing trend to free range in meat poultry farming in N.Z. In New Zealand there is a projected 150% increase in free range meat poultry numbers in the next 18 months. It is estimated that could be up to 20% of bird numbers or 3,000,000 birds at any one time. Currently 11% of commercial layers are free range or 320,000 birds with an estimated 300,000 extra birds in backyard flocks. Thus the assumption of negligible exposure based on limited numbers of birds being farmed in free range production systems is not credible and needs to be reassessed.

This results in a larger risk population that is both exposed to wild birds and vermin and also to feeding of imported turkey meat scraps.

The IHS also refers to a ban of feeding of poultry meat to poultry and refers to this as another reason for identifying exposure as a limited risk pathway. The ban on the feeding of poultry meat to poultry species is a voluntary ban only and there is no legislative or regulatory ban. One feed company has used poultry protein in poultry feed for a number of months in 2000/10 for cost reasons and has not ruled out returning to such practice.

The risk analysis (page 56) states that

- "In New Zealand, commercial producers are required to have a risk management program (RMP) prescribing how their products are processed to meet the requirements of the Animal Products Act 1999. Such commercial producers will not feed food scraps to their birds whereas non-commercial poultry flocks containing 100 or fewer birds are not required to have an RMP and are likely to feed scraps to their birds."

The RMP does not prohibit this feeding of scraps to commercial flocks as the risk analysis suggests. The option of feeding meat scraps including imported turkey meats is still available for commercial producers and as noted in the risk analysis possibly widespread in
the backyard poultry sector. The driver of the use of scraps as a feed alternative for poultry is driven by the costs of manufactured poultry feeds. When these are driven higher by increasing raw material costs the option of scrap feeding to more poultry flocks becomes a major consideration for poultry farmers. This in turn increases the risk exposure to poultry of possible imported risk organisms in the imported turkey meats.

The IHS allows an extended commodity range to be imported that includes whole carcasses and offal. This will result in increased waste and off cuts and therefore an increased possibility that poultry may be fed turkey meat wastes.

The risk analysis has determined that even if an agent is present in imported meats then its ability to enter the poultry food chain is negligible.

MAF's conclusion is that "such measures ensure that the likelihood of commercial poultry being exposed to free living avian species is low, very low" but PIANZ submits that this needs to be readdressed in light of the information supplied above.

Biosecurity on commercial poultry farms.

The risk analysis (page 47) states that recommended biosecurity standards for domestic producers include measures to minimise the biosecurity risk posed by wild birds and vermin. Standard biosecurity practices on commercial farms include a prohibition of staff to have regular contact with other poultry livestock, pugs, racing pigeons and operations that use poultry manure.

The risk analysis does not factor in the possibility of dealing with an agent of the robust nature of IBDV. Poultry farmers in New Zealand have not factored in a biosecurity programme that has to deal with an agent on this magnitude as they do not have this virus present in New Zealand. The recent Infectious laryngotracheitis (ILT) outbreak reported in MAF Surveillance (September 2010) concludes that "It seems very likely that the disease was spread between the sheds and between the two farms by equipment, workers and possibly vehicles. This highlights the importance of strict biosecurity between poultry sheds to minimise impacts in a highly integrated industry." Given the outcome stated here does MAF still consider that on farm biosecurity results can reduce the risk of exposure to very, very low?
the backyard poultry sector. The driver of the use of scraps as a feed alternative for poultry is driven by the costs of manufactured poultry feeds. When these are driven higher by increasing raw material costs the option of scrap feeding to more poultry flocks becomes a major consideration for poultry farmers. This in turn increases the risk exposure to poultry of possible imported risk organisms in the imported turkey meat.

The IHS allows an extended commodity range to be imported that includes whole carcases and offal. This will result in increased waste and off cut and therefore an increased possibility that poultry may be fed turkey meat wastes.

The risk analysis has determined that even if an agent is present in imported meats then its ability to enter the poultry food chain is negligible.

MAF's conclusion is that "Such measures ensure that the likelihood of commercial poultry being exposed to free living avian species is low, very low" but PIANZ submits that this needs to be readdressed in light of the information supplied above.

Biosecurity on commercial poultry farms.

The risk analysis (page 47) states that recommended biosecurity standards for domestic producers include measures to minimise the biosecurity risk posed by wild birds and vermin. Standard biosecurity practices on commercial farms include a prohibition of staff to have regular contact with other poultry livestock, pugs, racing pigeons and operations that use poultry manure.

The risk analysis does not factor in the possibility of dealing with an agent or the robust nature of IBDV. Poultry farmers in New Zealand have not experienced a biosecurity programme that has to deal with an agent on this magnitude as they do not have this virus present in New Zealand. The recent Infectious laryngotracheitis (ILT) outbreak reported in MAF Surveillance (September 2016) conclude that "It seems very likely that the disease was spread between the sheds and between the two farms by equipment, workers and possibly vehicles. This highlights the importance of strict biosecurity between poultry sheds to minimise impacts in a highly integrated industry." Given the outcome stated here does MAF still consider that on-farm biosecurity results can reduce the risk of exposure to very, very low?
Based on the assumptions in the IHS MAF appears unlikely to revisit the IHS or risk analysis on an ongoing basis for IBDV. The exporting countries are not required to notify any change in disease status with IBDV-1 or IBDV-2 in turkeys, and there is no active surveillance for IBDV in turkeys in exporting countries. Therefore, the first evidence of IBDV in New Zealand may be when the PIANZ/EFP surveillance scheme detects IBDV in poultry.

PIANZ believes the risk of IBDV exposure from imported turkey waste meats is understated in the risk analysis and mitigation measures do not provide an acceptable level of risk and requests that MAF re-evaluate this part of the risk analysis process.

The concept that there are risk organisms present in imported products but MAF accepts that the safeguard is exposure to New Zealand agricultural populations is negligible means a major risk is placed on the Poultry Industry in our submission.

Section 1. Import health standard.

Part A.

Scope. (Page 3 of 14 IHS)

It is not clear from the current definition whether meat preparations are defined and include reconstituted turkey meat or not. PIANZ submits that reconstituted turkey meat should be included in the definition section of the IHS, as it may contain remnants of the bursa of Fabricius, respiratory tissue, kidney, and other internal organs. All these tissues are identified as high risk by the risk analysis. PIANZ has previously submitted that these reconstituted turkey meats should not be permitted entry as they may contain turkey tissues that have been identified as high risk of containing risk organisms.

Outcomes. (Page 4 of 14 IHS)

PIANZ notes the absence of IBDV-1 and IBDV-2 and maintains these should be part of the risk organisms subject to specific risk management requirements within this IHS. (See previous comments).

Clause 11. (Page 4 IHS)

PIANZ notes with concern that the negotiation process for the zoos sanitary certificate is not transparent.
PIANZ submits that given the importance of these Biosecurity plans to the establishment of an IHS this information should be available for scrutiny by an independent poultry expert agreed to by the exporters and the Regulatory Authorities.

Part B General Requirements.

Approval of export systems / Biosecurity Plans.

The process of approval of the production system will require a level of knowledge of commercial poultry systems worldwide. The regulatory bodies have very little daily and or ongoing relationship with these poultry systems. How will the exporting countries Veterinary Authority and MAFBnz ensure the system is robust, present and working for the entire period of the current permit to import?

PIANZ submits that given the importance of these Biosecurity plans to the establishment of an IHS this information should be available for scrutiny by an independent poultry expert agreed to by the exporters and the regulatory authorities.

The Bernard Matthews plant in Suffolk was under Department for the Environment, Food and Rural Affairs (DEFRA) and the Meat Hygiene Service (MHS) supervision when an outbreak of HPAI occurred in 2007. Reports issued by these agencies concluded that all food importing processes at the plant were in line with EU law. Ongoing problems at this plant and adjoining farm were identified but again the published reports indicate that these were not considered to be of major concern. PIANZ notes with concern that this plant was on the brink of exporting turkey meat to New Zealand yet was able to process turkey meat containing avian influenza virus.

Given that this was an example of an EU turkey processing plant and turkey farm meeting normal practice and having regulatory oversight how will MAF have confidence that all that is required to be done on a continual basis to the required standard to maintain the required disease free status is actually completed? The regulatory authority's controls for this plant and farm were met yet they did not stop an Avian Influenza outbreak.

PIANZ has previously submitted, and does so again, that a mechanism that could give MAF and the Poultry industry extra confidence in the processes surrounding the export of turkey meat is a production plan that is submitted by the exporting company. This plan would then be approved by the exporting Veterinary Authorities and MAF and then audited as part of the exporting process by the exporting Veterinary authorities. This plan is an additional requirement and not an alternative to OIE code requirements. PIANZ submits that the evidence of the AI outbreak in Suffolk makes such an addition necessary.
Laboratory testing requirements. (Page 6 of 14, IHS)

Clause 22. The IHS states a requirement for randomised testing. PIANZ submits that such testing must be undertaken done by the exporting government veterinary officers to give the appropriate levels of confidence. PIANZ would support the extra risk mitigation step of testing 50 birds as a supplementary test on top of the other IHS requirements to further increase risk mitigation measures.

Part C. Specified requirements for identified risk organisms.

Clause 28. Poultry Vaccines used in Turkeys. (Page 7 IHS)
For exporting countries that have licensed genetically modified live vaccines for poultry and poultry vaccines that are used off label in turkey production PIANZ asks how these will be handled by the MAF. It is possible that some of the viable viruses from vaccination may be present in the imported meat.
PIANZ has previously submitted to MAF is that this should be part of the production plan and general information supplied pre permit issue and again submits this proposal is adopted.

Highly pathogenic notifiable avian influenza (HPNAI)

Clause 33. (Page 7 IHS.)
PIANZ again is concerned that the IHS options offered include testing 30 birds within 7 days, for HPNAI yet the OIE code Article 10.4.19 /220 for importing poultry meat requires a countryzone or compartment free from HPAI. The option of a further testing 60 birds is not an OIE option and MAFNZ has not shown that this is an equivalent measure. PIANZ would support the testing of 60 birds as a supplementary test on top of the other IHS requirements to further increase the risk mitigation procedures.

Exposure. (Page 46 IFA.)
The risk analysis states that: “Such measures ensure that the likelihood of commercial poultry being exposed to free living avian species is low, very low.

With the increase in free range poultry numbers does MAF consider that this exposure risk has moved from low, very low?

Given that free range poultry numbers is an expanding area of poultry meat production and it has been suggested that upwards of 25% of the national commercial flock (meat and eggs) may be farmed as free range it is not appropriate to disregard this likely exposure of commercial poultry flocks to free living avian species and the likely introduction of disease from these free living avian species. In the N.Z. turkey industry one of the three commercial
turkey producers is entirely free range. PIANZ submits that this exposure risk must be considered.

Salmonella arizonae. (Page 8 of 14 IHS.)

PIANZ notes that S. arizonae is not a notifiable organism in most countries and as such official surveillance will not exist. The risk analysis note that the testing of turkey flocks for arizonosis is difficult. (Page 114, IRA.)

The inclusion of the testing of 60 birds within 7 days of slaughter for S. arizonae is not supported by the risk analysis. PIANZ would again reiterate that any requirements must not be less than the OIE Code requirements.

PIANZ would support the extra risk mitigation step of testing 60 birds as a supplementary test in the other IHS requirements to further increase risk mitigation measures.

Avian paramyxovirus. (AMPV-2 and APRV-3). (Page 8 of 14 IHS)

The Draft Risk management proposal states that options 1, 2, 3, and 4/5 are stated as equivalent. PIANZ does not agree that the testing of 60 birds in the flock within 7 days of export provides the same risk controls as correctly cooked product or country/zone/compartment provides.

PIANZ would support the extra risk mitigation step of testing 60 birds as a supplementary test to the IHS requirements to further increase risk mitigation measures.

Turkey corona virus. (TCV). (Page 9 of 14 IHS.)

Industry notes that TCV is not a notifiable disease and as such the default position would be for the exporter and exporting veterinary authority to provide a country/zone/compartment freedom.

The inference from the IHS guidance is such that the countries would simply sign as they know of no case of TCV being recorded. This is a default position giving no safeguard at all. PIANZ would expect MAF to require acceptance that a country/zone/compartment freedom statement supported by surveillance requirements to OIE Code recommendations was a minimum requirement for trade and a basis on which to base a freedom from disease statement.

Turkey viral hepatitis. (TVH). (Page 10 of 14 IHS.)
The IHS has no controls in place for TVH. A turkey flock with 25% liver condemnation is considered not a risk yet a turkey flock with 30% liver condemnation is considered a risk. Given the unknown prevalence of TVH in the exporting countries of flocks how a cut off of 30% is selected is not explained in the IHS.

A 30% liver condemnation rate in a New Zealand turkey flock would render the turkey most unsuitable for human consumption. Indeed in NZ, 2-3% levels of liver condemnation, which are rare, would be the basis to consider the product possibly not fit for human consumption. This level of condemnation would require further investigation under the Whole Flock Health Scheme that controls the ability of flocks to be presented for processing in New Zealand.

As the IRA has determined that TVH is a risk to New Zealand turkeys and poultry in general, PIANZ would expect MAF to have required acceptance that a country/zonal/compartment freedom statement supported by surveillance requirements to OIE code recommendations was a minimum requirement for trade.

Conclusion

PIANZ and the EFF represent a Poultry Industry that is proud of New Zealand’s poultry health that continues to be the envy of the rest of the world. We would submit that any reduction in requirements for import of animals or animal products as a direct challenge to this status and must be carefully considered.

We look forward to working with MAF Biosecurity New Zealand on the development of a robust and appropriate IHS. Please do not hesitate to contact our office should you have any questions.

Kind regards,
Michael Brooks
Executive Director
EUROPEAN COMMISSION
HEALTH & CONSUMERS DIRECTORATE-GENERAL
Directorate D - Animal Health and Welfare
D3 - International questions (multilateral)

Brussels,
SANCO D3 MS/Se D(2010) 948908

To: SPS National Enquiry Point of New Zealand
Mrs Sally Jennings,
Adviser, International Coordination-Policy and Risk,
Biosecurity New Zealand Ministry of Agriculture and Forestry,
SPS New Zealand,
PO Box 2526, Wellington, New Zealand

Telephone: + 64 4 894 0431
E-mail: sps@mnf.govt.nz
Sally.Jennings@mnf.govt.nz

From: Ella Strickland
EU SPS NOTIFICATION AUTHORITY
SANCO D3, F101 2/68

Telephone: + 32 2 299 3030

Copy to: EU Delegation in Wellington
P.O Box 5106
Level 6, Sybase House,
101 Lambton Quay, Wellington

EMMERLING THEA
HIVONNET JOELLE
SITAR OLIVIER
ENTR-EU - TBT ENTR/C3 B100 6/09
VAN GOETHEM BERNARD SANCO/D B232 3/85
LADDOMADA ALBERTO SANCO/D1 F101 3/60
VAN GELDORP PAUL SANCO/D4 B232 2/94
SANCO SPS SANCO/D3 F101 2/66
WEIGL ULRICH TRADE /C1 CHAR 9/32

Subject: EU comments to the Import Health Standard notified in document G/SPS/N/NZL/444

Dear Mrs Jennings,

Please find attached the European Union comments in reply to the legal draft notified in document G/SPS/N/NZL/444.

It would be very much appreciated if any reply to this letter were also copied to the EU Delegation in Wellington (address above).

Ella Strickland
EU SPS Notification Authority

EU Notification Authority and Enquiry Point of the WTO Agreement on SPS measures.
Rue Frussart 101, B-1049 Brussels (Belgium) Tel:+32 (0)2 29 65185, Fax:+32 (0)2 29 68090, Email: sps@ec.europa.eu
EUROPEAN UNION COMMENTS ON THE IMPORT HEALTH STANDARD PROPOSED FOR THE IMPORTATION OF TURKEY MEAT AND MEAT PRODUCTS INTO NEW ZEALAND NOTIFIED TO THE WTO SECRETARIAT UNDER THE CODE G/SPS/N/NZL/444

The European Union (EU) congratulates the Ministry of Agriculture and Forestry - Biosecurity New Zealand for the impressive work with a clear and logical Import Risk Analysis for turkey meat and meat products including the exhaustive review of scientific literature. The EU further welcomes the proposal of an Import Health Standard for these commodities.

However, the EU would like to submit comments on the Import Health Standard developed for the 5 viral and 1 bacteriological agents that have been identified by New Zealand (NZ) as potential hazards for introduction into NZ by imports of turkey products.

The EU would like to be further informed about NZ’s justification of laying down import standards for the listed disease agents mentioned below. The EU questions whether the production losses or human health risks justify such standards. Has an estimation of the costs of the possible introduction into NZ and subsequent eradication of these agents been carried out, and if so what were the conclusions?

It is the view of the EU that disease agents that have been identified as a serious hazard should either require notification, official national control measures or otherwise the control should fall under the responsibility of the poultry producers by keeping these agents out of their flocks by observing strict biosecurity measures. Are preparedness and disease awareness programmes and appropriate diagnostic procedures in place to allow early detection of these agents?

The EU would like to receive additional information about the real risks of disease transmission through turkey carcasses, taking into account that the carcasses enter the food chain first and appropriate waste management could effectively minimise the remaining risk. In particular, it is questionable that evisceration is seen as one of the most important risk factors in the risk assessment to justify laying down additional rules for entire carcasses which is not the case in the EU, neither is it recommended by the OIE.

It also appears that there is no sufficient clear evidence for the confirmation of the oral route of infection by these pathogens via meat.

In the EU’s view the described pathways seem quite hypothetical, and are not supported by quantitative data for maintaining the chain of transmission. The introduction of the agents via raw swill consumed by wild birds or backyard flocks and the necessary indirect transmission to commercial flocks described in the risk assessment process has also to be seen under the aspect of the producers’ own responsibility to avoid breaches in biosecurity, instead of putting the burden on the exporters to NZ.
The proposed standards set out below make it difficult for the EU Member States to export whole turkey carcasses to NZ, which means that export of whole turkeys e.g. for Christmas, which might be of interest to the EU producers, is excluded, even, if all other conditions for diseases notifiable to the OIE are met.

The EU questions therefore whether the measures for the prevention of introduction of the agents below into NZ turkey flocks are proportionate to the significance of the diseases.

1) *Salmonella arizonae*

This disease is not notifiable to the OIE. The EU therefore wonders, if it is notifiable to the NZ authorities. NZ states that *Salmonella arizonae* has never been reported in NZ. The EU would therefore be interested which data support NZ's free status.

Are results of surveillance in turkey flocks and testing for that agent in the frame of differential diagnosis available to back up the above statement, in particular in light of the agent's worldwide distribution and as being recognised also in the risk assessment as an opportunistic pathogen in humans which could equally introduce the agent to NZ.

The requirement for country/zone/compartment freedom for this agent appears therefore excessive.

In the EU disease surveillance programmes for *Salmonella arizonae* in hatcheries, breeding and productive turkey flocks is required by the EU legislation.

2) **Avian paramyxovirus -2 and -3**

This disease is not notifiable to the OIE. The EU would therefore like to know, if it is notifiable to the NZ authorities. It appears that the last survey in poultry/turkeys for Paramyxoviruses dates from 2001/02. The EU would therefore welcome more recent information that would give evidence for NZ's freedom of these agents.

3) **Turkey coronavirus (TCV)**

This virus is not notifiable to OIE. The EU is interested to know, if it is notifiable to NZ authorities and how the statement "it has not been recorded in NZ's turkey population" can be supported by data, to prove that TCV is indeed an exotic agent to NZ.

For the risk assessment process the EU notes that infection with TCV via the oral route has not been demonstrated. The species specificity limits infections only to turkeys and therefore transmission to wild birds is negligible. Furthermore infection of backyard flocks would only concern those of turkeys, which are usually not numerous and of which the numbers are not available to NZ. The EU suggests that the overall risk estimation should be re-considered. As regards Option 2, the EU assumes that the statement "TCV has not been recognised in the exporting country" means 'never' or if a time period could be identified since the last recorded case?

4) **Turkey viral hepatitis (TVH)**

The agent is not notifiable to the OIE. The EU questions the justification of laying down import health standards for a disease agent that has not been fully identified yet, for which diagnostic tests are not sufficiently robust to give evidence of absence of the agent and for which the economic consequences are not yet known.
The EU would be interested to learn, on what findings the NZ status "no records of THV" is based upon.

The EU would like to thank New Zealand again for the opportunity to comment on the proposed legislation and asks for its comments to be taken into account.
United States Department of Agriculture (USDA)

Subject: [Requires Classification] U.S. comments on NZ 444
Importance: High

BEGIN COMMENTS:

The United States appreciates the opportunity to comment on New Zealand’s draft import health standard (IHS) for turkey meat and meat products, notified to the WTO as G/SPS/N/NZL/444 on November 15, 2010. Since the draft IHS and the WTO Notification reference New Zealand’s Ministry of Agriculture and Forestry (MAF) “Guidance Document for the Turkey Meat and Meat Products Import Health Standard”, some of our comments may also address this document.

Comments on Part A – Introduction

Under “Outcomes”, number 11, it states that “MAF and the Veterinary Authority of the exporting country will negotiate the content of the zoosanitary certificate…” taking into account several factors pertaining to the health status and veterinary infrastructure and capabilities of the exporting country. The United States is pleased that New Zealand intends to negotiate country-specific zoosanitary certification requirements, and notes that the United States Department of Agriculture (USDA) is willing to work with MAF to provide the information needed to successfully negotiate requirements that will allow market access for U.S. origin turkey meat and meat products.

Comments on Part B – General Requirements

Approved countries (#13)

MAF indicates that “A list of eligible countries is included in the Guidance Document for this standard”. The United States notes that the Guidance Document states that no countries are currently approved to export turkey meat and meat products to New Zealand, and respectfully requests clarification on requirements for attaining approval. As noted above, the USDA is willing to work with MAF to attain market access for U.S. origin turkey meat and meat products.

Documentation requirements (#15)

This section states that zoosanitary certificates must be “signed and stamped on every page by an Official Veterinarian of the Veterinary Authority of the exporting country.” The United States understands the need for security and to prevent fraudulent certificates. However, there is no mention of electronic certification, where protection against fraud can be provided using secure internet sites and watermarked (or similarly safe guarded) certificates. Proper safeguards are also possible on paper certificates without the need to sign and stamp every page. The United States therefore requests that New Zealand include text that allows for the added protection provided by electronic certification or alternate security features offered by paper certificates.

Approval of export systems (#17)

As stated here, and elaborated further in Appendix 1 – Production system outline requirements, New Zealand is requiring approval of individual farms, hatcheries, and slaughter/processing facilities, in addition to country approval. The United States believes that this requirement is unnecessarily restrictive and that a system approach is more appropriate, more effective, and less resource intensive. We believe that U.S. industry practices and USDA regulatory oversight of the turkey slaughter and processing inspection system provides comparable/equivalent animal and public health safeguards to those of New Zealand. Therefore, the United States respectfully requests that New Zealand evaluate and approve the overall U.S. production system.