Ministry for Primary Industries Manatū Ahu Matua



# Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 2015 (KAH1503)

New Zealand Fisheries Assessment Report 2015/67

M.L. Stevenson D.J. MacGibbon

ISSN 1179-5352 (online) ISBN 978-1-77665-086-6 (online)

October 2015



Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: brand@mpi.govt.nz Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports

#### © Crown Copyright - Ministry for Primary Industries

## **Table of Contents**

| Executive Summary              |                   |
|--------------------------------|-------------------|
|                                | 2                 |
| 1.1 Programme objective        | 2                 |
|                                |                   |
|                                |                   |
| 2.1 Survey area and design     |                   |
| 2.2 Vessel, gear, and trawling | g procedure       |
|                                | 4                 |
| 2.4 Catch and biological sam   | pling4            |
| 2.5 Data analysis              |                   |
| 2.6 Elasmobranch tagging       |                   |
| 3. Results and Discussion      |                   |
| 3.2 Survey area, design, and   | gear performance6 |
| 3.3 Catch composition          |                   |
| 3.4 Catch rates and species d  | stribution        |
| 3.5 Biomass estimation         |                   |
| 3.6 Length frequency and bio   | logical data8     |
| 3.7 Trends in target species   |                   |
| 3.7.1 Giant stargazer          |                   |
| 3.7.2 Red cod                  |                   |
| 3.7.3 Red gurnard              | 9                 |
| 3.7.4 Spiny dogfish            |                   |
| 3.7.5 Tarakihi                 |                   |
| 3.7.6 Trends in other spec     | ies10             |
| 3.8 Tagging                    |                   |
| 4. Conclusions                 |                   |
| 5. Acknowledgments             |                   |
| 6. References                  |                   |

#### EXECUTIVE SUMMARY

## Stevenson, M.L.; MacGibbon, D.J. (2015). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 2015 (KAH1503)

#### New Zealand Fisheries Assessment Report 2015/67. 94 p.

This report presents the results of the twelfth inshore trawl survey along the west coast of the South Island, from Farewell Spit to the Haast River mouth, and within Tasman and Golden Bays at depths from 20 to 400 m using RV *Kaharoa*.

The survey took place from 28 March to 17 April 2015 and used a two-phase design optimised for giant stargazer, red cod, red gurnard, spiny dogfish, and tarakihi. A total of 60 phase one stations were successfully completed. Unfavourable weather conditions meant that there was no time for phase two stations. Trends in relative biomass estimates, catch distribution for the target species, and population length frequencies for the major species are presented.

The biomass estimates for the target species were: giant stargazer, 1984 t; red gurnard, 1776 t; red cod, 989 t; spiny dogfish, 7613 t; and tarakihi, 1060 t. Target coefficients of variation (CVs) of 20% were met for giant stargazer (11%), red gurnard (16%), and tarakihi (17%). The CV for spiny dogfish (21%) was slightly higher than the target (20%). One large catch of red cod (approximately 2 t) combined with generally low catches elsewhere meant that the CV (45%) was substantially higher than the target for this species of 20–25%. Other commercial species with CVs less than 20% were john dory, gemfish, and school shark.

The biomass estimate for red gurnard was the highest for any survey in the series. The biomass estimate for spiny dogfish was in the middle of the range for the series. The red cod and tarakihi biomass estimates were the third lowest of the time series. The biomass for giant stargazer was down slightly from the high of 2013 but was still the second highest of the time series.

## 1. INTRODUCTION

This report presents results from the twelfth stratified random trawl survey using RV *Kaharoa* at depths of 20–400 m off the west coast of the South Island, and in Tasman and Golden Bays. Other surveys have taken place in 1992, 1994, 1995, 1997, 2000, 2003, 2005, 2007, 2009, 2011 and 2013. The survey design was optimised to estimate the relative biomass of giant stargazer (*Kathetostoma giganteum*), red cod (*Pseudophycis bachus*), red gurnard (*Chelidonichthys kumu*), spiny dogfish (*Squalus acanthias*), and tarakihi (*Nemadactylus macropterus*). The results of earlier surveys in this series were reported by Drummond & Stevenson (1995a, 1995b, 1996), Stevenson (1998, 2002, 2004, 2006, 2007a, 2012), Stevenson & Hanchet (2010), and MacGibbon & Stevenson (2013). The first four surveys in the series were reviewed by Stevenson & Hanchet (2000). Additional analyses of the non-target species was completed to determine for which species relative abundance trends and size comparison information should be provided in each survey report (Stevenson 2007b)

The principal objective of the surveys was to develop a time series of relative biomass indices for giant stargazer, red cod, red gurnard, spiny dogfish, and tarakihi for the inshore waters off the west coast of the South Island and in Tasman and Golden Bays. Changes in the relative biomass and length frequency distributions over time should reflect changes in the absolute biomass and size distributions of the fish populations.

This report details the 2015 trawl survey design and methods and provides relative biomass estimates for commercially important species managed under the Quota Management System (QMS) and non-QMS species. The trawl survey time series of relative biomass estimates for key inshore species provide information used for stock assessment and fisheries management advice.

This report fulfils the final reporting requirement of Ministry for Primary Industries project INT2014-01.

## 1.1 **Programme objective**

To determine the relative abundance and distribution of inshore finfish species off the west coast of the South Island, and Tasman Bay and Golden Bay; focusing on red cod (*Pseudophycis bachus*), red gurnard (*Chelidonychtys kumu*), giant stargazer (*Kathetostoma giganteum*), tarakihi (*Nemadactylus macropterus*), spiny dogfish (*Squalus acanthias*), and john dory (*Zeus faber*).

## **Specific objectives**

- 1. To determine the relative abundance and distribution of inshore finfish species off the west coast of the South Island, and Tasman Bay and Golden Bay; focusing on red cod, red gurnard, giant stargazer, tarakihi, spiny dogfish, and john dory from Farewell Spit to the Haast river mouth and within Tasman Bay and Golden Bay by carrying out a trawl survey. The target coefficients of variation (CV) of the biomass estimates of these species were as follows: red cod (20–25%), red gurnard (20%), giant stargazer (20%), tarakihi, and spiny dogfish (20%). No target CV was set for john dory.
- 2. To collect the data and determine the length frequency, length-weight relationship and reproductive condition of red cod, red gurnard, giant stargazer, tarakihi, spiny dogfish, and john dory.
- 3. To collect otoliths from red cod, red gurnard, giant stargazer, and tarakihi.
- 4. To collect the data to determine the length frequencies for all other Quota Management System (QMS) species.
- 5. To tag viable smooth and rough skates, school shark, and rig.
- 6. To identify benthic macro-invertebrates collected during the trawl survey.

7. To present biomass trends and size composition information for all QMS species for which the survey reliably monitors relative abundance trends.

## 2. METHODS

## 2.1 Survey area and design

The survey was a two-phase stratified random survey after Francis (1984). The survey area covered depths of 20–200 m off the west coast of the South Island from Cape Farewell to Karamea; 25–400 m from Karamea to Cape Foulwind; 20–400 m from Cape Foulwind to the Haast River mouth; and 20–70 m within Tasman and Golden Bays inside a line drawn between Farewell Spit and Stephens Island (Figure 1a–b). The maximum depth on the west coast north of Karamea was limited to 200 m because of historically low catch rates in the 200–400 m range.

The survey area of 25 595 km<sup>2</sup>, including untrawlable ground, was divided into 16 strata by area and depth (Table 1, Figure 1a–b). Strata were identical to those used in previous surveys in the time series. The trawlable ground within the survey area represented 84% of the total survey area.

Phase 1 station allocation was optimised using the R (R Core Team 2012) function *allocate* (Francis 2006) to achieve the target CVs. The *allocate* function uses stratum area and catch rate data from previous trawl surveys in the time series to simulate optimal station allocation. Simulations were run for each target species separately. Based on the simulation results, the original survey plan was to carry out 68 phase one stations with the intention of obtaining a 20% CV for all target species including red cod (as agreed by the Southern Inshore Working Group on 6 November 2014). An alternative station allocation of 59 phase one stations was also presented to the working group which the optimization process suggested would give a CV of 25% for red cod and 20% for all other target species. After several days of bad weather that prevented survey work being carried out, it became apparent that 68 stations would not be obtainable in the time remaining, and it was decided to adopt the alternative station allocation of 59 phase one stations. A total of 60 stations were completed because one extra station required in stratum 19 under the original 68 station scenario had already been carried out before the decision was made to adopt the 59 station scenario. The data from this extra station has been included in the biomass estimates and other summary data reported here.

Before the survey began, sufficient trawl stations to cover both first and second phase stations were randomly generated for each stratum by the computer program 'SurvCalc' (Francis & Fu 2012). The stations were required to be a minimum of 5.6 km (3 nautical miles) apart. Non-trawlable ground was identified before the voyage from data collected during previous trawl surveys in the area and that ground was excluded from the station allocation program. The area and distribution of non-trawlable ground are given in Table 1 and Figures 1a and 1b respectively.

## 2.2 Vessel, gear, and trawling procedure

RV *Kaharoa* is a 28 m stern trawler with a beam of 8.2 m, displacement of 302 t, engine power of 522 kW, capable of trawling to depths of 500 m. The two-panel trawl net used during the survey was designed and constructed in 1991 specifically for South Island inshore trawl surveys and is based on an 'Alfredo' design. The net was fitted with a 60 mm (inside measurement) knotless codend. Details of the net design were given by Beentjes & Stevenson (2008). Gear specifications were the same as for previous surveys (Drummond & Stevenson 1996).

Procedures followed those recommended by Stevenson & Hanchet (1999). All tows were undertaken in daylight, and four to six tows a day were planned. For each tow the vessel steamed to the station

position and, if necessary, the bottom was checked with the echosounder. Once the station was considered trawlable, the gear was shot away so that the midpoint of the tow would coincide as closely as possible with the station position. The direction of the tow was influenced by a combination of factors including weather conditions, tides, bottom contours, and the location of the next tow, but was usually in the direction of the next station.

If the station was found to be in an area of foul ground or the depth was out of the stratum range, an area within 5 km of the station was searched for a replacement tow path. If the search was unsuccessful, the station was abandoned and the next alternative station within the stratum was chosen from the random station list. Standard tows were one hour duration at a speed over the ground of 3 knots and the distance covered was measured by GPS. The tow was deemed to have started when the net monitor indicated that the net was on the bottom, and was completed when hauling began.

A warp length of 200 m was used for all tows at less than 70 m depth. At greater depths, the warp to depth ratio decreased linearly to about 2.4:1 at 400 m.

## 2.3 Water temperatures

The surface and bottom temperatures at each station were recorded by a temperature calibrated Seabird Microcat CTD unit. Surface temperatures were taken at a depth of 5 m below the surface and bottom temperatures were recorded when the net settled on the bottom. Bottom temperatures were taken at about 5 m above the sea floor because the CTD rests on the net just behind the headline.

## 2.4 Catch and biological sampling

The catch from each tow was sorted into species on deck and weighed on 100 kg electronic motioncompensating Seaway scales to the nearest 0.1 kg. All species not readily identified were placed in sealed plastic bags with a label noting the trip code and station number and frozen for later identification.

Length, to the nearest whole centimetre below the actual length, and sex (where possible) were recorded for all species managed under the QMS, either for the whole catch or a randomly selected subsample of up to 200 fish per tow.

Individual fish weights and/or reproductive state were collected for the target species as well as john dory (*Zeus faber*), silver warehou (*Seriolella punctata*), carpet shark (*Cephaloscyllium isabellum*), rig (*Mustelus lenticulatus*), rough skate (*Zearaja nasutus*), smooth skate (*Dipturus innominatus*), and school shark (*Galeorhinus galeus*). Individual fish weights were taken to enable length-weight relationships to be calculated for scaling length frequency data and calculation of abundance for length intervals. Samples were selected non-randomly from the random length frequency sample to ensure that a wide range was obtained for each species.

Up to 20 otoliths per station were collected for the target finfish species (no otoliths were collected for john dory). Otoliths for tarakihi and red gurnard were placed in 0.5 mL vials to reduce breakage.

## 2.5 Data analysis

Biomass estimates and scaled length-frequency distributions and their associated CVs were estimated by the area-swept method (Francis 1981, 1989) using the SurvCalc Program (Francis & Fu 2012). All data were entered into the Ministry for Primary Industries *trawl* database.

The following assumptions were made for calculating biomass estimates with the SurvCalc Program:

- 1. The area swept during each tow equalled the distance between the doors multiplied by the distance towed.
- 2. Vulnerability was 1.0. This assumes that all fish in the area swept were caught and there was no escapement.
- 3. Vertical availability was 1.0. This assumes that all fish in the water column were below the headline height and available to the net.
- 4. Areal availability was 1.0. This assumes that the fishstock being sampled was entirely within the survey area at the time of the survey.
- 5. Within the survey area, fish were evenly distributed over both trawlable and non-trawlable ground.

All these assumptions are unlikely to be correct, but were adopted for all the trawl survey time series of relative biomass (Stevenson & Hanchet 1999).

All 60 stations were used for biomass estimation as gear performance was satisfactory on all tows.

Length frequency distributions were scaled by the percentage of catch sampled, area swept, and stratum area. The geometric mean functional relationship was used to calculate the length-weight coefficients for species where sufficient length-weight data were collected on this survey. For other species, coefficients were chosen from the *rdb* database and a selection made on the basis of whether coefficients were available from previous surveys in the series or on the best match between the size range of the fish used to calculate the coefficients and the sample size range from this survey (Appendix 1).

Sex ratios were calculated using scaled population numbers and are expressed as the ratio of males to females.

Catchability of the survey was evaluated using the mean ranking methodology of Francis et al. (2001) to determine whether biomass estimates may be considered extremely high or low.

## 2.6 Elasmobranch tagging

As soon as the net was brought on board, whenever possible, lively rig, school shark, rough skate, and smooth skate were separated from the catch, placed in an aerated tank of seawater, and tagged with Hallprint dart tags. Length, weight, and sex were recorded for each tagged fish. Maturity stage was recorded for male elasmobranchs as this can easily be done externally without causing harm. This is not possible for females.

## 3. RESULTS AND DISCUSSION

#### 3.1 Timetable and personnel

RV *Kaharoa* departed Wellington on 27 March and berthed in Nelson on 28 March to offload some equipment, pick up an additional science staff, and take on ice and fish bins. Trawling began on the afternoon of 28 March. All 12 phase one stations in Tasman and Golden Bays were completed by 31 March after which fish was offloaded to Talley's Nelson. Fishing recommenced on the west coast of the South Island on 1 April and continued until 6 April when the vessel docked in Westport to unload fish and exchange one scientific staff member. Fishing resumed on 8 April when weather conditions improved. Unfavourable weather conditions disrupted fishing operations for some or all of the days on 6–8 and 12–14 April and only allowed for the completed on the afternoon of 17 April. R.V. *Kaharoa* docked in Nelson on 18 April to discharge fish, pick up spare trawl gear, and drop off two scientific staff members. The vessel docked in Wellington on 19 April for demobilization.

Dan MacGibbon was voyage leader and was responsible for final database editing. The skipper was Lindsay Copland. The project manager was Michael Stevenson.

## 3.2 Survey area, design, and gear performance

Sixty phase one stations were successfully completed. Station density ranged from one station per  $102 \text{ km}^2$  in stratum 17 to one station per  $1078 \text{ km}^2$  in stratum 6, with an overall density of one station per  $427 \text{ km}^2$  (Table 1). At least three stations were completed in all 16 strata. The survey area, with stratum boundaries and station positions, is shown in Figures 1a and 1b and individual station data are given in Appendix 2.

A summary of gear and tow parameters by depth are shown in Table 2. Doorspread varied from 70.1 to 93.3 m and headline height varied between 4.0 and 4.9 m (Table 2, Appendix 2). Measurements of headline height and doorspread, together with bottom contact sensor output and observations that the doors and trawl gear were polishing well, indicated that the gear was in general operating correctly. Overall, gear parameters were similar to those of previous surveys indicating consistency between surveys (Stevenson & Hanchet 2000).

## 3.3 Catch composition

A total of about 36.4 t of fish and invertebrates were caught from the 60 valid biomass tows at an average of 606.7 kg per tow. Amongst the fish catch, 13 elasmobranch, and 68 teleost species were recorded. Species codes, common names, scientific names, and catch weights of all species identified during the survey are given in Appendix 3. Invertebrate species identified from the catch are given in Appendix 4.

The most abundant species by weight was spiny dogfish with 8.4 t caught (23% of the total catch). The top four species, spiny dogfish, barracouta (*Thyrsites atun*), hoki (*Macruronus novaezelandiae*), and giant stargazer, made up 45% of the total. The target species giant stargazer, red cod, red gurnard, spiny dogfish and tarakihi made up 42% of the catch. Barracouta, arrow squid, witch, and spiny dogfish occurred in over 80% of the tows.

Forty-five species or species groups of invertebrates were identified during the survey or from retained specimens (Appendix 4). The numbers of invertebrate species does not necessarily reflect biodiversity in the survey area because the gear is not designed to collect benthic macroinvertebrates. In addition, station location strongly influences the incidence of some groups (e.g., some bryozoans prefer hard substrate).

#### 3.4 Catch rates and species distribution

Distribution by stratum and catch rates for the target species are shown in Figures 2a–2e. Catch rates are given in kilograms per square kilometre.

Giant stargazer catch rates were highest in the 100–200 m strata (Figure 2a), south of Cape Foulwind. Catches in the Tasman and Golden Bay region were low.

Red cod catch rates were highest in the 30–100 m strata on the west coast (Figure 2b), followed by 100–200 m strata. Catch rates in Tasman and Golden Bays and in the 200–400 m strata on the west coast were low in comparison.

Red gurnard catch rates were highest in the 30–100 m strata on the west coast and in Tasman and Golden Bay (Figure 2c). Catch rates in the 100–200 and 200–400 m strata were low to non-existent.

The highest catch rates for spiny dogfish were from the 30–100 m strata on the west coast (Figure 2d). Catch rates were lower in the 100–200 m strata, and lowest in the 200–400 m strata.

Highest catch rates for tarakihi were in the south of the west coast area between Greymouth and Haast in the 200–400 m strata (Figure 2e). Catch rates were very low in the north of the west coast compared to the previous survey.

Mean catch rates by stratum for the 20 most abundant commercially important species are given in Table 3.

#### 3.5 Biomass estimation

References to 'biomass' are to relative abundance estimates unless otherwise stated.

Biomass estimates for species managed under the QMS caught in all surveys in the series are given in Table 4. Estimated biomass and coefficients of variation for the target species in 2015 were: giant stargazer, 1984 t (11%); red gurnard, 1776 t (16%); red cod, 989 t (46%); spiny dogfish, 7613 t (21%); and tarakihi, 1060 t (17%) (Table 4). Target CVs were 20% for giant stargazer, tarakihi, red gurnard, and spiny dogfish whilst the target CV for red cod was 20–25%. These values were chosen during the initial planning for the series because it was felt they would provide information accurate enough to detect trends in relative abundance for the target species.

Recruited lengths and biomass estimates for the following species are given in Table 5: barracouta, blue warehou (*Seriolella brama*), giant stargazer, hoki, john dory, ling (*Genypterus blacodes*), red cod, red gurnard, rig, sand flounder (*Rhombosolea plebeia*), school shark, silver warehou (*Seriolella punctata*), and tarakihi. Estimates of total recruited biomass for giant stargazer, red cod, red gurnard, and tarakihi were 92%, 49%, 75%, and 88% of the total respectively. Recruited lengths were determined following discussions with the commercial fishing industry and reflect the minimum lengths considered desirable for sale to the public and are often the lengths previously set as minimum lengths by fishery management.

Biomass estimates by year class (where they were discernible from the length frequency distributions) for barracouta, blue warehou, hake, hoki, jack mackerel (*Trachurus novaezelandiae*), red cod, red gurnard, school shark, silver warehou, and tarakihi are given in Table 6. For red cod, the 1+ cohort made up only 7% of the total biomass whereas in previous surveys the 1+ year class usually made up more than 60% of the total biomass. For red gurnard, the 1+ cohort made up 17% of the total biomass and for tarakihi the 1+ and 2+ cohorts made up 1% and 6% of the total respectively.

The biomass estimates and CVs for the 20 most abundant commercially important species are given by stratum in Table 7.

Trends in biomass for selected species are shown in Figure 3 and discussed in Section 3.6.

The Francis ranking method (Francis et al. 2001) was used to determine whether this survey produced an anomalous result as was done in 2000 (Stevenson 2002) and 2011 (Stevenson 2012). Biomass estimates for selected species were compared between surveys for Tasman and Golden Bays and for the west coast South Island separately. If the estimates were uniformly higher or lower than other surveys in the time series then the survey was deemed to be 'extreme'. For Tasman and Golden Bays the updated calculations show that the 2009 survey had extreme catchability resulting in high biomass estimates but all other surveys are not considered to have extreme estimates (Appendix 6). The 2015 survey is very close to the mean rank for the time series. For the west coast South Island updated calculations show that the 2003 survey had

extreme catchability resulting in low biomass estimates but all other surveys are not considered to have extreme estimates (Appendix 6). The 2015 survey is very close to the mean rank for the time series.

## 3.6 Length frequency and biological data

Length frequency distributions for other species are given for the 2015 survey only if the species is commercially important and more than 100 fish were measured. The numbers of length frequency and biological samples taken during the survey are given in Table 8. Comparative scaled length frequency distributions for the target species and for the eight other species monitored by the survey are shown in Figures 5a–m with separate distributions for i) Tasman and Golden Bays, and ii) west coast South Island. Length frequency distributions are presented in alphabetical order by common name. Scaled length frequency distributions from this survey for other commercial species where more than 100 fish were measured are shown in Figure 6 in alphabetical order by common name.

Length-weight coefficients were determined for carpet shark, giant stargazer, red cod, red gurnard, spiny dogfish, tarakihi, rig, rough skate, school shark, and silver warehou from data collected on this survey (Appendix 1). Individual length, weight, and gonad maturity data for carpet shark were collected in conjunction with a project to examine stomach contents, and length-weight data for silver warehou were collected to obtain length-weight coefficients specific to the region.

Ageing material collected included 387 pairs of otoliths from giant stargazer, 359 from red cod, 397 from red gurnard, and 459 from tarakihi (Table 8).

Details of gonad stages for giant stargazer, red cod, red gurnard, and tarakihi are given in Table 9a and maturity stage details for spiny dogfish are given in Table 9b and are discussed in Section 3.6.

## 3.7 Trends in target species

## 3.7.1 Giant stargazer

Giant stargazer were caught at 46 stations with the highest catch rates south of Cape Foulwind at depths of 100–200 m (strata 8, 12, and 15) (Figure 2a, Table 3). The biomass was fairly constant for the first four surveys but declined in 2000 and again in 2003 to a low of 834 t. The biomass has steadily increased since then with the highest estimate (2118 t) in 2013, and the second highest estimate in the series (1983 t) from the latest survey (Table 4, Figure 3). Most of the biomass was from the west coast South Island region, with Tasman and Golden Bays contributing little of the total biomass (Figure 4). Sixty-five percent of the biomass was south of Cape Foulwind, and 71% was from the 100–200 m depth range (Table 7). Biomass of adult fish (over 45 cm) was 1821 t and juveniles were about 8% of the total (Table 5, Figure 5, Figure 7). Figure 8 shows that males make up slightly more of the juvenile biomass than females do, and females make up slightly more of the adult biomass than do males. Adult and juvenile indices track each other fairly closely.

There were fewer fish under 45 cm caught on the 2015 survey than in 2009, 2011 and 2013 (Figure 5d). Few fish grow larger than 40 cm in the Tasman and Golden Bay region (Figure 5d). No obvious year class modes were apparent in the length frequency distribution. The sex ratio (male:female) was 1.27:1 overall (Figure 5d), a decrease from the 2013 survey (1.63:1) but very similar to 2011 (1.24:1). All females under 50 cm total length were immature or had resting gonads, but above this size, most had maturing gonads. Most males under 40 cm were immature or resting, and most males over 40 cm were maturing (Table 9a). The survey takes place in autumn; the spawning period of giant stargazer is believed to be in winter.

## 3.7.2 Red cod

Red cod were caught at 39 stations, with the highest catch rates in strata 7 and 5 (Figure 2b, Table 3). Total biomass estimates were fairly stable for the first four surveys varying from 2546 t to 3370 t. There was a sharp decline in 2000 to 414 t but the biomass gradually recovered to 2782 t in 2009. The biomass estimate of 989 t from the 2015 survey was the third lowest in the series, down from 1247 t in 2013 (the fourth lowest estimate in the time series) and continues a declining trend since 2009 (Table 4, Figure 3). The greatest decline was in the biomass from the west coast with little change in the biomass from the Tasman and Golden Bay region (Figure 4).

Population numbers also declined by almost 50% from 2013 after dropping around 40% from 2011 to 2013, with fewer fish over 20 cm (Figure 5h). The lack of 1+ fish (25–40 cm) from this survey may be significant for the commercial fishery in 2015–16 given the dependence on recruitment (Beentjes 2000). The decrease of biomass from stratum 1 also continued with 579 t in 2011, down to just 3 t in 2013 and no catch in 2015. The estimated biomass in Tasman and Golden Bays totalled 11.5 t. Seventy-two percent of the total biomass (over 51 cm) was 483 t, almost 50% of the total (Table 5, Figures 6, and 8). In most years juvenile males have been more abundant than juvenile females and adults of both sexes (Figure 8). Adult males have historically contributed the least to total biomass. Adult and juvenile indices previously tracked each other fairly closely. More fish in the 10–20 cm range (0+ fish) were caught than in any previous survey (Figure 5h). The sex ratio was 0.99:1 overall (Figure 5h). Almost all red cod examined had immature or resting gonads but a few larger fish were ripening or spent (Table 9a). Only eight males and one female were running ripe. Since red cod spawn from late winter to spring (Ministry of Fisheries 2009), fish with maturing or ripe gonads were not expected during the survey.

## 3.7.3 Red gurnard

Red gurnard were caught at all stations in Tasman and Golden Bays, and all stations in depths less than 100 m along the west coast (Figure 2c). The highest catch rates were in strata 11, 14 and 19 (Table 3). The biomass estimates were consistent from 1992–2000 but showed a sharp decline in 2003. There was a steady increase over the last five surveys and the estimate for 2015 (1776 t) was the highest in the time series, 66% higher than the previous high in 2011 (1070 t) (Table 4, Figure 3). A significant proportion of the biomass has always occurred in the Tasman and Golden Bay region, although for the last three surveys markedly more was from the west coast South Island (Figure 4).

The length frequency distribution was similar to 2013, with large numbers of fish less than 30 cm (Figure 5i). As in all previous surveys, there were larger numbers of smaller fish from the Tasman and Golden Bay region, and larger numbers of bigger fish from the west coast. The estimate of combined recruited and adult biomass (30 cm or over) was 1335 t (75% of the total biomass) with 952 t of that (71%) occurring on the west coast (Table 5, Figure 7). Juvenile males contribute more to the biomass than do juvenile females, but adult biomass is fairly even between the sexes (Figure 8). Adult and juvenile indices track each other fairly closely. Ninety-seven percent of the red gurnard biomass was in depths less than 100 m and no gurnard were caught deeper than 200 m (Table 7). The overall sex ratio was 1.46:1 (Figure 5i). Most red gurnard longer than 30 cm and a few smaller fish had developing or mature gonads (Table 9a). Red gurnard have a long spawning period and ripe individuals can be found in the Hauraki Gulf throughout the year (Ministry of Fisheries 2009).

## 3.7.4 Spiny dogfish

Spiny dogfish were caught at 56 stations with the highest catch rates in strata 1, 7 and 15 (Table 3, Figure 2d). The biomass estimates were relatively stable from 1992 to 2007 but there was a sharp increase in 2009 to 10 270 t (Table 4, Figure 3). The 2011 biomass was similar to the rest of the time

series, decreasing to 6154 t, the 2013 estimate was the highest in the time series at 15 086 t, and the biomass for 2015 decreased to 7613 t. The associated CV for the 2015 biomass estimate is (21%). Very little of the total biomass was from the Tasman and Golden Bay region (Figure 4).

There was a decrease in the proportion of fish greater than 70 cm and overall the numbers decreased from 2013 (Figure 51). Adult fish made up about 58% of the total biomass (Table 5, Figure 7). Juvenile males have historically made up the smallest portion of the total biomass (Figure 8). Adult and juvenile indices track each other fairly closely through the time series. Almost 96% of the biomass was at depths less than 200 m (Table 7). The sex ratio was 0.90:1 overall (Figure 51). Gonad stages for spiny dogfish are shown in Table 9b. For males overall, the majority are mature (approximately 74%). For females overall most were mature (approximately 71%). More than half of all females contained pups. All males less than 40 cm and all females less than 50 cm were immature whilst all but 1 fish greater than 60 cm were developing or mature.

## 3.7.5 Tarakihi

Tarakihi were caught at 45 stations with the highest catch rates in strata 12, 13 and 15 (Table 3, Figure 2e). The biomass estimates show a gradually declining trend until 2003 with a sharp increase in 2005 and a subsequent drop in the last five surveys to levels similar to that seen from 1997 to 2003 (Table 4, Figure 3). The majority of the biomass was always from the west coast region, with little from Tasman and Golden Bays. Almost 95% of the biomass estimate was recruited fish (25 cm or over) while the adult biomass (over 31 cm) was 88% or 935 t (Table 5). The juvenile biomass decreased as a proportion of the total since the 2011 survey and is now similar to previous years (Figure 7). Adult females have historically contributed the majority of the total biomass, followed by adult males (Figure 8).

The length frequency data shows far fewer fish between 16 and 20 cm compared with any previous survey. There are also fewer fish between 27 and 32 cm compared to 2013 (Figure 5m). There were distinct modes at 10-14 cm (0+ fish), and at about 21-24 cm (2+ fish). The majority of fish under 25 cm were from Tasman and Golden Bays (Figure 5m). The majority of fish over 20 cm were from the west coast. Of the total tarakihi biomass (1060 t), over 95% was on the west coast (1013 t), and over 72% (771 t) of the total was at depths between 100 and 200 m (Table 7). The sex ratio for the estimated population was 0.55:1 (Figure 5m). There was little reproductive development in tarakihi under 30 cm FL, but for bigger fish the full range of gonad stages was recorded, although the majority were still resting or starting to mature (Table 9a). A large majority (84%) of males greater than 30 cm were spent as were over 25% of the adult females.

## 3.7.6 Trends in other species

#### Barracouta

Barracouta were caught at 48 stations and represented 8% of the total catch (Appendix 3). The highest catch rates were in strata 1 and 7 (Table 3). The biomass has varied almost 3-fold during the series but does not show a consistent trend (Table 4, Figure 3). The majority of the biomass came from the west coast region, with little from Tasman and Golden Bays (Figure 4). The 2015 estimate of 2662 t was the third lowest in the series. In most years that had a strong 0+ mode, a large proportion of these fish were from the Tasman and Golden Bay region (Figure 6a). In 2013 however, this mode was almost entirely made up of fish from the west coast. We note that similar to 1992, 1997, and 2011, the smaller fish in this mode have come from Tasman and Golden Bays. Also, there were usually distinct modes centred at about 45 and 55 cm in most years, both of which were all but absent in 2013 and are again weak in 2015.

#### Blue warehou

Blue warehou were caught at 23 stations with the highest catch rates in strata 11 and 15 (Table 3). The biomass estimate for 2015 was slightly lower than that for 2013 and is in the mid-range of the series estimates (Table 4, Figure 3). The majority of the biomass has always been from the west coast region (Figure 4). There was a strong mode in the length frequency distribution for 2015 at 10–20 cm (0+ fish). While not as strong as that seen in 2009 or 2013, it is stronger than that for 2011 (Figure 5b). Stevenson & Hanchet (2000) noted that because of the poor precision in the biomass estimates the surveys are probably not suitable for monitoring adult or pre-recruit blue warehou. However, Stevenson (2007b) suggested that the survey may be able to provide information on year class strengths, but ageing of the commercial catch would be required to show if this is the case.

#### Carpet shark

Carpet sharks are probably the most abundant non-commercial species in the survey area, and particularly in the Tasman and Golden Bay strata. Biomass estimates for the survey series are listed in Appendix 5. Biological data were collected in this survey primarily to provide information on diet, a requirement for an ecosystem model being developed for the Nelson Bays region. Males ranged between 30 and 76 cm TL, and females were 34–91 cm TL (Figure 6). Carpet sharks have been routinely measured in only one other survey in this series (KAH0904).

#### Gemfish

Gemfish were only caught in low numbers at 11 stations (Appendix 3, Table 8). The biomass estimates from the series do not show any particular trend (Table 4, Figure 3). No gemfish have ever been caught in the Tasman and Golden Bay region (Figure 4). The length frequency distributions occasionally showed apparently strong year classes (Figure 5c). No strong year classes have been observed in the last five surveys.

#### Hake

Hake were taken in small quantities from 21 stations (Table 8) and almost all fish were under 50 cm (Figure 6). The biomass estimate of 81 t was the higher than the previous two surveys, but the biomass estimates have varied widely throughout the time series (Figure 3, Table 4).

#### Hoki

Hoki were taken from 21 stations, all on the west coast south of Cape Foulwind (Tables 3 and 8). The length frequency distribution for hoki showed a strong mode at 21-31 cm (0+ fish) and a much weaker mode at around 36-44 cm (1+) (Figure 6). In 2011 the strongest mode was for 1+ fish for the first time in the time series, but in 2013 and again in 2015 the stronger mode had reverted to 0+ fish. The biomass estimate of 2128 t was the second highest in the series and may indicate a stronger than average 0+ year class.

#### Jack mackerel (*Trachurus declivis*)

*T. declivis* was caught at 14 stations (Appendix 3). The biomass estimate of 43 t was the lowest in the series (Figure 3, Table 4). Most of the biomass was from the west coast. There were no obvious modes in the length frequency plot (Figure 5e).

NB: *T. novaezelandiae* are not presented as, apart from juveniles, they were found to be not well monitored by the survey (Stevenson 2007b) in a 2007 review of species for inclusion in reports for the time series. Overall biomass for *T. novaezelandiae* was found to vary widely between surveys with high CVs whether biomass estimates were high or low.

#### John dory

John dory were caught at 27 stations with the highest catch rates in strata 1 and 18 (Appendix 3, Table 3). The biomass estimate of 487 t was the highest in the time series, more than 22% higher than the previous high in 2011 (Table 4, Figure 3). In some years, more biomass was from the Tasman and Golden Bay region, but in most years more has been from the west coast (Figure 4), mostly north of Cape Foulwind (Table 7). In 2015, less than 30% was from the Tasman and Golden Bay region. The length frequency distribution showed a mode at 23–33 cm (1+ fish), which was stronger than the 1+ mode from 2011 and 2013, and almost as strong as that from 2009 (Figure 5f). Most of the smaller fish were from the Tasman and Golden Bay region, which is typical of most years (Figure 5f).

#### Ling

Ling were caught at 31 stations with the highest catch rates in strata 12, 13 and 16 (Appendix 3, Table 3). The biomass estimate of 472 t was the highest in the time series. Whilst there does not appear to be any consistent trend over the series, a relatively steady increase since 2000 is apparent (Table 4, Figure 3). As in all other surveys, the vast majority of the biomass in 2015 was from the west coast region, with little from Tasman and Golden Bays (Figure 4). The scaled length frequency distribution for 2011 showed a strong mode at 36–48 cm for both sexes, but this mode was weaker in 2013 and 2015 (Figure 5g). There was a relatively large number of fish from 70–110 cm (as seen in 2013), and the relatively high numbers of fish greater than 100 cm would account for the higher biomass estimate for 2015.

#### Rig

Rig were caught at 32 stations, with the highest catch rates in strata 5, 14 and 18 (Appendix 3, Table 3). The estimated biomass of 622 t was the highest for any survey in the series (Table 4, Figure 3). Biomass from the Tasman and Golden Bay regions accounted for just over a third of the total in 2015 (Figure 4). The length frequency distributions for 2015 showed a strong mode at 54–64 cm which was present for both males and females and another weaker mode at about 80–86 cm (Figure 5j). There were far fewer females greater than about 70 cm, which may indicate that the survey does not sample adult female rig well.

#### School shark

School shark were caught at 45 stations with the highest catch rates in strata 17 and 18 (Appendix 3, Table 3). The estimated biomass of 788 t was the third lowest of the series but is comparable to estimates recorded since 2000 (Table 4, Figure 3). Most of the biomass was from the west coast (Figure 4). The length frequency distribution for 2015 showed three modes at around 34–41, 45–55 and 55–65 cm for both sexes, whereas only the smallest mode was seen in 2013 (Figure 5k). There were no obvious size differences between the Tasman and Golden Bay region and the west coast (Figure 5k).

#### Snapper

A large number of 1+ snapper (around 14–19 cm) were caught on the 2009 survey (Figure 6) (Stevenson & Hanchet 2010) and this appeared to indicate a strong year class of fish spawned over the summer of 2007–08. In 2013, a large number of 5+ fish (around 30–42 cm) were caught, and the very strong mode between 35 and 48 cm in 2015 confirms that this is a strong year class. In addition, a market sampling programme in 2013–14 found that this year class comprised over 60% of the commercial fishery. This survey is not optimised for snapper but the strength of this year class has markedly increased the catch of snapper.

## 3.8 Tagging

316 elasmobranchs were tagged and released during the 2015 survey (Table 8). Of these, 142 were school shark (80 males, 62 females, 50–144 cm), 97 were rig (49 males, 48 females, 44–126 cm), 39 were rough skate (14 males, 25 females, 29–61 cm), and 38 were smooth skate (25 males, 13 females, 18–117 cm).

A total of 2563 elasmobranchs have been tagged and released since the beginning of the time series, (Table 10). Of these, 71 have been returned (Table 11). Release positions of tagged elasmobranchs are shown in Figure 9 and are the same as the hauling positions of the stations at which they were caught. Note that several individuals of a given species may often be released at one site. Recapture positions are shown in Figure 10.

1793 school shark have been tagged since the beginning of the time series with the largest number coming from the 2011 survey (233 individuals). To date, 69 school shark tags have been returned, with more returns coming from those tagged on the 2009 survey than any other. The majority of the recaptured sharks have been taken on the west coast of the South Island and in Golden and Tasman Bays, suggesting that movement for most individuals is fairly limited. However, some recaptures have also occurred in Cook Strait, North Taranaki Bight, North Cape, and off the Canterbury and Otago coasts, indicating that at least some individuals can travel reasonable distances. Further, some have also been recaptured in Australian waters on both the northern and southern coasts of Tasmania, and in the Great Australian Bight. It is believed that there is regular interchange of school sharks between Australian and New Zealand populations (Hurst et al. 1999, Francis 2010) although the exact nature and extent is not currently known.

Tagging of rig began in 2007 and since then 257 individuals have been tagged and released with more released from the 2015 survey than any other (97 individuals). To date there has been one returned rig tag, tagged in 2011. Unfortunately, the location of the recapture was not supplied with the return.

Rough skate tagging began on the 2003 survey and since then 403 individuals have been tagged and released with over half from the 2011 and 2013 surveys (116 and 106 tags respectively). To date two rough skate tags have been returned, one from the west coast of the South Island near Haast, the other with locality data no more specific than the west coast of the South Island.

Smooth skate tagging also began on the 2003 survey with a total of 110 individuals tagged and released. More were tagged and released on the 2015 survey than any other (38 individuals). To date, no smooth skate tags have been returned.

## 4. CONCLUSIONS

The 2015 (12<sup>th</sup>) survey successfully extended the March-April RV *Kaharoa* time series for the west coast of the South Island and Tasman and Golden Bays. The 2015 results show that the series continues to monitor the target species and adults and/or pre-recruits and juveniles of several other species. The biomass estimates for red gurnard and john dory were the highest in the series, whilst those for giant stargazer, spiny dogfish, and tarakihi were within the range of previous surveys. The biomass for red cod was also within the range of previous surveys but was strongly influenced by one large catch and had a correspondingly high CV. The lack of 1+ fish in the length frequency distribution for red cod is exceptional for the series and may indicate a reduced catch in the following commercial fishing season. The high numbers of 1+ fish seen in the length frequency for john dory indicates that the increase in abundance since 2000 should continue for at least another two years. The survey did not demonstrate extremely high or low catchability in either Tasman and Golden Bays or the west coast South Island, with both areas having a rank close to the mean for the time series.

#### 5. ACKNOWLEDGMENTS

This project was funded by the Ministry for Primary Industries under project INT2012-01. We thank the skipper of RV *Kaharoa*, Lindsay Copland, and his crew for their active cooperation and enthusiastic assistance during the trawl survey. The other scientific staff who participated in the survey were Brent Wood, Peter McMillan, Derrick Parkinson, and Warrick Lyon. Their hard work and dedication were much appreciated. Thanks also to the NIWA invertebrate group for identification of invertebrate specimens. Peter Horn provided a useful review of the document.

## 6. **REFERENCES**

- Beentjes, M.P. (2000). Assessment of red cod stocks (RCO 3 and RCO 7) for 1999. New Zealand Fisheries Assessment Report 2000/25. 78 p.
- Beentjes, M.P.; Stevenson, M.L. (2008). Inshore trawl survey of Canterbury Bight and Pegasus Bay, May-June 2007 (KAH0705). *New Zealand Fisheries Assessment Report 2008/38*. 95 p.
- Drummond, K.L.; Stevenson, M.L. (1995a). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 1992 (KAH9204). *New Zealand Fisheries Data Report No. 63.* 58 p.
- Drummond, K.L.; Stevenson, M.L. (1995b). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 1994 (KAH9404). *New Zealand Fisheries Data Report No.* 64. 55 p.
- Drummond, K.L.; Stevenson, M.L. (1996). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 1995 (KAH9504). *New Zealand Fisheries Data Report No.* 74. 60 p.
- Francis, M.P. (2010). Movement of tagged rig and school shark among QMAs, and implication for stock management boundaries. *New Zealand Fisheries Assessment Report 2010/3*. 24 p.
- Francis, R.I.C.C. (1981). Stratified random trawl surveys of deep-water demersal stocks around New Zealand. *Fisheries Research Division Occasional Publication No. 32*. 28 p.
- Francis, R.I.C.C. (1984). An adaptive strategy for stratified random trawl surveys. *New Zealand Journal* of Marine and Freshwater Research 18: 59–71.
- Francis, R.I.C.C. (1989). A standard approach to biomass estimation from bottom trawl surveys. New Zealand Fisheries Assessment Research Document 89/3. 3 p. (Unpublished report held in NIWA library, Wellington.)
- Francis, R.I.C.C. (2006). Optimum allocation of stations to strata in trawl surveys. *New Zealand Fisheries Assessment Report 2006/23*. 50 p.
- Francis, R.I.C.C.; Fu, D (2012). SurvCalc User's Manual v1.2-2011-09-28 *NIWA Technical Report 134*. 54p.
- Francis, R.I.C.C.; Hurst, R.J.; Renwick, J.A. (2001). An evaluation of catchability assumptions in New Zealand stock assessments. *New Zealand Fisheries Assessment Report 2001/*1. 37 p.
- Hurst, R.J.; Bagley, N.W.; McGregor, G.A.; Francis, M.P. (1999). Movements of the New Zealand school shark, *Galeorhinus galeus*, from tag returns. *New Zealand Journal of Marine and Freshwater Research 33(1)*: 29–48.
- MacGibbon, D.J.; Stevenson, M.L. (2013). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 2013 (KAH1305). *New Zealand Fisheries Assessment Report 2013/66*. 115 p.
- Ministry of Fisheries (2009). Report from the Fishery Assessment Plenary, May 2009: stock assessments and yield estimates. Ministry of Fisheries, Wellington, New Zealand, 1036 p. (Unpublished report held in NIWA library, Wellington.)
- R Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- Stevenson, M.L. (1998). Inshore trawl survey of west coast South Island and Tasman and Golden Bays, March-April 1997 (KAH9701). *NIWA Technical Report 12*. 70 p.

Stevenson, M.L. (2002). Inshore trawl survey of west coast South Island and Tasman and Golden Bays, March-April 2000 (KAH0004). *NIWA Technical Report 115*. 71 p.

Stevenson, M.L. (2004). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 2003 (KAH0304). *New Zealand Fisheries Assessment Report 2004/04*. 69 p.

- Stevenson, M.L. (2006). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 2005 (KAH0504). *New Zealand Fisheries Assessment Report 2006/04*. 69 p.
- Stevenson, M.L. (2007a). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 2007 (KAH0704). *New Zealand Fisheries Assessment Report 2007/41*. 64 p.
- Stevenson, M.L. (2007b). Review of data collected by the WCSI series to determine for which species relative abundance trends and size comparison information should be provided in each survey report. Final Research Report for the Ministry of Fisheries Research Project INT2006-01. (Unpublished report held in NIWA Wellington library.)
- Stevenson, M.L. (2012). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 2011 (KAH1104). *New Zealand Fisheries Assessment Report 2012/50*. 77 p.
- Stevenson, M.L.; Hanchet, S.M. (Comps.) (1999). Trawl survey design and data analysis procedures for inshore fisheries research. *NIWA Technical Report* 53. 20 p.
- Stevenson, M.L.; Hanchet, S.M. (2000). Review of the inshore trawl survey series of the west coast of the South Island and Tasman and Golden Bays, 1992–97. *NIWA Technical Report* 82. 79 p.
- Stevenson, M.L.; Hanchet, S.M (2010). Inshore trawl survey of the west coast South Island and Tasman and Golden Bays, March-April 2009. *New Zealand Fisheries Assessment Report 2010/11*. 77 p.

| Stratum | Depth (m) | Area (km <sup>2</sup> ) | Non-trawlable           | Station    | Successf | ful stations | Station                     |
|---------|-----------|-------------------------|-------------------------|------------|----------|--------------|-----------------------------|
|         |           |                         | area (km <sup>2</sup> ) | allocation | Phase 1  | Phase 2      | density (km <sup>-2</sup> ) |
| 1       | 20-100    | 1 343                   | 102                     | 4          | 3        | 0            | 448                         |
| 2       | 100-200   | 4 302                   | 300                     | 6          | 6        | 0            | 717                         |
| 5       | 25-100    | 1 224                   | 0                       | 3          | 3        | 0            | 408                         |
| 6       | 100-200   | 3 233                   | 238                     | 3          | 3        | 0            | 1 078                       |
| 7       | 25-100    | 927                     | 0                       | 4          | 3        | 0            | 309                         |
| 8       | 100-200   | 2 354                   | 214                     | 5          | 5        | 0            | 471                         |
| 9       | 200-400   | 1 877                   | 1 456                   | 3          | 3        | 0            | 626                         |
| 11      | 25-100    | 1 438                   | 63                      | 10         | 5        | 0            | 288                         |
| 12      | 100-200   | 2 054                   | 501                     | 5          | 5        | 0            | 411                         |
| 13      | 200-400   | 1 101                   | 466                     | 3          | 3        | 0            | 367                         |
| 14      | 25-100    | 851                     | 36                      | 4          | 3        | 0            | 284                         |
| 15      | 100-200   | 881                     | 373                     | 3          | 3        | 0            | 294                         |
| 16      | 200-400   | 319                     | 35                      | 3          | 3        | 0            | 106                         |
| 17      | 20-33     | 307                     | 27                      | 3          | 3        | 0            | 102                         |
| 18      | 20-42     | 947                     | 30                      | 3          | 3        | 0            | 316                         |
| 19      | 20–70     | 2 436                   | 193                     | 6          | 6        | 0            | 406                         |
| Total   |           | 25 594                  | 4 034                   | 68         | 60       | 0            | 427                         |

Table 1: Stratum depth ranges, survey area, non-trawlable area, number of successful Phase 1 and Phase 2 biomass stations and station density.

## Table 2: Gear parameters for biomass stations by depth range (n, number of stations; s.d., standard deviation).

| All stations           | n<br>60 | Mean | s.d. | Range     |
|------------------------|---------|------|------|-----------|
| Headline height (m)    |         | 4.7  | 0.18 | 4.0-4.9   |
| Doorspread (m)         |         | 81.0 | 7.48 | 70.1-93.3 |
| Distance (n. miles)    |         | 2.9  | 0.22 | 1.9-3.1   |
| Warp:depth ratio       |         | 3.5  | 1.4  | 2.4-8.3   |
| Tasman and Golden Bays |         |      |      |           |
| 20–70 m                | 12      |      |      |           |
| Headline height (m)    |         | 4.6  | 0.15 | 4.3-4.8   |
| Doorspread (m)         |         | 73.0 | 1.8  | 70.3-76.2 |
| Distance (n. miles)    |         | 2.8  | 0.37 | 1.9-3.1   |
| Warp:depth ratio       |         | 5.1  | 1.37 | 3.2-8.3   |
| West coast             |         |      |      |           |
| 20–400 m               | 48      |      |      |           |
| Headline height (m)    |         | 4.7  | 0.19 | 4-4.9     |
| Doorspread (m)         |         | 83   | 7.01 | 70.1-93.3 |
| Distance (n. miles)    |         | 2.9  | 0.16 | 2.1-3.1   |
| Warp:depth ratio       |         | 3.1  | 1.11 | 2.4-8.0   |
| 20–100 m               | 27      |      |      |           |
| Headline height (m)    |         | 4.8  | 0.08 | 4.6-4.9   |
| Doorspread (m)         |         | 75   | 3.69 | 70.1-83.0 |
| Distance (n. miles)    |         | 3.0  | 0.07 | 2.9-3.1   |
| Warp:depth ratio       |         | 3.9  | 1.62 | 2.80-8.0  |
| 100–200 m              | 31      |      |      |           |
| Headline height (m)    |         | 4.7  | 0.20 | 4.1-4.9   |
| Doorspread (m)         |         | 85.9 | 3.63 | 75.7-92.5 |
| Distance (n. miles)    |         | 2.9  | 0.2  | 2.1-3.1   |
| Warp:depth ratio       |         | 2.8  | 0.05 | 2.70-2.80 |
| 200–400 m              | 9       |      |      |           |
| Headline height (m)    |         | 4.5  | 0.24 | 4.0-4.8   |
| Doorspread (m)         |         | 90.7 | 1.60 | 88.2-93.3 |
| Distance (n. miles)    |         | 2.9  | 0.11 | 2.7-3.0   |
| Warp:depth ratio       |         | 2.5  | 0.04 | 2.40-2.50 |

Table 3: Mean catch rates (kg km<sup>-2</sup>) by stratum for the 20 most abundant commercially important species in order of catch abundance. Species codes are given in Appendix 3. –, less than 0.5 kg km<sup>-2.</sup>

|                                                                      |                                                                       |                                                                            |                                                                                             |                                                                                                 |                                                                                                                                                                                  |                                                               |                                                                                                    |                                                              |                                                         | Species                                                 |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Stratum                                                              | SPD                                                                   | BAR                                                                        | HOK                                                                                         | GIZ                                                                                             | GUR                                                                                                                                                                              | SNA                                                           | RCO                                                                                                | NMP                                                          | GSH                                                     | SCH                                                     |
| 1                                                                    | 916                                                                   | 314                                                                        | _                                                                                           | 1                                                                                               | 9                                                                                                                                                                                | 1                                                             | _                                                                                                  | -                                                            | -                                                       | 12                                                      |
| 2                                                                    | 113                                                                   | 79                                                                         | _                                                                                           | 3                                                                                               | 8                                                                                                                                                                                | 8                                                             | _                                                                                                  | 3                                                            | 179                                                     | 17                                                      |
| 5                                                                    | 156                                                                   | 78                                                                         | _                                                                                           | _                                                                                               | 205                                                                                                                                                                              | 11                                                            | 182                                                                                                | -                                                            | _                                                       | 33                                                      |
| 6                                                                    | 2 813                                                                 | 33                                                                         | _                                                                                           | 66                                                                                              | 4                                                                                                                                                                                | 2                                                             | _                                                                                                  | 34                                                           | 42                                                      | 20                                                      |
| 7                                                                    | 1 328                                                                 | 344                                                                        | _                                                                                           | 48                                                                                              | 202                                                                                                                                                                              | _                                                             | 513                                                                                                | 12                                                           | 19                                                      | 66                                                      |
| 8                                                                    | 303                                                                   | 76                                                                         | 284                                                                                         | 176                                                                                             | 2                                                                                                                                                                                | _                                                             | 7                                                                                                  | 64                                                           | 52                                                      | 75                                                      |
| 9                                                                    | —                                                                     | 8                                                                          | _                                                                                           | 3                                                                                               | _                                                                                                                                                                                | _                                                             | _                                                                                                  | 10                                                           | -                                                       | -                                                       |
| 11                                                                   | 479                                                                   | 112                                                                        | 8                                                                                           | 104                                                                                             | 233                                                                                                                                                                              | _                                                             | 26                                                                                                 | 5                                                            | 3                                                       | 33                                                      |
| 12                                                                   | 285                                                                   | 63                                                                         | 180                                                                                         | 253                                                                                             | _                                                                                                                                                                                | _                                                             | 32                                                                                                 | 178                                                          | 32                                                      | 43                                                      |
| 13                                                                   | 245                                                                   | 31                                                                         | 58                                                                                          | 192                                                                                             | _                                                                                                                                                                                | _                                                             | 19                                                                                                 | 174                                                          | 26                                                      | 5                                                       |
| 14                                                                   | 222                                                                   | 96                                                                         | 51                                                                                          | 94                                                                                              | 286                                                                                                                                                                              | _                                                             | 74                                                                                                 | 10                                                           | _                                                       | 29                                                      |
| 15                                                                   | 844                                                                   | 184                                                                        | 1 052                                                                                       | 286                                                                                             | 4                                                                                                                                                                                | _                                                             | 80                                                                                                 | 152                                                          | 35                                                      | 35                                                      |
| 16                                                                   | 142                                                                   | _                                                                          | 142                                                                                         | 221                                                                                             | _                                                                                                                                                                                | _                                                             | 7                                                                                                  | 7                                                            | 105                                                     | _                                                       |
| 17                                                                   | 9                                                                     | 216                                                                        | _                                                                                           | 3                                                                                               | 153                                                                                                                                                                              | 524                                                           | 2                                                                                                  | 11                                                           | _                                                       | 86                                                      |
| 18                                                                   | 108                                                                   | 134                                                                        | _                                                                                           | _                                                                                               | 209                                                                                                                                                                              | 336                                                           | 10                                                                                                 | 31                                                           | _                                                       | 94                                                      |
| 19                                                                   | 93                                                                    | 175                                                                        | _                                                                                           | 3                                                                                               | 184                                                                                                                                                                              | 124                                                           | 1                                                                                                  | 6                                                            | _                                                       | 18                                                      |
|                                                                      |                                                                       |                                                                            |                                                                                             |                                                                                                 |                                                                                                                                                                                  |                                                               |                                                                                                    |                                                              |                                                         |                                                         |
|                                                                      |                                                                       |                                                                            |                                                                                             |                                                                                                 |                                                                                                                                                                                  |                                                               |                                                                                                    |                                                              |                                                         |                                                         |
|                                                                      |                                                                       |                                                                            |                                                                                             |                                                                                                 |                                                                                                                                                                                  |                                                               |                                                                                                    |                                                              |                                                         | Species                                                 |
|                                                                      | LIN                                                                   | SPO                                                                        | JMN                                                                                         | JDO                                                                                             | SSK                                                                                                                                                                              | FRO                                                           | SQU                                                                                                | WAR                                                          | RSO                                                     | Species<br>LEA                                          |
| 1                                                                    | LIN<br>_                                                              | SPO<br>–                                                                   | _                                                                                           | JDO<br>50                                                                                       | 12                                                                                                                                                                               | FRO<br>_                                                      | SQU<br>12                                                                                          | WAR                                                          | RSO<br>_                                                |                                                         |
| 2                                                                    |                                                                       |                                                                            | _<br>2                                                                                      |                                                                                                 |                                                                                                                                                                                  |                                                               |                                                                                                    | _                                                            | RSO<br>_<br>_                                           |                                                         |
|                                                                      |                                                                       | _                                                                          | _                                                                                           | 50                                                                                              | 12                                                                                                                                                                               | _                                                             | 12                                                                                                 | _                                                            | RSO<br>_<br>_<br>_                                      |                                                         |
| 2                                                                    | _                                                                     | _                                                                          | _<br>2                                                                                      | 50<br>46                                                                                        | 12<br>18                                                                                                                                                                         | _                                                             | 12<br>14                                                                                           | _                                                            | RSO<br>_<br>_<br>_<br>_                                 |                                                         |
| 2<br>5                                                               |                                                                       | _<br>_<br>107                                                              | -<br>2<br>5                                                                                 | 50<br>46<br>—                                                                                   | 12<br>18<br>17                                                                                                                                                                   | -<br>5<br>-                                                   | 12<br>14<br>-                                                                                      | -<br>-<br>9                                                  | RSO<br>_<br>_<br>_<br>_                                 |                                                         |
| 2<br>5<br>6                                                          | _<br>_<br>_<br>2                                                      | <br>107<br>2                                                               | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21                                                                             | 12<br>18<br>17<br>10                                                                                                                                                             | -<br>5<br>-<br>9                                              | 12<br>14<br>-<br>23                                                                                | -<br>9<br>-                                                  | _<br>_<br>_                                             |                                                         |
| 2<br>5<br>6<br>7                                                     | _<br>_<br>2<br>_                                                      | -<br>107<br>2<br>45                                                        | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21<br>17                                                                       | 12<br>18<br>17<br>10<br>1                                                                                                                                                        | -<br>5<br>-<br>9<br>-                                         | 12<br>14<br>-<br>23<br>1                                                                           | -<br>9<br>-                                                  | -<br>-<br>-<br>-                                        |                                                         |
| 2<br>5<br>6<br>7<br>8                                                | _<br>_<br>2<br>_                                                      | -<br>107<br>2<br>45                                                        | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21<br>17                                                                       | 12<br>18<br>17<br>10<br>1<br>1                                                                                                                                                   | -<br>5<br>-<br>9<br>-                                         | 12<br>14<br>-<br>23<br>1<br>12                                                                     | -<br>9<br>-<br>2<br>-                                        | -<br>-<br>-<br>3                                        |                                                         |
| 2<br>5<br>6<br>7<br>8<br>9                                           | -<br>-<br>2<br>-<br>51<br>-                                           | -<br>107<br>2<br>45<br>2<br>-                                              | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21<br>17                                                                       | 12<br>18<br>17<br>10<br>1<br>1<br>33                                                                                                                                             | -<br>5<br>-<br>9<br>-<br>2<br>-                               | 12<br>14<br>-<br>23<br>1<br>12<br>74                                                               | -<br>9<br>-<br>2<br>-                                        | -<br>-<br>-<br>3                                        |                                                         |
| 2<br>5<br>6<br>7<br>8<br>9<br>11                                     | -<br>-<br>2<br>-<br>51<br>-<br>14                                     | -<br>107<br>2<br>45<br>2<br>-<br>12                                        | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21<br>17                                                                       | 12<br>18<br>17<br>10<br>1<br>1<br>33<br>-                                                                                                                                        | -<br>5<br>-<br>9<br>-<br>2<br>-<br>10                         | 12<br>14<br>-<br>23<br>1<br>12<br>74<br>6                                                          | -<br>9<br>-<br>2<br>-<br>70                                  | -<br>-<br>-<br>3<br>14                                  |                                                         |
| 2<br>5<br>6<br>7<br>8<br>9<br>11<br>12                               | -<br>-<br>2<br>-<br>51<br>-<br>14<br>129                              | -<br>107<br>2<br>45<br>2<br>-<br>12<br>2                                   | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21<br>17                                                                       | 12<br>18<br>17<br>10<br>1<br>1<br>33<br>-<br>18                                                                                                                                  | -<br>5<br>-<br>9<br>-<br>2<br>-<br>10<br>60                   | 12<br>14<br>-<br>23<br>1<br>12<br>74<br>6<br>8                                                     | -<br>9<br>-<br>2<br>-<br>70<br>2                             | -<br>-<br>-<br>3<br>14<br>-<br>6                        |                                                         |
| 2<br>5<br>6<br>7<br>8<br>9<br>11<br>12<br>13                         | -<br>2<br>-<br>51<br>-<br>14<br>129<br>57                             | -<br>107<br>2<br>45<br>2<br>-<br>12<br>2<br>-                              | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21<br>17                                                                       | 12<br>18<br>17<br>10<br>1<br>1<br>33<br>-<br>18<br>52                                                                                                                            | -<br>5<br>-<br>9<br>-<br>2<br>-<br>10<br>60<br>40             | 12<br>14<br>-<br>23<br>1<br>12<br>74<br>6<br>8<br>39                                               | -<br>9<br>-<br>2<br>-<br>70<br>2<br>-                        | -<br>-<br>-<br>3<br>14<br>-<br>6<br>113                 |                                                         |
| 2<br>5<br>6<br>7<br>8<br>9<br>11<br>12<br>13<br>14                   | -<br>-<br>2<br>-<br>51<br>-<br>14<br>129<br>57<br>6                   | -<br>107<br>2<br>45<br>2<br>-<br>12<br>2<br>2<br>226                       | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21<br>17                                                                       | 12<br>18<br>17<br>10<br>1<br>1<br>33<br>-<br>18<br>52<br>-                                                                                                                       | -<br>5<br>-<br>9<br>-<br>2<br>-<br>10<br>60<br>40<br>-        | 12<br>14<br>-<br>23<br>1<br>12<br>74<br>6<br>8<br>39<br>1                                          | -<br>9<br>-<br>2<br>-<br>70<br>2<br>-<br>32                  | -<br>-<br>-<br>3<br>14<br>-<br>6<br>113<br>-            |                                                         |
| 2<br>5<br>6<br>7<br>8<br>9<br>11<br>12<br>13<br>14<br>15             | -<br>2<br>-<br>51<br>-<br>14<br>129<br>57<br>6<br>35                  | -<br>107<br>2<br>45<br>2<br>-<br>12<br>2<br>-<br>226<br>12                 | -<br>2<br>5<br>-                                                                            | 50<br>46<br>-<br>21<br>17                                                                       | $     \begin{array}{r}       12 \\       18 \\       17 \\       10 \\       1 \\       1 \\       33 \\       - \\       18 \\       52 \\       - \\       3     \end{array} $ | -<br>5<br>-<br>9<br>-<br>2<br>-<br>10<br>60<br>40<br>-<br>114 | 12<br>14<br>-<br>23<br>1<br>12<br>74<br>6<br>8<br>39<br>1<br>15                                    | -<br>9<br>-<br>2<br>-<br>70<br>2<br>-<br>32<br>79            | -<br>-<br>-<br>3<br>14<br>-<br>6<br>113<br>-            |                                                         |
| 2<br>5<br>6<br>7<br>8<br>9<br>11<br>12<br>13<br>14<br>15<br>16       | -<br>-<br>2<br>-<br>51<br>-<br>14<br>129<br>57<br>6<br>35<br>239      | -<br>107<br>2<br>45<br>2<br>-<br>12<br>2<br>2<br>226<br>12<br>-            | -<br>2<br>5<br>-<br>2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 50<br>46<br>-<br>21<br>17<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 12     18     17     10     1     1     33     -     18     52     -     3     104                                                                                               | -<br>5<br>-<br>9<br>-<br>2<br>-<br>10<br>60<br>40<br>-<br>114 | 12<br>14<br>-<br>23<br>1<br>12<br>74<br>6<br>8<br>39<br>1<br>15<br>12                              | -<br>9<br>-<br>2<br>-<br>70<br>2<br>-<br>32<br>79<br>-       | -<br>-<br>-<br>3<br>14<br>-<br>6<br>113<br>-<br>54      | LEA<br><br><br><br><br><br><br><br><br><br><br><br><br> |
| 2<br>5<br>6<br>7<br>8<br>9<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | -<br>-<br>2<br>-<br>51<br>-<br>14<br>129<br>57<br>6<br>35<br>239<br>1 | -<br>107<br>2<br>45<br>2<br>-<br>12<br>2<br>2<br>-<br>226<br>12<br>-<br>53 | -<br>2<br>5<br>-<br>2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>108                             | 50<br>46<br>-<br>21<br>17<br>3<br>-<br>-<br>-<br>-<br>-<br>-<br>49                              | 12     18     17     10     1     1     33     -     18     52     -     3     104                                                                                               | -<br>5<br>-<br>9<br>-<br>2<br>-<br>10<br>60<br>40<br>-<br>114 | $ \begin{array}{c} 12\\ 14\\ -\\ 23\\ 1\\ 12\\ 74\\ 6\\ 8\\ 39\\ 1\\ 15\\ 12\\ 1\\ 1 \end{array} $ | -<br>9<br>-<br>2<br>-<br>70<br>2<br>-<br>32<br>79<br>-<br>13 | -<br>-<br>-<br>3<br>14<br>-<br>6<br>113<br>-<br>54<br>- | LEA<br><br><br><br><br><br><br><br><br>21               |

|                        | KA      | AH9204 | KA      | H9404 | KA      | AH9504 | KA      | AH9701 | KA      | H0004 | KA      | AH0304 |
|------------------------|---------|--------|---------|-------|---------|--------|---------|--------|---------|-------|---------|--------|
| Species                | Biomass | CV%    | Biomass | CV%   | Biomass | CV%    | Biomass | CV%    | Biomass | CV%   | Biomass | CV%    |
| Arrow squid            | 2 765   | 18     | 1 195   | 9     | 3 467   | 14     | 966     | 13     | 523     | 11    | 2 255   | 12     |
| Barracouta             | 2 420   | 15     | 5 228   | 16    | 4 474   | 13     | 2 993   | 19     | 1 787   | 11    | 4 485   | 20     |
| Blue warehou           | 123     | 40     | 80      | 22    | 113     | 29     | 842     | 31     | 272     | 37    | 191     | 66     |
| Dark ghost shark       | 380     | 17     | 722     | 14    | 767     | 24     | 1 591   | 21     | 2 2 5 9 | 9     | 544     | 15     |
| Elephant fish          | 21      | 42     | 167     | 33    | 84      | 35     | 94      | 33     | 42      | 63    | 48      | 34     |
| Frostfish              | 24      | 33     | 27      | 23    | 89      | 31     | 259     | 32     | 316     | 16    | 494     | 22     |
| Gemfish                | 130     | 19     | 68      | 29    | 21      | 55     | 704     | 83     | 120     | 30    | 137     | 23     |
| Giant stargazer        | 1 450   | 14     | 1 358   | 17    | 1 556   | 16     | 1 450   | 15     | 1 023   | 12    | 834     | 15     |
| Hake                   | 390     | 25     | 99      | 31    | 5 197   | 27     | 1 019   | 46     | 15      | 36    | 55      | 47     |
| Hoki                   | 404     | 16     | 826     | 49    | 3 611   | 21     | 1 100   | 25     | 103     | 50    | 233     | 22     |
| Jack mackerel          |         |        |         |       |         |        |         |        |         |       |         |        |
| Trachurus declivis     | 90      | 24     | 97      | 26    | 106     | 20     | 162     | 19     | 168     | 33    | 87      | 21     |
| T. novaezelandiae      | 258     | 57     | 68      | 23    | 57      | 29     | 363     | 27     | 194     | 46    | 126     | 49     |
| John dory              | 101     | 29     | 73      | 27    | 27      | 36     | 17      | 31     | 141     | 16    | 288     | 19     |
| Leather jacket         | 185     | 30     | 230     | 23    | 153     | 34     | 231     | 34     | 236     | 50    | 254     | 18     |
| Lemon sole             | 86      | 19     | 77      | 25    | 124     | 21     | 68      | 21     | 59      | 19    | 2       | 44     |
| Ling                   | 280     | 19     | 261     | 20    | 373     | 16     | 151     | 30     | 95      | 46    | 150     | 33     |
| New Zealand sole       | 68      | 33     | 68      | 16    | 38      | 31     | 45      | 29     | 16      | 32    | 21      | 57     |
| Northern spiny dogfish | 130     | 19     | 159     | 21    | 89      | 28     | 164     | 46     | 256     | 18    | 111     | 27     |
| Red cod                | 2 690   | 13     | 3 370   | 18    | 3 077   | 15     | 2 546   | 23     | 414     | 26    | 906     | 24     |
| Red gurnard            | 564     | 16     | 551     | 14    | 577     | 19     | 470     | 13     | 625     | 14    | 270     | 20     |
| Rig                    | 286     | 14     | 378     | 10    | 487     | 10     | 308     | 18     | 333     | 18    | 144     | 22     |
| Rough skate            | 171     | 25     | 198     | 22    | 250     | 22     | 185     | 31     | 186     | 23    | 43      | 34     |
| Sand flounder          | 98      | 30     | 203     | 23    | 132     | 28     | 106     | 28     | 62      | 22    | 10      | 33     |
| School shark           | 975     | 21     | 1 176   | 40    | 1 201   | 35     | 1 432   | 25     | 896     | 13    | 655     | 18     |
| Sea perch              | 233     | 21     | 425     | 18    | 667     | 23     | 338     | 14     | 302     | 22    | 76      | 25     |
| Silver warehou         | 267     | 37     | 64      | 35    | 39      | 19     | 204     | 20     | 99      | 34    | 69      | 27     |
| Smooth skate           | 330     | 18     | 336     | 18    | 315     | 20     | 302     | 26     | 140     | 29    | 91      | 79     |
| Spiny dogfish          | 3 856   | 15     | 7 093   | 7     | 8 370   | 10     | 5 275   | 13     | 4 777   | 13    | 4 446   | 15     |
| Tarakihi               | 1 351   | 13     | 1 403   | 13    | 1 417   | 10     | 1 087   | 12     | 964     | 19    | 912     | 20     |

## Table 4: Relative biomass estimates (t) and CVs by trip from the entire survey area for species managed under the QMS.

#### Table 4 – continued

| Tuble T continueu  | V       | 110502 | V.A     | 110704       | IZ A    | 110004 | IZ A    | 111104 | KA      | H1305 | K /     | AH1503 |
|--------------------|---------|--------|---------|--------------|---------|--------|---------|--------|---------|-------|---------|--------|
| a :                | -       | AH0503 | -       | <u>H0704</u> |         | H0904  |         | H1104  | Biomass | CV%   |         | CV%    |
| Species            | Biomass | CV%    | Biomass | CV%          | Biomass | CV%    | Biomass | CV%    |         |       | Biomass |        |
| Arrow squid        | 889     | 9      | 1 228   | 9            | 402     | 16     | 153     | 14     | 308     | 14    | 419     | 21     |
| Barracouta         | 2 763   | 13     | 2 582   | 14           | 3 512   | 17     | 4 958   | 21     | 3 423   | 16    | 2 662   | 21     |
| Blue warehou       | 116     | 40     | 286     | 50           | 175     | 27     | 263     | 27     | 248     | 22    | 222     | 36     |
| Dark ghost shark   | 832     | 22     | 2 215   | 21           | 900     | 17     | 2 348   | 23     | 981     | 23    | 1 211   | 55     |
| Elephant fish      | 59      | 33     | 28      | 53           | 185     | 83     | 169     | 53     | 110     | 26    | 72      | 45     |
| Frostfish          | 423     | 45     | 529     | 39           | 835     | 35     | 251     | 29     | 424     | 24    | 341     | 34     |
| Gemfish            | 474     | 49     | 101     | 19           | 143     | 29     | 101     | 34     | 113     | 28    | 186     | 17     |
| Giant stargazer    | 1 458   | 19     | 1 630   | 13           | 1 952   | 19     | 1 620   | 16     | 2 118   | 9     | 1 984   | 11     |
| Hake               | 1 673   | 30     | 359     | 35           | 212     | 56     | 44      | 36     | 36      | 41    | 80.6    | 37     |
| Hoki               | 701     | 55     | 772     | 52           | 1 302   | 46     | 1 527   | 61     | 1 545   | 43    | 2 128   | 36     |
| Jack mackerel      |         |        |         |              |         |        |         |        |         |       |         |        |
| Trachurus declivis | 118     | 22     | 62      | 23           | 79      | 23     | 217     | 37     | 106     | 43    | 43      | 40     |
| T. novaezelandiae  | 98      | 21     | 214     | 62           | 399     | 24     | 95      | 39     | 56      | 35    | 399     | 38     |
| John dory          | 222     | 14     | 174     | 26           | 269     | 23     | 327     | 18     | 231     | 21    | 487     | 16     |
| Leather jacket     | 139     | 20     | 252     | 40           | 323     | 27     | 111     | 20     | 231     | 19    | 239     | 30     |
| Lemon sole         | 21      | 42     | 119     | 46           | 62      | 16     | 62      | 16     | 43      | 37    | 90      | 22     |
| Ling               | 274     | 37     | 180     | 27           | 291     | 37     | 234     | 43     | 405     | 44    | 472     | 53     |
| New Zealand sole   | 27      | 45     | 39      | 71           | 75      | 32     | 26      | 42     | 25      | 26    | 92      | 40     |
| Northern spiny     |         |        |         |              |         |        |         |        |         |       |         |        |
| dogfish            | 180     | 22     | 134     | 29           | 189     | 28     | 368     | 29     | 211     | 26    | 259     | 22     |
| Red cod            | 2 610   | 18     | 1 638   | 19           | 2 782   | 25     | 2 055   | 28     | 1 247   | 38    | 989     | 45     |
| Red gurnard        | 442     | 17     | 553     | 17           | 651     | 18     | 1 070   | 17     | 754     | 12    | 1 776   | 16     |
| Rig                | 153     | 19     | 383     | 33           | 274     | 26     | 264     | 20     | 278     | 20    | 622     | 27     |
| Rough skate        | 58      | 30     | 256     | 23           | 114     | 22     | 261     | 21     | 243     | 24    | 150     | 20     |
| Sand flounder      | 62      | 25     | 67      | 47           | 170     | 32     | 71      | 23     | 48      | 52    | 84      | 33     |
| School shark       | 774     | 14     | 816     | 20           | 1 085   | 16     | 1 099   | 14     | 912     | 12    | 788     | 17     |
| Sea perch          | 150     | 20     | 163     | 19           | 336     | 20     | 548     | 39     | 161     | 20    | 191     | 21     |
| Silver warehou     | 72      | 28     | 165     | 20           | 80      | 24     | 69      | 32     | 68      | 28    | 109     | 32     |
| Smooth skate       | 80      | 30     | 55      | 44           | 67      | 61     | 180     | 34     | 188     | 29    | 342     | 25     |
| Spiny dogfish      | 6 175   | 12     | 6 291   | 14           | 10 270  | 19     | 6 154   | 14     | 15 086  | 57    | 7 613   | 21     |
| Tarakihi           | 2 050   | 12     | 1 189   | 21           | 1 088   | 22     | 1 331   | 15     | 1 272   | 22    | 1 060   | 17     |
|                    | - 000   | •-     | 1 107   |              | 1 0 0 0 |        | 1 2 2 1 |        |         |       | 1 0 0 0 | - /    |

|                 | Recruited   | Ta      | isman and |         |            | Tota    | al survey | 50% maturity | Tota    | al survey |
|-----------------|-------------|---------|-----------|---------|------------|---------|-----------|--------------|---------|-----------|
| Species         | length (cm) | Go      | lden Bays | V       | Vest coast |         | area      | length (cm)  |         | area      |
|                 |             | Biomass | CV %      | Biomass | CV %       | Biomass | CV %      |              | Biomass | CV %      |
| Barracouta      | 50          | 597     | 44        | 1 949   | 24         | 2 546   | 21        |              |         |           |
| Blue warehou    | 45          | _       | _         | 203     | 40         | 203     | 40        |              |         |           |
| Giant stargazer | 30          | 7       | 31        | 1 969   | 11         | 1976    | 11        | 45           | 1 822   | 11        |
| Hoki            | 65          | _       | _         | 7       | 81         | 7       | 81        |              |         |           |
| John dory       | 25          | 129     | 19        | 356     | 21         | 485     | 16        |              |         |           |
| Ling            | 65          | _       | _         | 419     | 60         | 419     | 60        |              |         |           |
| Red cod         | 40          | 6       | 76        | 836     | 54         | 843     | 53        | 50           | 483     | 50        |
| Red gurnard     | 30          | 383     | 26        | 952     | 24         | 1 335   | 19        | 30           | 1 335   | 19        |
| Rig             | 90          | 31      | 40        | 138     | 35         | 170     | 29        |              |         |           |
| Sand flounder   | 25          | 54      | 36        | 2       | 62         | 56      | 35        |              |         |           |
| Spiny dogfish   |             |         |           |         |            |         |           | 58           | 2 546   | 34        |
|                 |             |         |           |         |            |         |           | 72           | 1 836   | 24        |
| School shark    | 90          | 62      | 69        | 370     | 25         | 432     | 24        |              |         |           |
| Silver warehou  | 25          | _       | _         | 16      | 37         | 16      | 37        |              |         |           |
| Tarakihi        | 25          | 16      | 49        | 991     | 18         | 1 007   | 18        | 31           | 935     | 19        |

## Table 5: Recruited biomass estimates and target species adult biomass estimates (t). -, less than 0.5 t.

| Species                                | Year class | Length range (cm) | Biomass | CV (%) |
|----------------------------------------|------------|-------------------|---------|--------|
| Barracouta                             | 0 +        | <15               | < 0.1   | 54.7   |
|                                        | 1 +        | 15–25             | 31.8    | 45     |
|                                        | 2 +        | 26–36             | 1.7     | 46.8   |
|                                        | 3 +        | 37–52             | 95      | 48.1   |
| Blue warehou                           | 0 +        | <21               | 15.4    | 36.3   |
|                                        | 1 +        | 22–31             | 1.6     | 60.4   |
|                                        | 2 +        | 32–42             | < 0.1   | 100    |
| Hake                                   | 0 +        | <19               | 13.5    | 42.5   |
|                                        | 1 +        | 19–28             | 36.7    | 49.5   |
|                                        | 2 +        | 29–42             | 11.3    | 74.3   |
| Hoki                                   | 0 +        | 15–30             | 2 039   | 37.2   |
|                                        | 1 +        | 31–44             | 55.6    | 53.7   |
| Jack mackerel <i>T. novaezelandiae</i> | 1 +        | 13–20             | 239.2   | 42.9   |
| Red cod                                | 0 +        | <20               | 41.9    | 48     |
|                                        | 1 +        | 21–35             | 67.3    | 24.8   |
| Red gurnard                            | 0 +        | <17               | 40.6    | 51.4   |
|                                        | 1 +        | 17–27             | 299.6   | 42.9   |
| School shark                           | 0 +        | <44               | 26.8    | 32.7   |
|                                        | 1 +        | 44–54             | 44.8    | 43.6   |
| Silver warehou                         | 1 +        | 13–23             | 91.6    | 36.7   |
| Tarakihi                               | 0 +        | 10–14             | 18.5    | 20.6   |
|                                        | 1 +        | 15–21             | 11.6    | 39.9   |
|                                        | 2 +        | 22–28             | 67.5    | 29.2   |

Table 6: Biomass estimates (t) by year class estimated from length frequency distributions.

| Species coo | Spee  |       |      |       |       |       |       |      |       | _       |
|-------------|-------|-------|------|-------|-------|-------|-------|------|-------|---------|
| SH SC       | GSH   | NMP   | RCO  | SNA   | GUR   | GIZ   | HOK   | BAR  | SPD   | Stratum |
| - 1         | _     | +     | _    | 2     | 13    | 1     | _     | 421  | 1 230 | 1       |
| (0) (8      | (0)   | (50)  | (0)  | (100) | (28)  | (100) | (0)   | (78) | (89)  |         |
| 71 7        | 771   | 13    | _    | 34    | 33    | 14    | _     | 338  | 487   | 2       |
| 85) (5      | (85)  | (56)  | (0)  | (41)  | (30)  | (52)  | (0)   | (91) | (29)  |         |
| _ 4         | _     | _     | 223  | 13    | 251   | _     | _     | 95   | 190   | 5       |
| (0) (5      | (0)   | (0)   | (77) | (64)  | (21)  | (0)   | (0)   | (39) | (70)  |         |
| 36 6        | 136   | 108   | _    | 6     | 13    | 212   | _     | 910  | 910   | 6       |
| 59) (6      | (59)  | (6)   | (0)  | (100) | (76)  | (24)  | (0)   | (44) | (44)  |         |
| 18 6        | 18    | 11    | 476  | _     | 187   | 44    | _     | 319  | 1 231 | 7       |
| 94) (6      | (94)  | (96)  | (84) | (0)   | (42)  | (55)  | (0)   | (38) | (68)  |         |
| 24 17       | 124   | 150   | 16   | _     | 4     | 415   | 668   | 179  | 713   | 8       |
| 49) (4      | (49)  | (41)  | (69) | (0)   | (100) | (28)  | (95)  | (44) | (53)  |         |
| _           | _     | 20    | _    | _     | _     | 6     | _     | 16   | _     | 9       |
| (0) (       | (0)   | (100) | (0)  | (0)   | (0)   | (59)  | (0)   | (72) | (0)   |         |
| 4 4         | 4     | 8     | 38   | _     | 334   | 149   | 11    | 160  | 689   | 11      |
| 00) (6      | (100) | (52)  | (65) | (0)   | (32)  | (50)  | (84)  | (29) | (45)  |         |
| 67 8        | 67    | 366   | 67   | _     | 1     | 520   | 370   | 130  | 585   | 12      |
| 29) (3      | (29)  | (20)  | (23) | (0)   | (100) | (23)  | (44)  | (39) | (16)  |         |
| 28          | 28    | 192   | 21   | _     | _     | 212   | 63    | 34   | 270   | 13      |
| 62) (10     | (62)  | (77)  | (13) | (0)   | (0)   | (36)  | (36)  | (69) | (22)  |         |
| - 2         | _     | 9     | 63   | _     | 243   | 80    | 44    | 82   | 189   | 14      |
| (0) (4      | (0)   | (92)  | (93) | (0)   | (84)  | (61)  | (100) | (34) | (15)  |         |
| 31 3        | 31    | 134   | 71   | _     | 4     | 252   | 927   | 162  | 744   | 15      |
| 57) (2-     | (57)  | (31)  | (32) | (0)   | (70)  | (5)   | (41)  | (28) | (46)  |         |
| 34          | 34    | 2     | 3    | -     | _     | 71    | 45    | _    | 45    | 16      |
| 24) (       | (24)  | (100) | (67) | (0)   | (0)   | (10)  | (62)  | 0    | (59)  |         |
| - 2         | _     | 4     | 0.5  | 161   | 47    | 1     | _     | 66   | 3     | 17      |
| (0) (6      | (0)   | (52)  | (64) | (33)  | (27)  | (71)  | (0)   | (99) | (29)  |         |
| - 8         | _     | 29    | 9    | 319   | 198   | +     | _     | 127  | 102   | 18      |
| (0) (6      | (0)   | (70)  | (83) | (45)  | (15)  | (100) | (0)   | (25) | (75)  |         |
| _ 4         | _     | 14    | 2    | 302   | 448   | 7     | _     | 426  | 226   | 19      |
| (0) (5      | (0)   | (31)  | (62) | (71)  | (27)  | (34)  | (0)   | (58) | (28)  |         |

Table 7: Estimated biomass (t) (and % CV) by stratum for the 20 most abundant commercially important species in order of catch abundance. Species codes are given in Appendix 3. –, no data, + less than 0.5 t.

### Table 7–continued.

| ies code | Speci |      |       |       |       |       |       |       |       |         |
|----------|-------|------|-------|-------|-------|-------|-------|-------|-------|---------|
| LEA      | RSO   | WAR  | SQU   | FRO   | SSK   | JDO   | JMN   | SPO   | LIN   | Stratum |
| _        | 56    | _    | _     | 47    | 11    | 67    | _     | _     | _     | 1       |
| (0)      | (21)  | (0)  | (0)   | (100) | (75)  | (60)  | (0)   | (0)   | (0)   |         |
| 36       | 73    | _    | _     | 13    | 47    | 76    | 10    | _     | 1     | 2       |
| (69)     | (47)  | (0)  | (0)   | (54)  | (29)  | (85)  | (100) | (0)   | (72)  |         |
| 4        | _     | _    | 7     | 26    | 0.5   | 21    | 6     | 131   | _     | 5       |
| (100)    | (0)   | (0)  | (51)  | (57)  | (100) | (100) | (41)  | (55)  | (0)   |         |
| 55       | 22    | _    | _     | 4     | 36    | _     | _     | _     | 7     | 6       |
| (59)     | (100) | (0)  | (0)   | (100) | (73)  | (0)   | (0)   | (0)   | (63)  |         |
| 6        | 2     | _    | 23    | 16    | 2     | 15    | 2     | 11    | _     | 7       |
| (100)    | (100) | (0)  | (10)  | (75)  | (39)  | (100) | (61)  | (67)  | (0)   |         |
| 20       | 10    | _    | _     | 18    | 35    | _     | _     | 2     | 2     | 8       |
| (63)     | (46)  | (0)  | (0)   | (56)  | (26)  | (0)   | (0)   | (100) | (59)  |         |
| 0.5      | _     | _    | _     | 18    | 41    | _     | -     | _     | 1     | 9       |
| (100)    | (0)   | (0)  | (0)   | (50)  | (13)  | (0)   | (0)   | (0)   | (100) |         |
| 0.5      | _     | _    | 74    | 45    | 12    | _     | 7     | 67    | 20    | 11      |
| (100)    | (0)   | (0)  | (38)  | (40)  | (51)  | (0)   | (71)  | (34)  | (65)  |         |
| 26       | _     | _    | _     | 7     | 43    | _     | -     | 2     | 265   | 12      |
| (57)     | (0)   | (0)  | (0)   | (72)  | (22)  | (0)   | (0)   | (100) | (92)  |         |
| 29       | 2     | _    | _     | 2     | 14    | _     | _     | 4     | 63    | 13      |
| (100)    | (100) | (0)  | (0)   | (100) | (50)  | (0)   | (0)   | (100) | (50)  |         |
| _        | _     | _    | 2     | 13    | 7     | _     | +     | 51    | 5     | 14      |
| (0)      | (0)   | (0)  | (100) | (78)  | (80)  | (0)   | (100) | (86)  | (24)  |         |
| 4        | _     | _    | _     | 2     | 26    | _     | _     | 94    | 30    | 15      |
| (50)     | (0)   | (0)  | (0)   | (100) | (13)  | (0)   | (0)   | (21)  | (86)  |         |
| 5        | _     | _    | _     | _     | 6     | _     | -     | _     | 76    | 16      |
| (53)     | (0)   | (0)  | (0)   | (0)   | (45)  | (0)   | (0)   | (0)   | (48)  |         |
| 1        | 2     | 15   | +     | +     | +     | 15    | 33    | +     | +     | 17      |
| (100)    | (48)  | (92) | (100) | (100) | (50)  | (43)  | (75)  | (31)  | (100) |         |
| _        | 30    | 83   | _     | 12    | 1     | 50    | 219   | _     | _     | 18      |
| (0)      | (56)  | (39) | (0)   | (39)  | (100) | (27)  | (53)  | (0)   | (0)   |         |
| _        | 35    | 134  | 4     | 20    | 28    | 66    | 121   | 5     | _     | 19      |
| (0)      | (41)  | (21) | (100) | (47)  | (80)  | (29)  | (74)  | (79)  | (0)   |         |

| length, fish | weight, gonad st |                  |             | eccies codes are given in Appendix 3.<br>Biological data (†) |        |                 |               |  |  |  |
|--------------|------------------|------------------|-------------|--------------------------------------------------------------|--------|-----------------|---------------|--|--|--|
| <b>G</b>     |                  | Length frequence |             | N C                                                          |        |                 |               |  |  |  |
| Species      | Measurement      | No. of           | No. of      | No. of                                                       | No. of | No. of otoliths | No. of tagged |  |  |  |
| code         | method           | samples          | fish<br>114 | samples                                                      | fish   | or spines       | fish          |  |  |  |
| ATT          | 1                | 5                |             |                                                              |        |                 |               |  |  |  |
| BAR          | 1                | 46               | 1 689       |                                                              |        |                 |               |  |  |  |
| BCO          | 2<br>2           | 2                | 10          |                                                              |        |                 |               |  |  |  |
| BRI          |                  | 6                | 24          | 42                                                           | 222    |                 |               |  |  |  |
| CAR          | 2                | 42               | 232         | 42                                                           | 232    |                 |               |  |  |  |
| ELE          | 1                | 8                | 37          |                                                              |        |                 |               |  |  |  |
| EMA          | 1                | 1                | 3           |                                                              |        |                 |               |  |  |  |
| ESO          | 2                | 9                | 413         |                                                              |        |                 |               |  |  |  |
| FRO          | 1                | 20               | 436         |                                                              |        |                 |               |  |  |  |
| GFL          | 2                | 1                | 2           | 41                                                           | 5.45   | 207             |               |  |  |  |
| GIZ          | 2                | 46               | 859         | 41                                                           | 545    | 387             |               |  |  |  |
| GSH          | G                | 35               | 587         | 41                                                           |        | 205             |               |  |  |  |
| GUR          | 1                | 41               | 2 461       | 41                                                           | 573    | 397             |               |  |  |  |
| HAK          | 2<br>2           | 16               | 396         |                                                              |        |                 |               |  |  |  |
| HAP          | 2                | 7                | 9           |                                                              |        |                 |               |  |  |  |
| HEP          | 2                | 1                | 2           |                                                              |        |                 |               |  |  |  |
| HEX          | 2                | 1                | 1           |                                                              |        |                 |               |  |  |  |
| HOK          | 2                | 20               | 1 189       |                                                              |        |                 |               |  |  |  |
| JDO          | 2                | 27               | 374         | 27                                                           | 337    |                 |               |  |  |  |
| JGU          | 1                | 2                | 4           |                                                              |        |                 |               |  |  |  |
| JMD          | 1                | 13               | 52          |                                                              |        |                 |               |  |  |  |
| JMM          | 1                | 1                | 1           |                                                              |        |                 |               |  |  |  |
| JMN          | 1                | 24               | 700         |                                                              |        |                 |               |  |  |  |
| KIN          | 1                | 6                | 7           |                                                              |        |                 |               |  |  |  |
| LEA          | 2                | 8                | 656         |                                                              |        |                 |               |  |  |  |
| LIN          | 2                | 31               | 354         |                                                              |        |                 |               |  |  |  |
| LSO          | 2                | 22               | 471         |                                                              |        |                 |               |  |  |  |
| NMP          | 1                | 45               | 1 728       | 45                                                           | 743    | 459             |               |  |  |  |
| NSD          | 2                | 12               | 146         | 3                                                            | 80     |                 |               |  |  |  |
| PCO          | 2                | 1                | 5           | 1                                                            | 5      |                 |               |  |  |  |
| RBM          | 1                | 2                | 2           |                                                              |        |                 |               |  |  |  |
| RCO          | 2                | 39               | 1 207       | 39                                                           | 552    | 357             |               |  |  |  |
| RSK          | 5                | 25               | 92          | 25                                                           | 92     |                 | 39            |  |  |  |
| RSO          | 1                | 11               | 77          |                                                              |        |                 |               |  |  |  |
| SBR          | 2                | 1                | 12          | 1                                                            | 12     |                 |               |  |  |  |
| SCH          | 2                | 45               | 531         | 45                                                           | 436    |                 | 142           |  |  |  |
| SDO          | 2<br>2           | 1                | 91          |                                                              |        |                 |               |  |  |  |
| SFL          |                  | 10               | 344         |                                                              |        |                 |               |  |  |  |
| SNA          | 1                | 20               | 574         |                                                              |        |                 |               |  |  |  |
| SPD          | 2<br>2           | 56               | 3 362       | 54                                                           | 931    |                 |               |  |  |  |
| SPE          | 2                | 35               | 886         |                                                              |        |                 |               |  |  |  |
| SPO          | 2                | 32               | 474         | 32                                                           | 321    |                 | 97            |  |  |  |
| SSK          | 5                | 24               | 68          | 24                                                           | 68     |                 | 38            |  |  |  |
| SWA          | 1                | 32               | 528         | 18                                                           | 146    |                 |               |  |  |  |
| THR          | 2                | 1                | 1           | 1                                                            | 1      |                 |               |  |  |  |
| TRU          | 1                | 1                | 1           |                                                              |        |                 |               |  |  |  |
| TUR          | 2                | 1                | 1           |                                                              |        |                 |               |  |  |  |
| WAR          | 1                | 20               | 375         | 1                                                            | 1      |                 |               |  |  |  |

Table 8: Number of biological and length frequency records. Measurement methods; 1, fork length; 2, total length; 5, pelvic length; G, chimaera length. †, data includes one or more of the following: fish length, fish weight, gonad stage, otoliths, spines. Species codes are given in Appendix 3.

Table 9: Numbers of the four target species sampled at each reproductive stage (small fish of undetermined sex were not included). -; no data.

#### a) Teleosts

| a) i cicosts   | Male gonad stages |    |      |    |    |     |     | <b>F</b> 1 | 1         |     |       |
|----------------|-------------------|----|------|----|----|-----|-----|------------|-----------|-----|-------|
|                |                   |    |      |    |    |     |     |            | e gonad s | -   |       |
| Length (cm)    | 1                 | 2  | 3    | 4  | 5  | 1   | 2   | 3          | 4         | 5   | Total |
| Giant stargaze |                   |    |      |    |    |     |     |            |           |     |       |
| 11-20          | 6                 | _  | _    | _  | _  | 6   | _   | _          | _         | _   | 11    |
| 21-30          | 6                 | _  | _    | -  | _  | 8   | -   | -          | _         | _   | 14    |
| 31-40          | 20                | 5  | 4    | _  | -  | 13  | _   | _          | —         | _   | 42    |
| 41-50          | 31                | 27 | 30   | 9  | 24 | 27  | 2   | _          | —         | _   | 150   |
| 51-60          | 10                | 25 | 2284 | 6  | 21 | 36  | 36  | _          | _         | 1   | 163   |
| 61-70          | 1                 | 3  | 3    | 1  | 10 | 21  | 100 | 3          | _         | 12  | 154   |
| >70            | _                 | _  | _    | _  | _  | _   | 9   | 1          | _         | 1   | 11    |
| Total          | 74                | 60 | 65   | 16 | 55 | 110 | 147 | 5          | 0         | 13  | 545   |
| Red cod        |                   |    |      |    |    |     |     |            |           |     |       |
| 11–20          | 67                | _  | _    | _  | _  | 69  | _   | _          | _         | _   | 136   |
| 21–30          | 65                | _  | 1    | _  | _  | 37  | _   | _          | _         | _   | 103   |
| 31-40          | 05<br>76          | 5  | 15   | 5  | _  | 45  | _   | _          | _         | _   | 146   |
| 41-50          | 37                | 2  | 8    | 1  | 1  | 33  | _   | _          | _         | _   | 146   |
| 51–60          | 6                 |    | 2    | -  | -  | 61  | 1   | 1          | 1         | _   | 82    |
| >60            | 0                 | _  |      | _  | _  | 5   | -   | 2          | -         | 3   | 10    |
| Total          | 251               | 7  | 26   | 6  | 1  | 250 | 1   | 3          | 1         | 3   | 549   |
| Total          | 231               | /  | 20   | 0  | 1  | 250 | 1   | 5          | 1         | 5   | 547   |
| Red gurnard    |                   |    |      |    |    |     |     |            |           |     |       |
| <21            | 21                | _  | -    | -  | -  | 8   | _   | -          | _         | _   | 24    |
| 21-30          | 35                | 19 | 7    | 17 | 28 | 45  | 6   | 1          | —         | 4   | 291   |
| 31–40          | 3                 | 1  | 9    | 68 | 61 | 25  | 70  | 16         | 1         | 37  | 291   |
| >40            | _                 | 1  | 1    | 14 | 4  | 3   | 35  | 9          | 1         | 18  | 86    |
| Total          | 54                | 21 | 17   | 99 | 93 | 81  | 111 | 26         | 2         | 59  | 563   |
| Tarakihi       |                   |    |      |    |    |     |     |            |           |     |       |
| 11–20          | 95                | _  | _    | _  | _  | 115 | _   | _          | _         | _   | 210   |
| 21–30          | 38                | _  | _    | _  | 17 | 77  | 1   | _          | _         | _   | 133   |
| 31-40          | 3                 | _  | 3    | 15 | 72 | 67  | 105 | 4          | 2         | 40  | 311   |
| >40            | _                 | _  | _    | 15 | 10 | 2   | 21  | 3          | _         | 31  | 68    |
| Total          | 136               | 0  | 3    | 16 | 99 | 261 | 127 | 7          | 2         | 71  | 722   |
| 101111         | 150               | U  | 5    | 10 | ,, | 201 | 141 | /          | 4         | / 1 | , 22  |

Gonad stages used were: 1, immature or resting; 2, maturing (oocytes visible in females, thickening gonad but no milt expressible in males); 3, mature (hyaline oocytes in females, milt expressible in males); 4, running ripe (eggs and milt free flowing); 5, spent (gonads flacid and bloodshot)

#### Table 9—continued.

#### b) Elasmobranchs

|               | Male gonad stages |    |     |    | Female gonad stages |    |    |     |    |       |
|---------------|-------------------|----|-----|----|---------------------|----|----|-----|----|-------|
| Length (cm)   | 1                 | 2  | 3   | 1  | 2                   | 3  | 4  | 5   | 6  | Total |
| Spiny dogfish |                   |    |     |    |                     |    |    |     |    |       |
| <=40          | 18                | _  | _   | 25 | -                   | -  | _  | -   | _  | 43    |
| 41–50         | 32                | 2  | _   | 39 | -                   | -  | _  | -   | _  | 73    |
| 51-60         | 5                 | 40 | 93  | 25 | 44                  | -  | _  | -   | _  | 207   |
| 61–70         | 1                 | 6  | 193 | _  | 19                  | 24 | 13 | 96  | 10 | 362   |
| 71-80         | _                 | _  | 8   | _  | 1                   | 4  | 23 | 146 | 16 | 198   |
| >80           | _                 | _  | _   | _  | -                   | -  | 4  | 37  | 1  | 42    |
| Total         | 56                | 48 | 294 | 89 | 64                  | 28 | 40 | 279 | 27 | 925   |

Maturity stages used were:

Males

- 1. Immature (claspers shorter than the pelvic fins)
- 2. Maturing (Claspers at least as long as the pelvic fins but soft)
- 3. Mature (claspers longer than the pelvic fins and hard and firm)

#### Females

- 1. Immature (No eggs visible in the ovary)
- 2. Maturing (Non-yolked eggs visible in the ovary);
- 3. Mature (Yolked eggs in the ovary, uterus small and firm);
- 4. Ripe ('Candle' of eggs in the uterus, no embryos visible)
- 5. Running ripe (embryos visible in the uterus);
- 6. Spent (Uterus flabby and may be bloodshot. Yolked eggs may be present in the ovary)

| Trip    | RSK | SCH   | SPO | SSK | Total |
|---------|-----|-------|-----|-----|-------|
| KAH9204 | _   | 195   | _   | _   | 195   |
| KAH9404 | _   | 131   | _   | _   | 131   |
| KAH9504 | _   | 209   | _   | _   | 209   |
| KAH9701 | _   | 158   | _   | _   | 158   |
| KAH0004 | _   | _     | _   | _   | 0     |
| KAH0304 | 21  | 144   | _   | 9   | 174   |
| KAH0503 | 25  | 141   | _   | 16  | 182   |
| KAH0704 | 56  | 112   | 31  | 7   | 206   |
| KAH0904 | 40  | 151   | 29  | 3   | 223   |
| KAH1104 | 116 | 233   | 45  | 17  | 411   |
| KAH1305 | 106 | 177   | 55  | 20  | 358   |
| KAH1503 | 39  | 142   | 97  | 38  | 316   |
| Total   | 403 | 1 793 | 257 | 110 | 2 563 |

Table 10: Number of tagged and released elasmobranchs by species for each survey.

Table 11: Number of returns from tagged and released elasmobranchs by species for each survey.

| Trip    | RSK | SCH | SPO | SSK | Total |
|---------|-----|-----|-----|-----|-------|
| KAH9204 | _   | -   | -   | -   | 0     |
| KAH9404 | _   | _   | _   | _   | 0     |
| KAH9504 | _   | 4   | _   | _   | 4     |
| KAH9701 | _   | 2   | _   | _   | 2     |
| KAH0004 | _   | _   | _   | _   | 0     |
| KAH0304 | _   | 1   | _   | _   | 1     |
| KAH0503 | 1   | 13  | _   | _   | 14    |
| KAH0704 | _   | 12  | _   | _   | 11    |
| KAH0904 | _   | 25  | _   | _   | 24    |
| KAH1104 | 1   | 9   | _   | _   | 0     |
| KAH1305 | _   | 3   | _   | _   | 0     |
| KAH1503 |     |     |     |     |       |
| Total   | 2   | 69  | 0   | 0   | 71    |
|         |     |     |     |     |       |

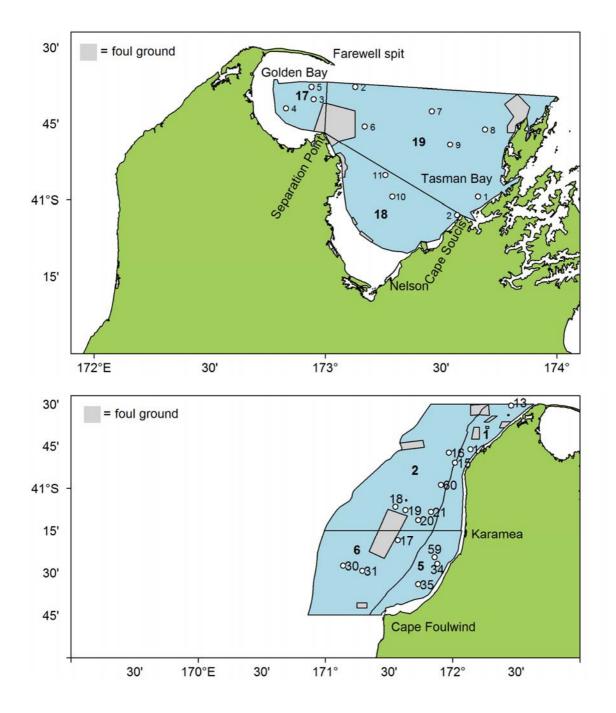



Figure 1a: Survey area showing stratum boundaries and numbers (bold type) for Tasman and Golden Bays (top) and the west coast north of Cape Foulwind (bottom), with station positions (white circles) and numbers.

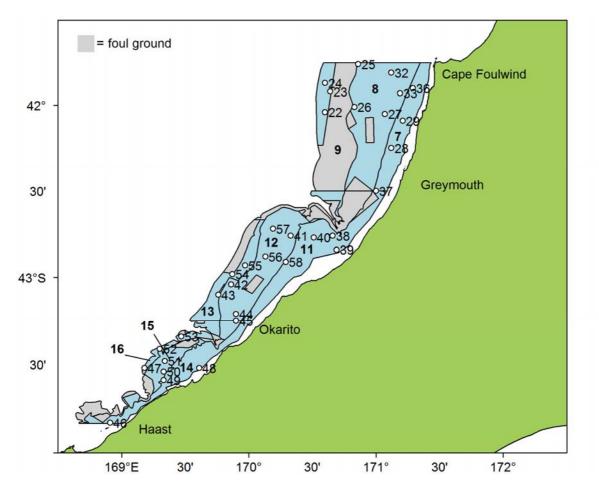
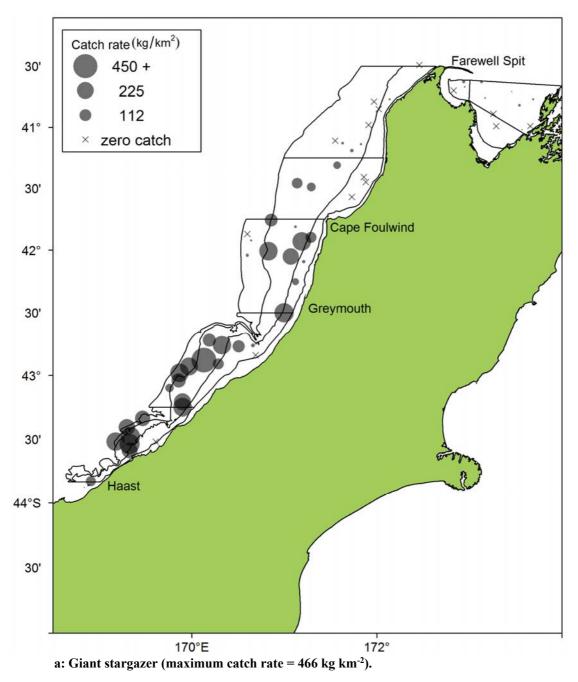
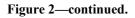
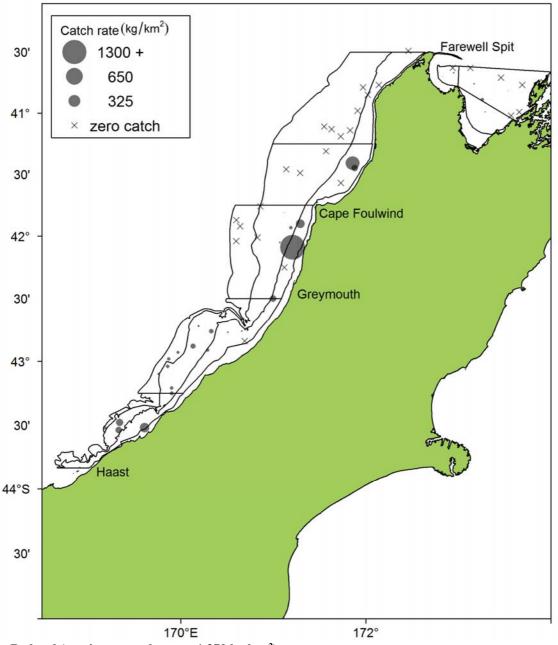
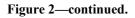
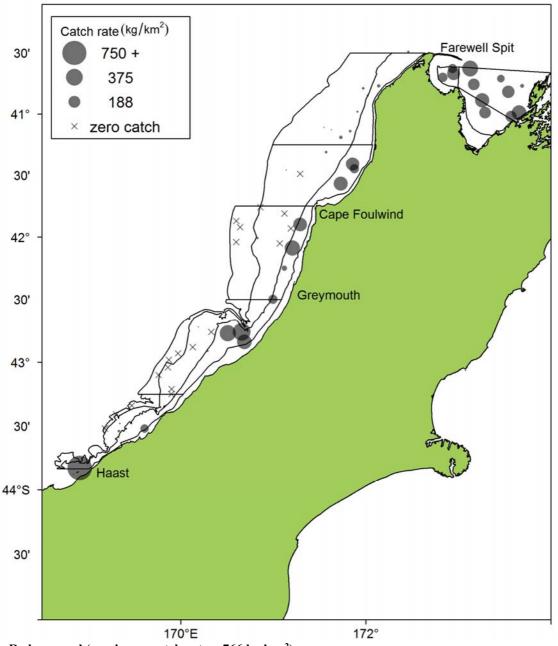
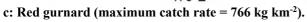
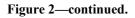


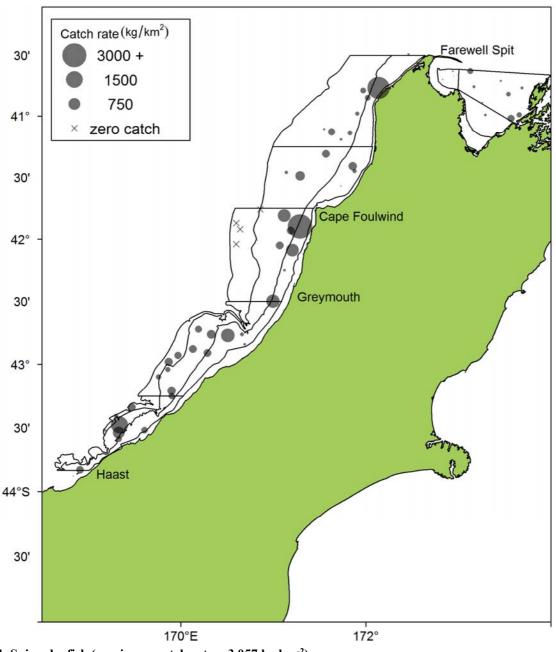

Figure 1b: Strata boundaries and numbers (bold type) south of Cape Foulwind with station positions (white circles) and numbers.

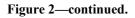


Figure 2: Catch rates (kg km<sup>-2</sup>) and distribution for the target species in alphabetical order by common name.

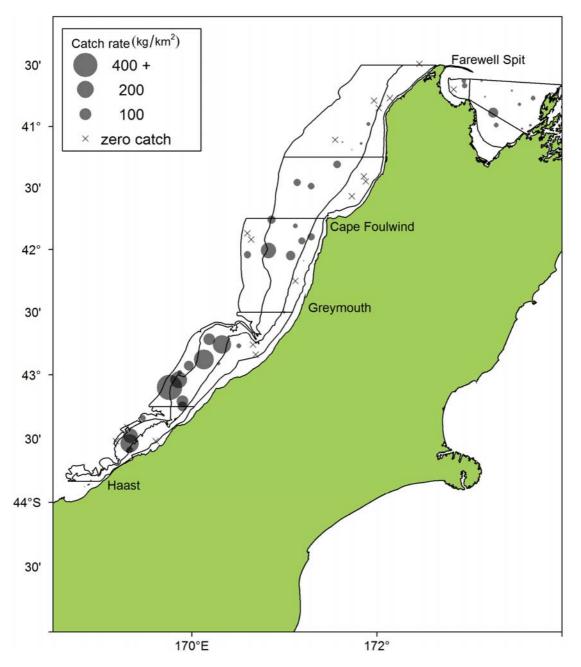




b: Red cod (maximum catch rate = 1 370 kg km<sup>-2</sup>).










d: Spiny dogfish (maximum catch rate = 3 057 kg km<sup>-2</sup>).





e: Tarakihi (maximum catch rate = 439 kg km<sup>-2</sup>).

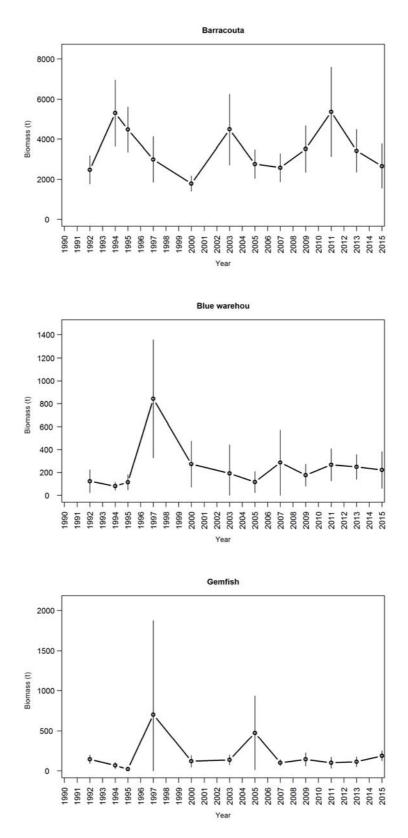



Figure 3: Trends in total biomass for the target species and other species reliably monitored by the survey time series. Arranged in alphabetical order by common name.

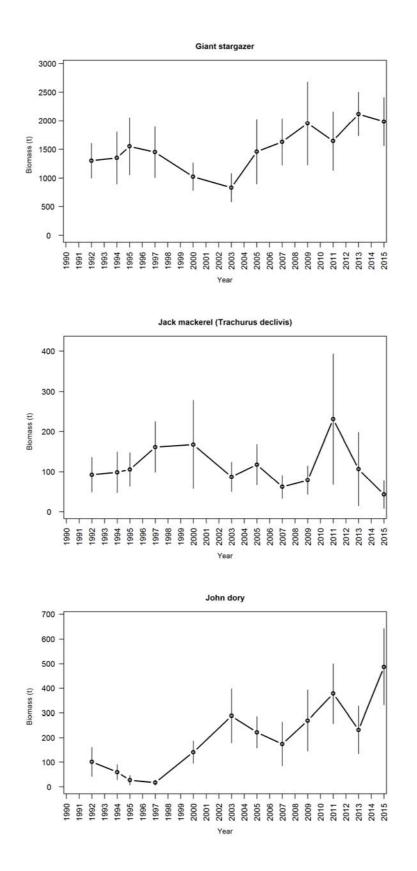



Figure 3—continued.

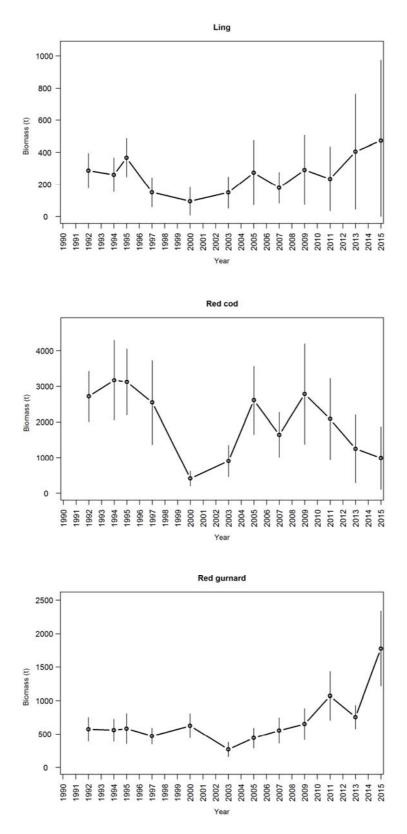
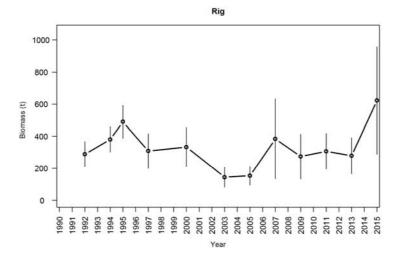
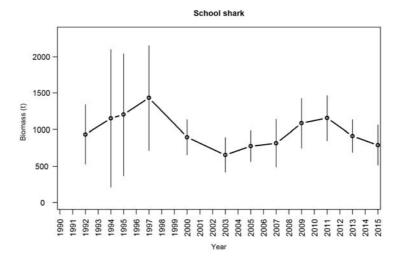





Figure 3—continued.





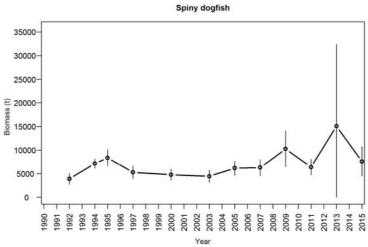



Figure 3—continued.

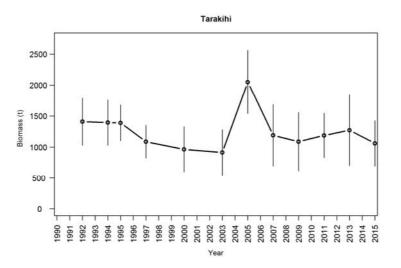



Figure 3—continued.

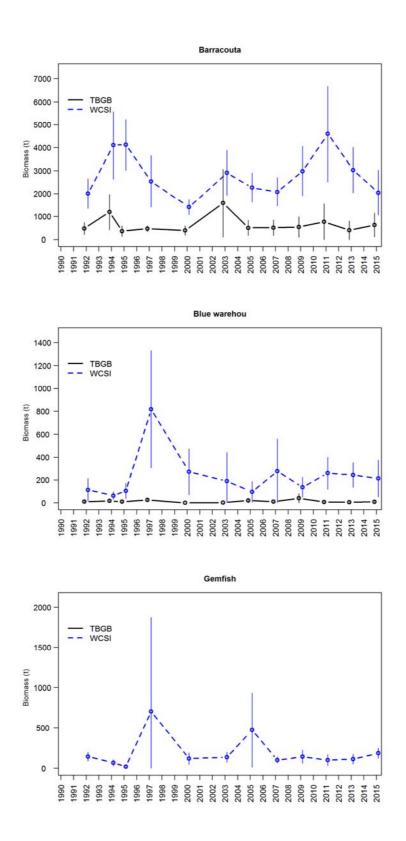
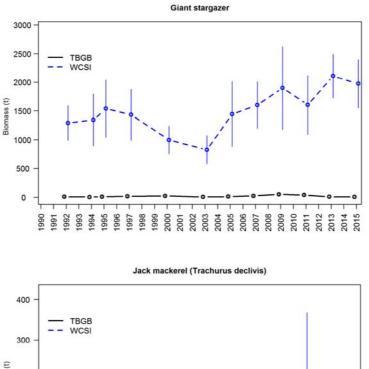
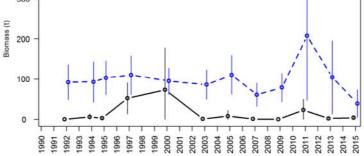





Figure 4: Trends in total biomass for the target species and other species for which the survey time series is likely to be monitoring adult or pre-recruit abundance, separated by Tasman and Golden Bays (TBGB), and the west coast South Island (WCSI).





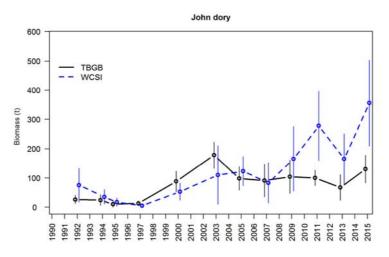



Figure 4—continued.




Figure 4—continued.

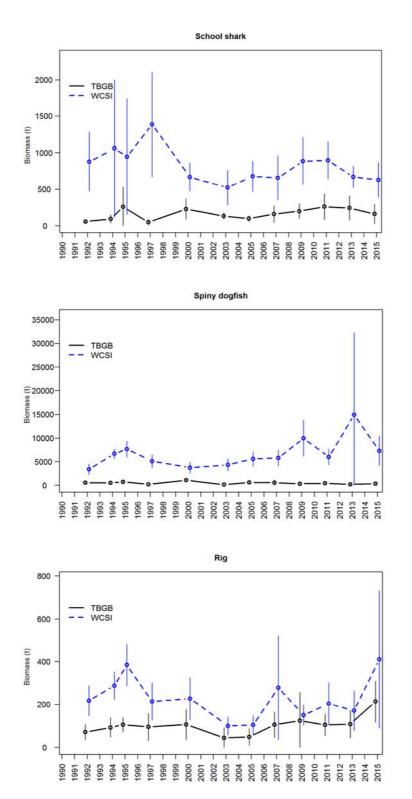



Figure 4—continued.

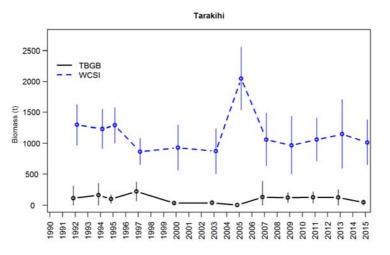



Figure 4—continued.

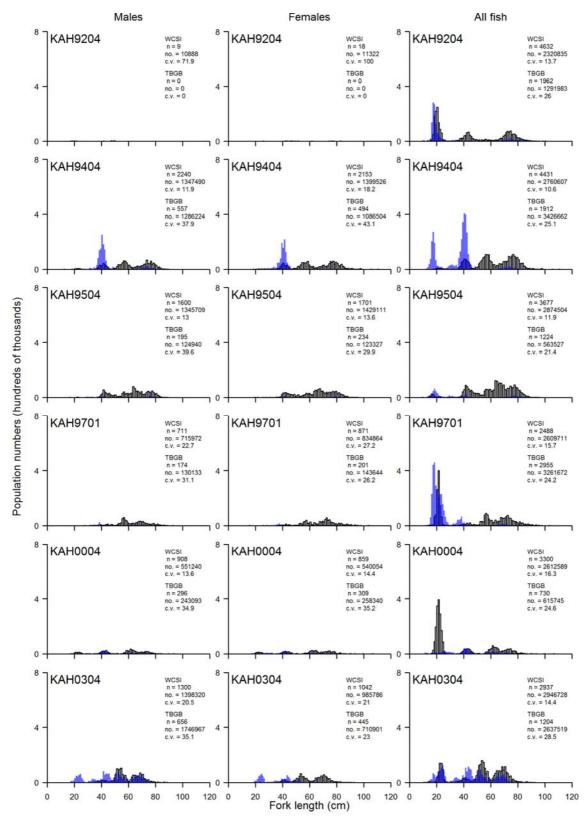



Figure 5: Comparative scaled length frequencies with Tasman and Golden Bays and west coast South Island plotted separately for the target species and those species where the surveys are monitoring adult or pre-recruit abundance. n = number of fish measured, no. = scaled population number, CV = coefficient of variation. 'All fish' includes any unsexed fish. Blue bars = Tasman and Golden Bays, black bars = west coast South Island. a) Barracouta.

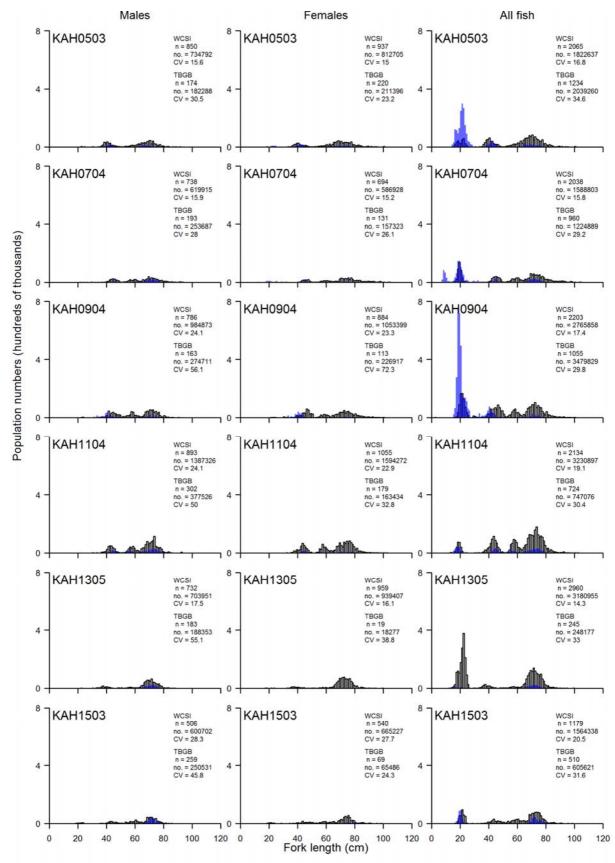



Figure 5a—continued.

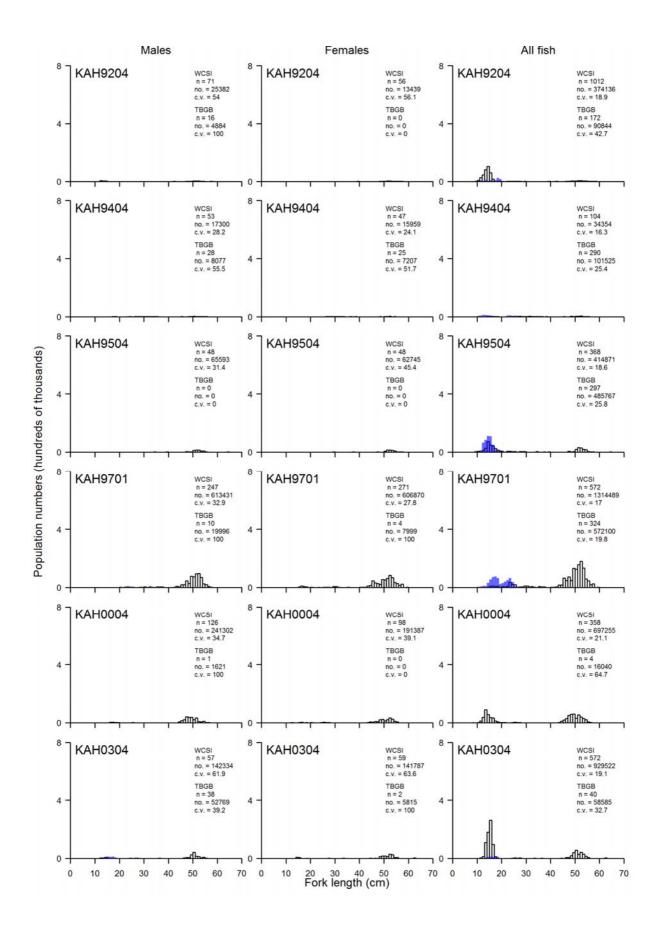



Figure 5b: Blue warehou.

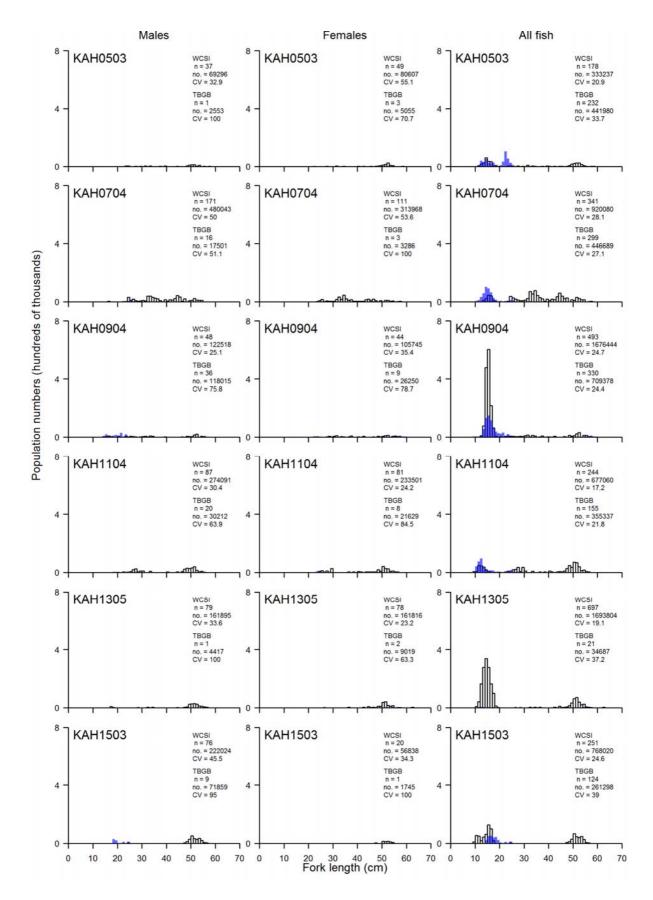



Figure 5b—continued.

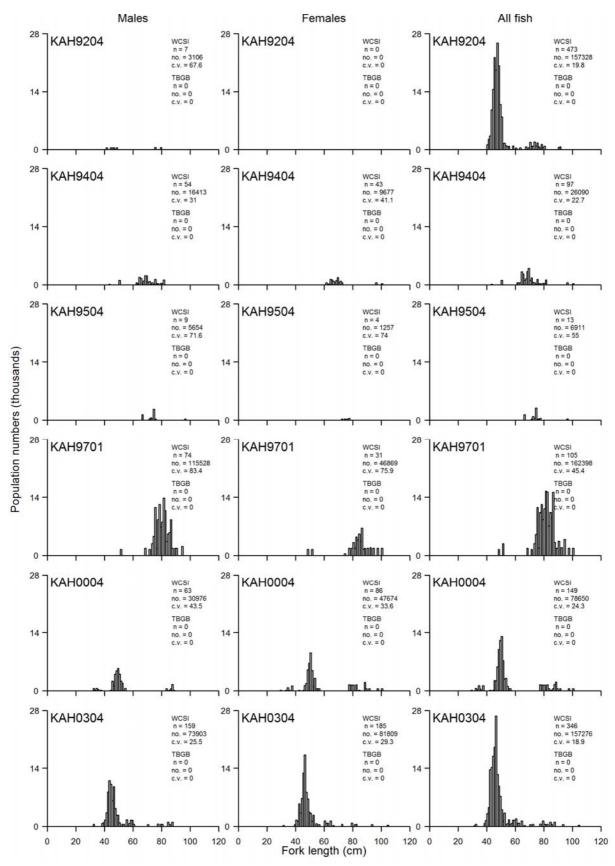



Figure 5c: Gemfish (100% of fish from the west coast).

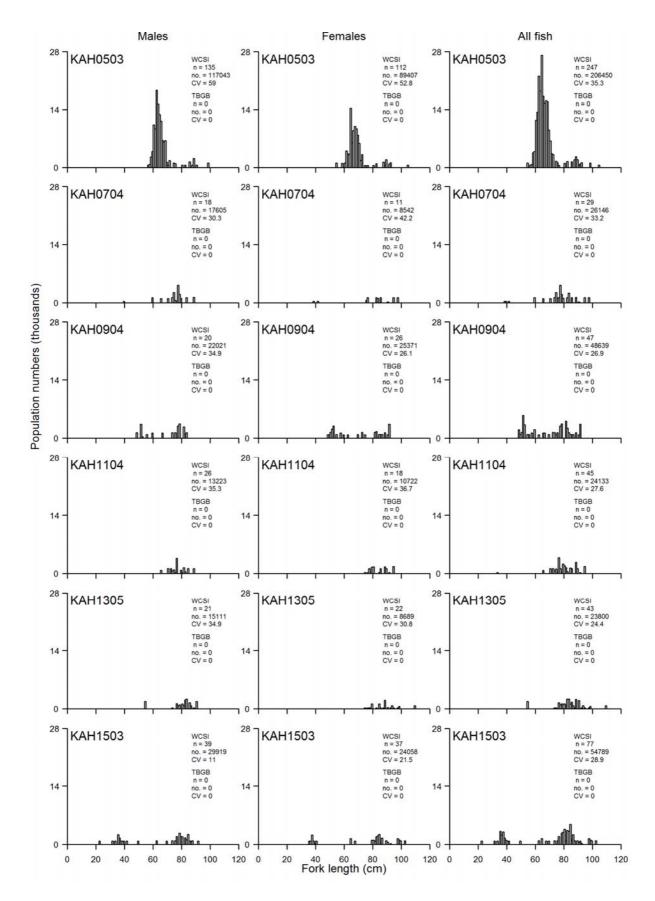



Figure 5c—continued.

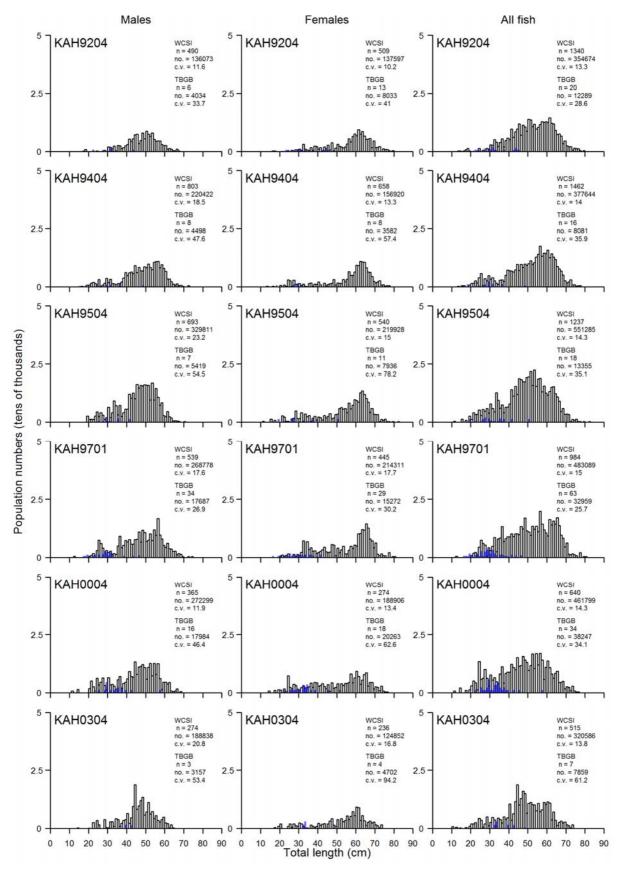



Figure 5d: Giant stargazer.

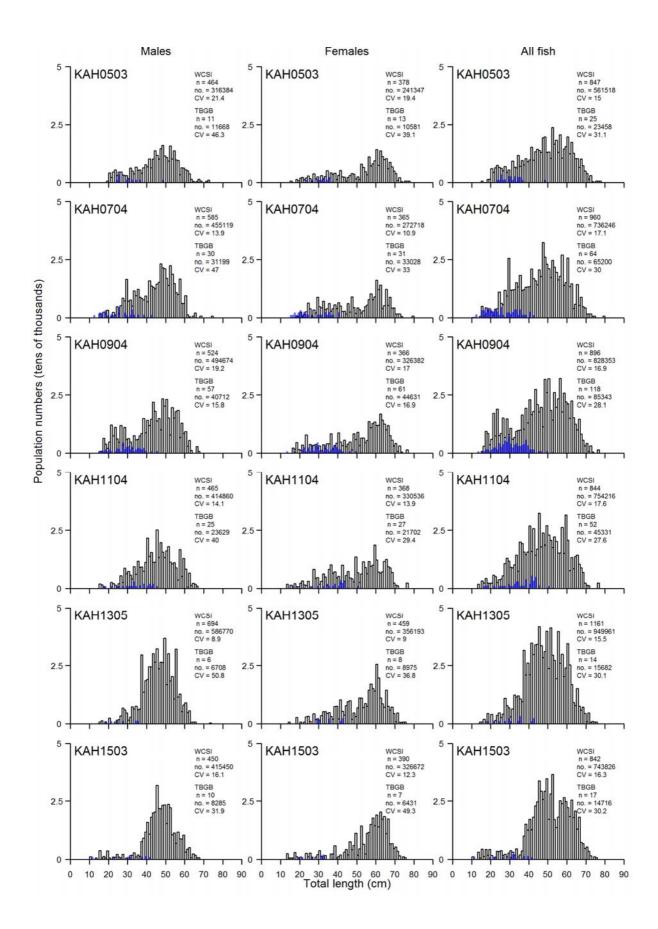



Figure 5d–continued.

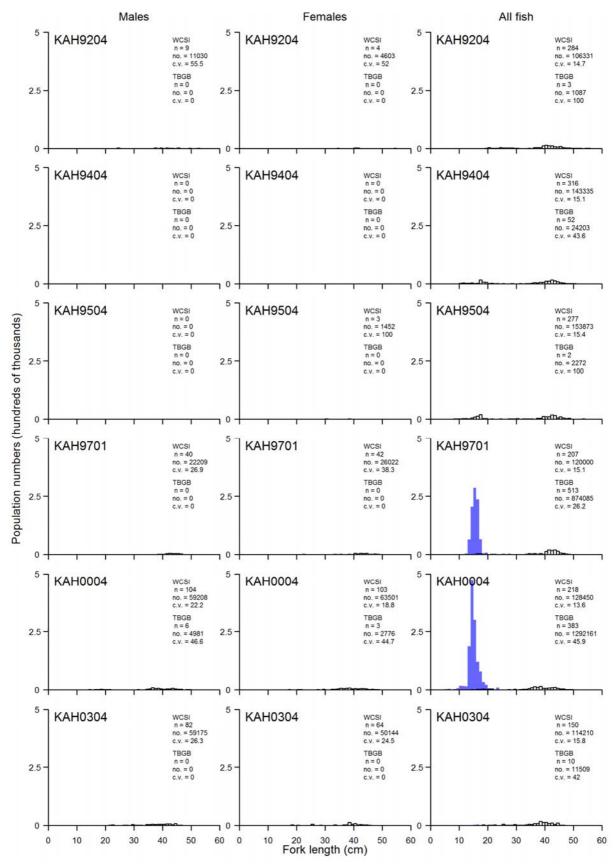



Figure 5e: Jack mackerel (Trachurus declivis).

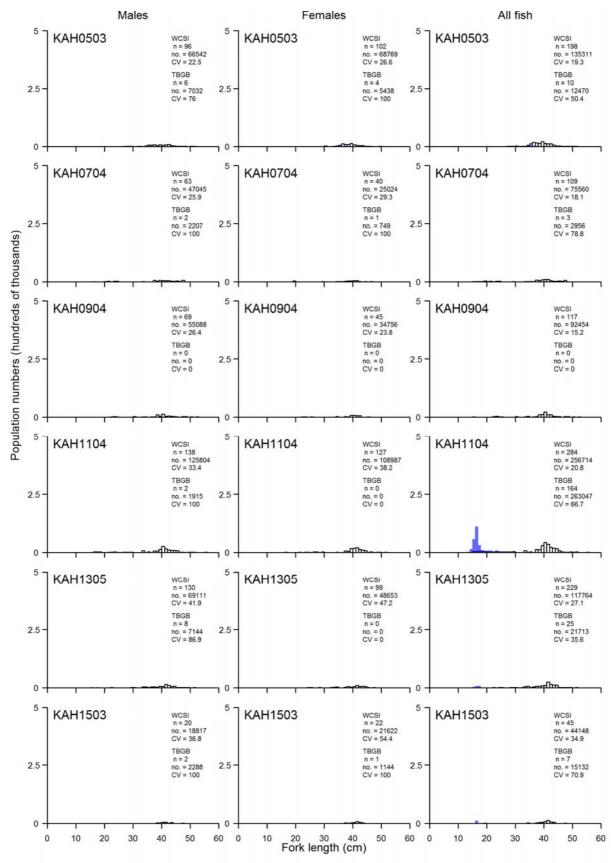



Figure 5e-continued.

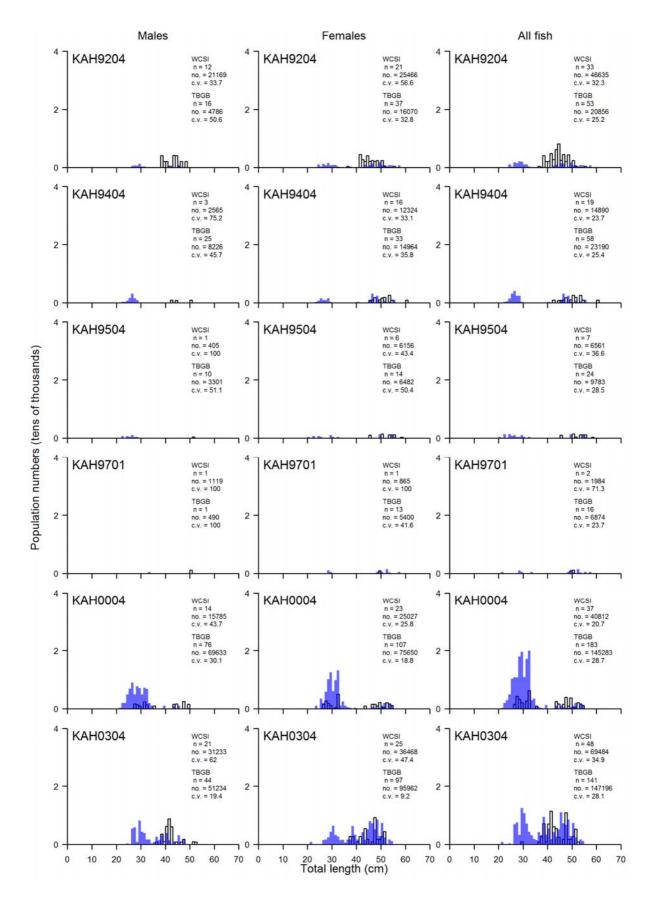



Figure 5f: John dory.

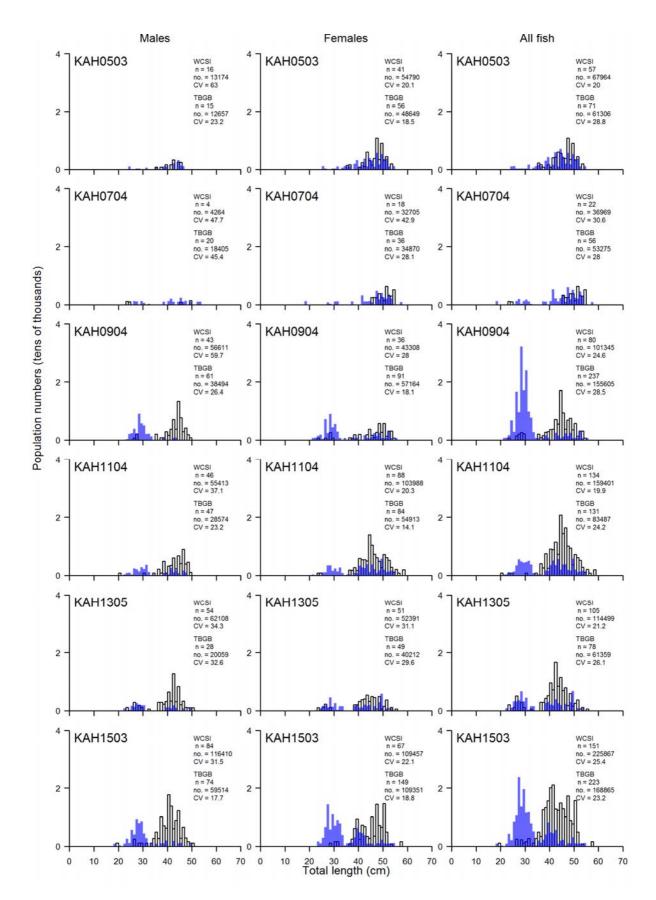



Figure 5f—continued.

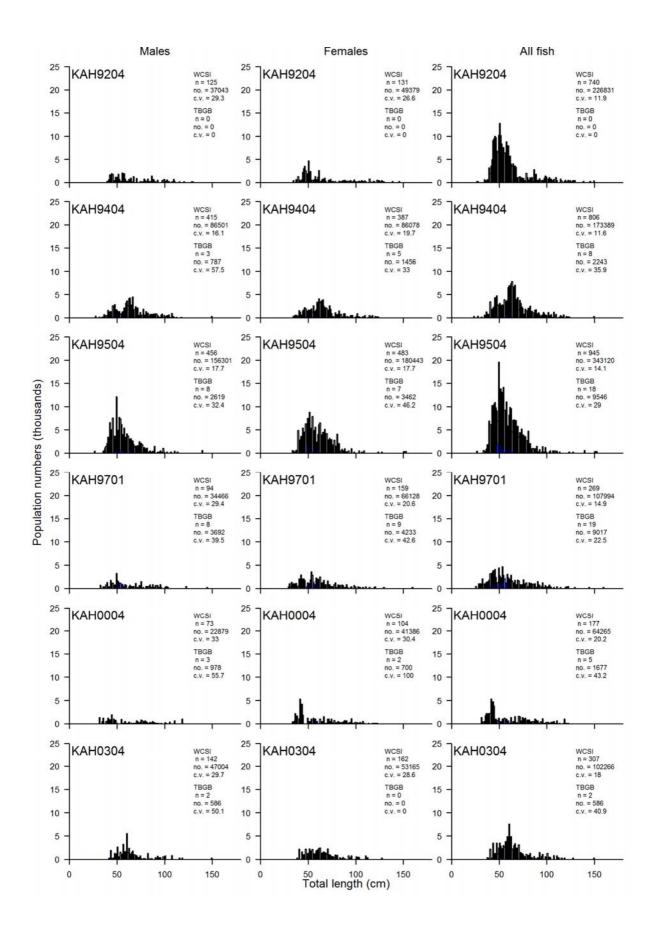



Figure 5g: Ling.




Figure 5g—continued.

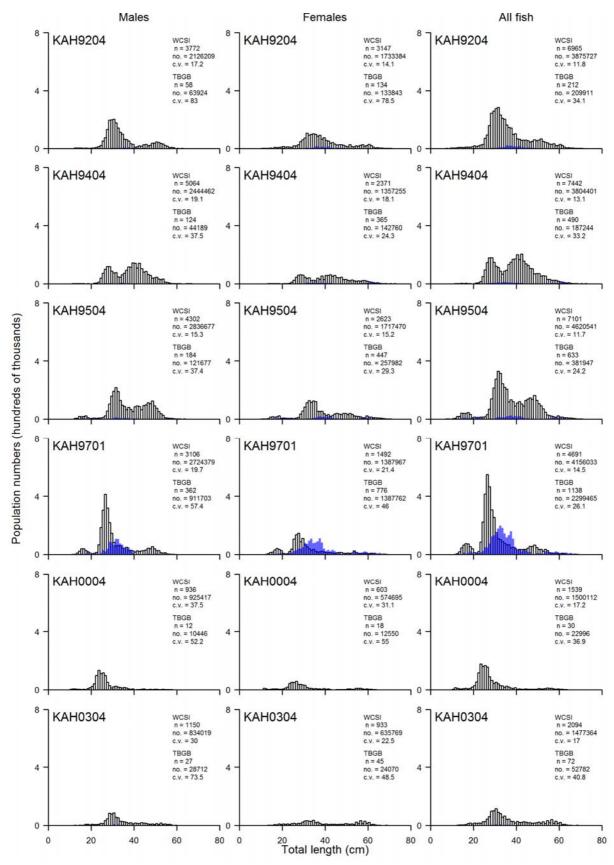



Figure 5h: Red cod.

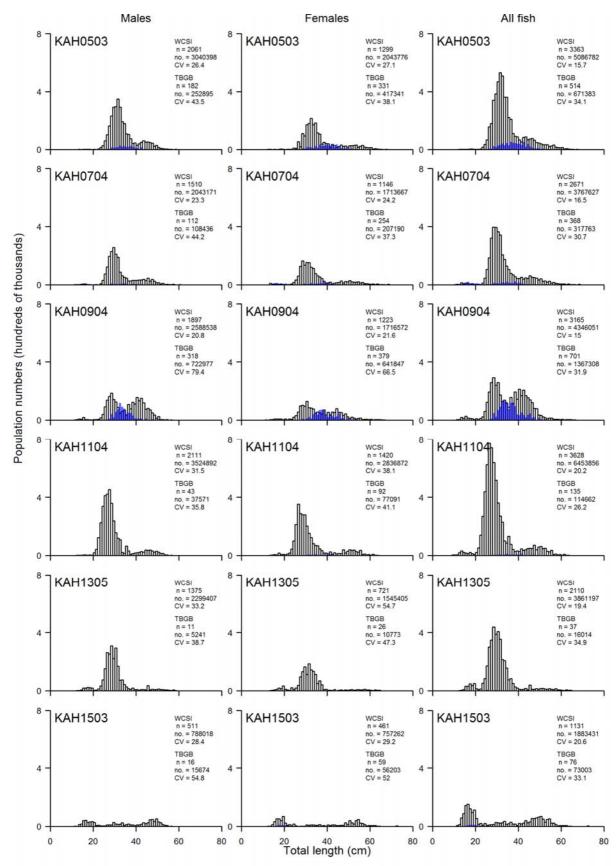



Figure 5h—continued.

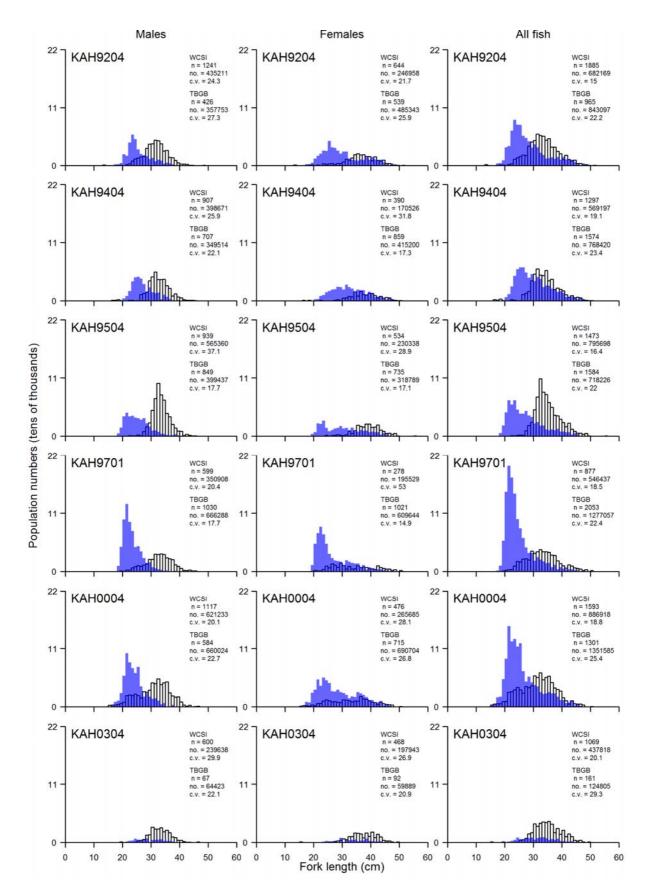



Figure 5i: Red gurnard.

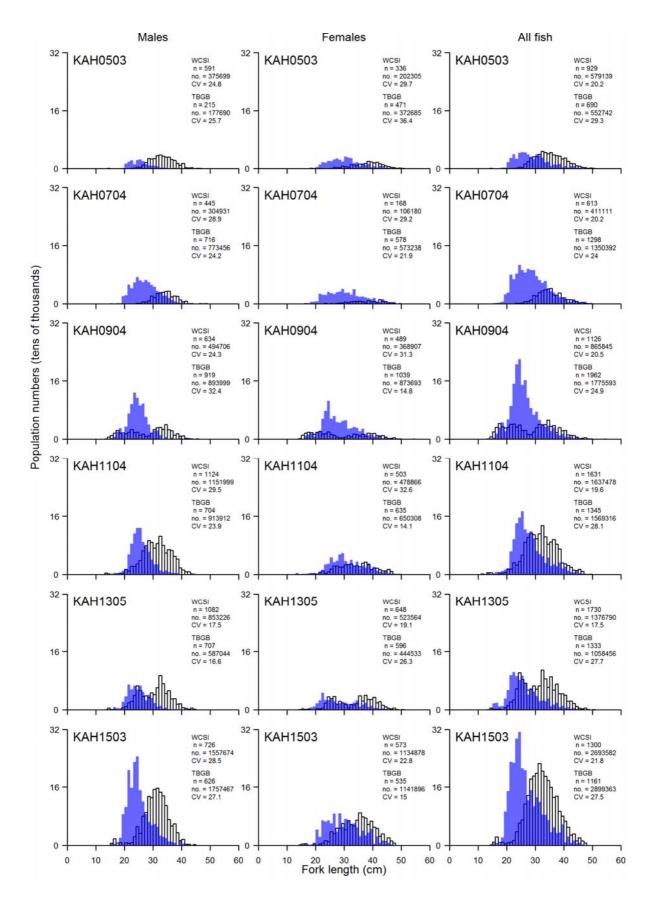



Figure 5i—continued.

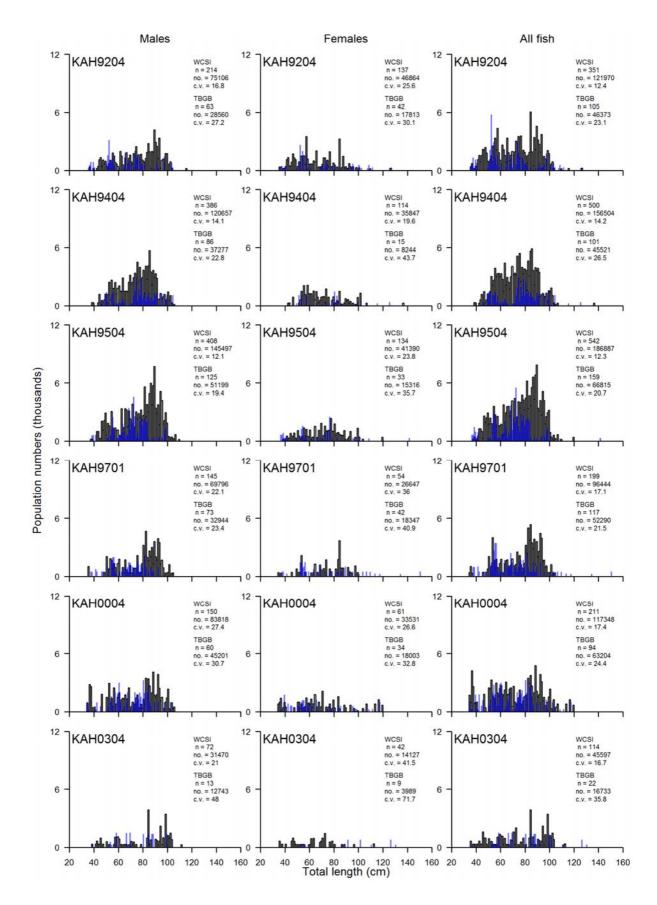



Figure 5j: Rig.

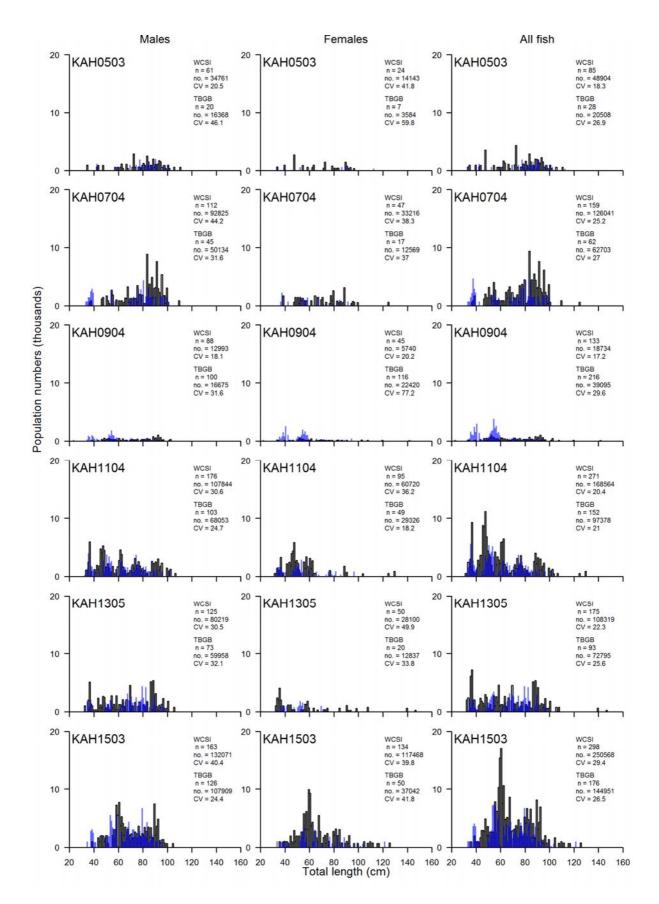



Figure 5j—continued.

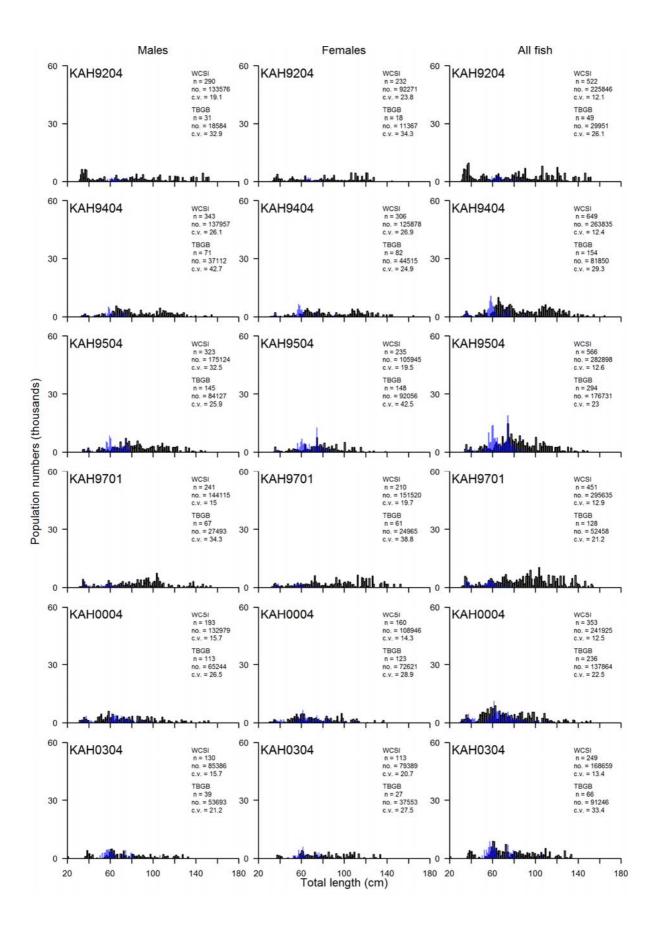



Figure 5k: School shark.

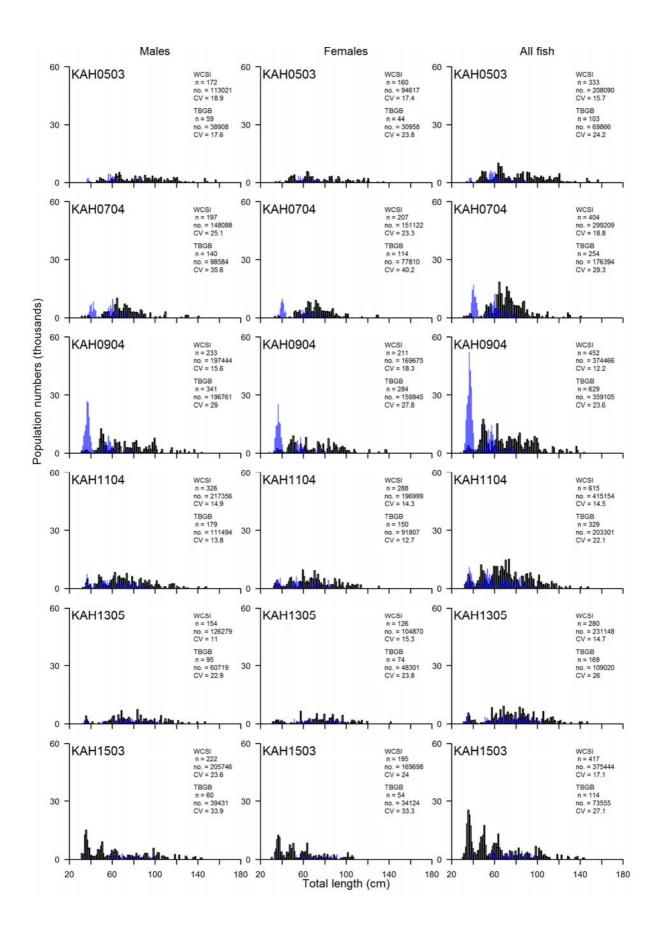



Figure 5k—continued.

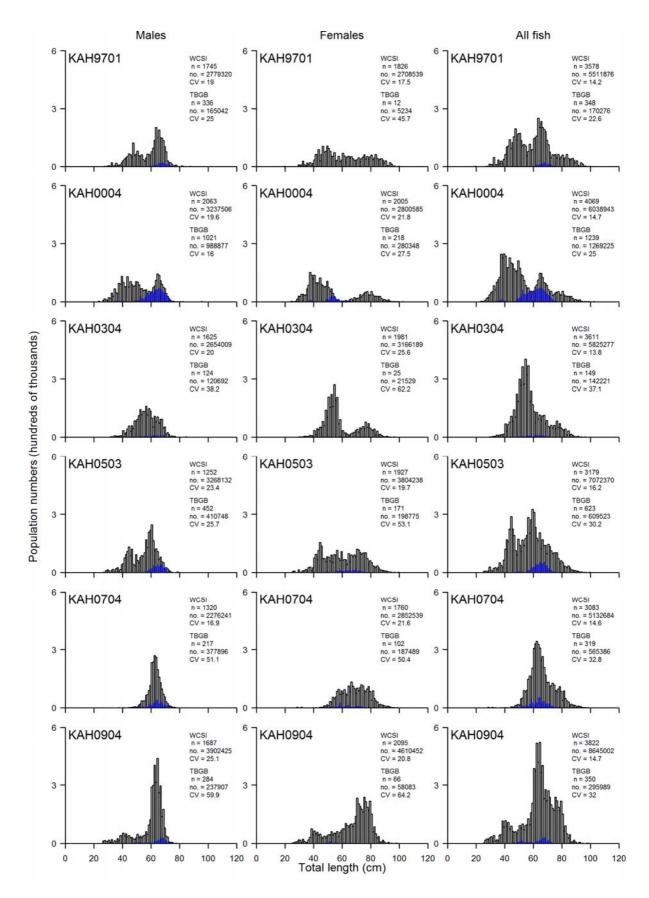



Figure 51: Spiny dogfish. NB: no spiny dogfish were measured before 1997.

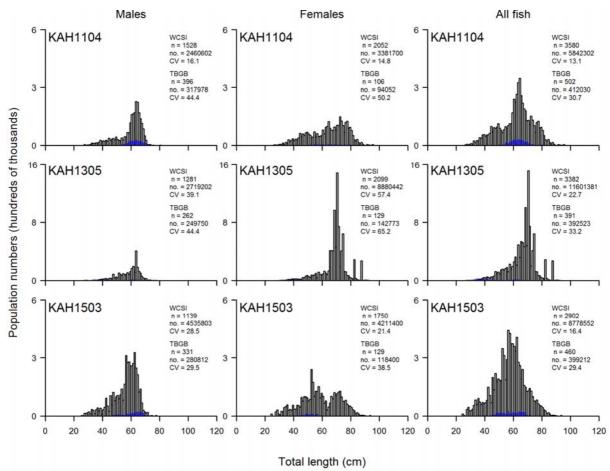



Figure 51–continued.

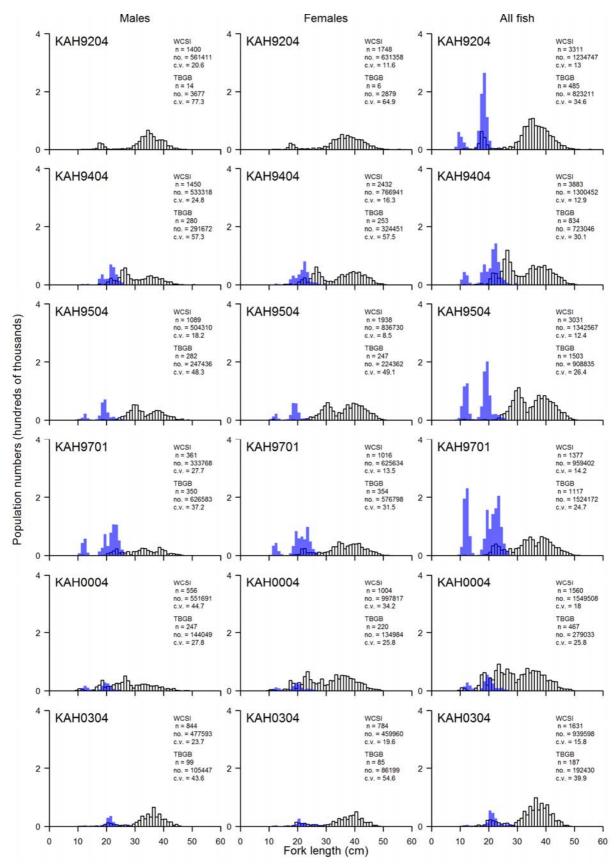



Figure 5m: Tarakihi.

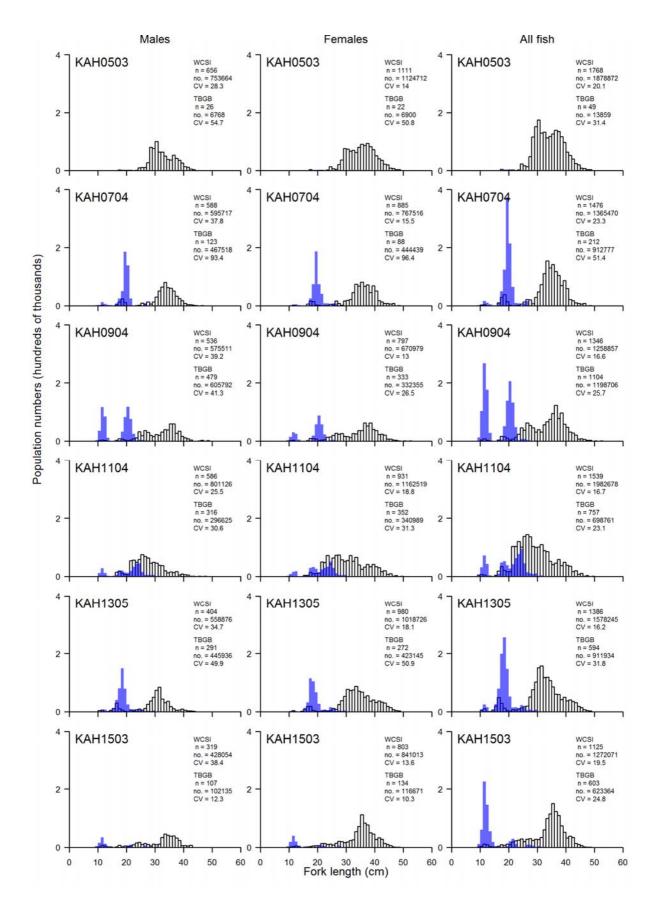
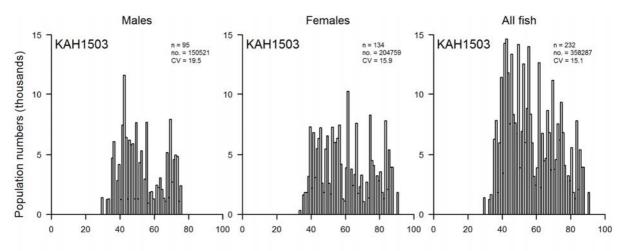
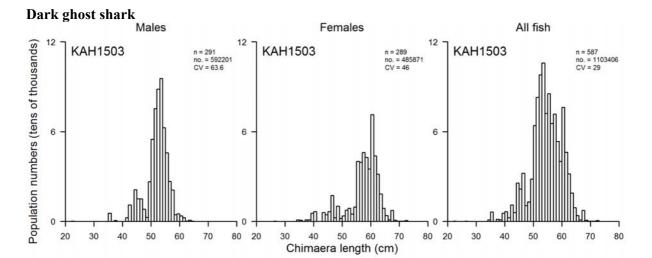





Figure 5m—continued.

## **Carpet shark**





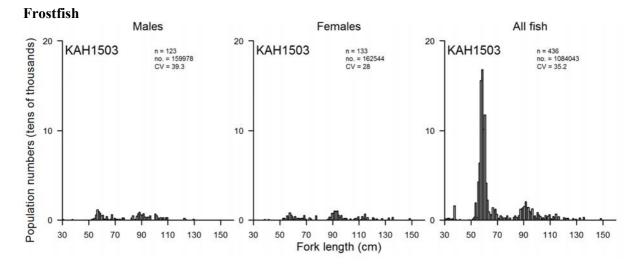



Figure 6: Scaled length frequency distributions for the other commercial species where more than 100 fish were measured and carpet shark. n = number of fish measured, no. = scaled population number, CV = coefficient of variation.

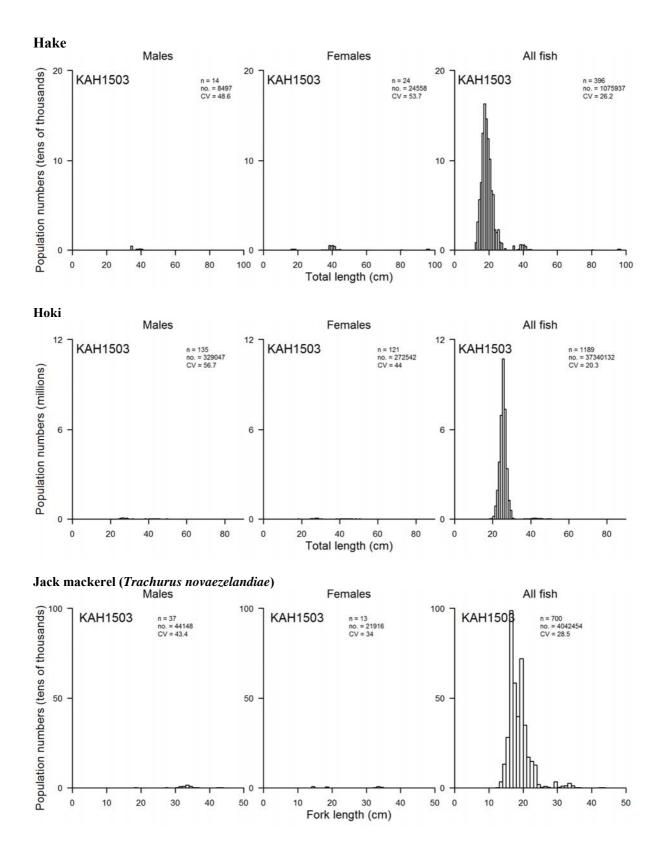
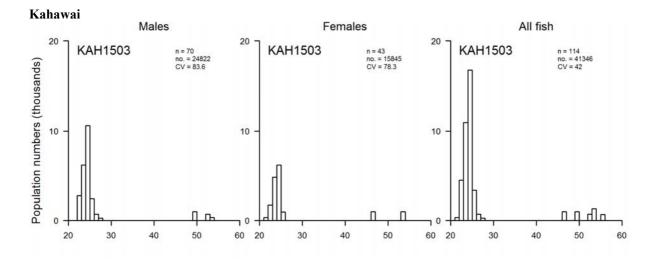





Figure 6—continued.







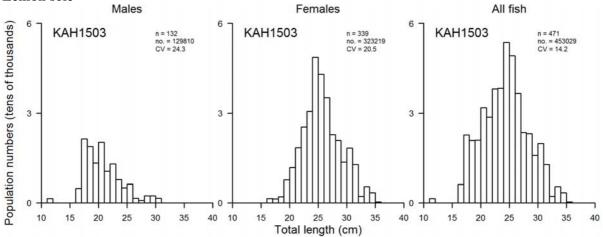
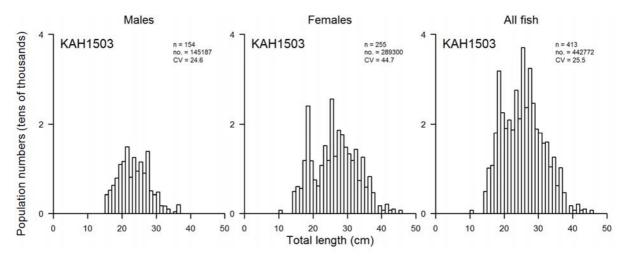
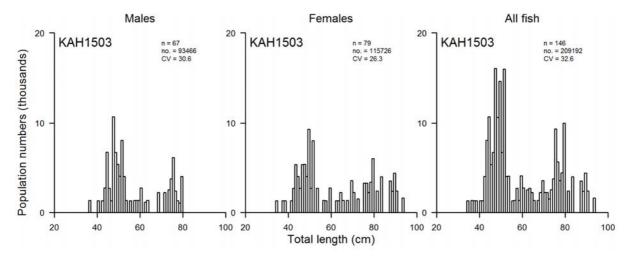





Figure 6—continued.









Sand flounder

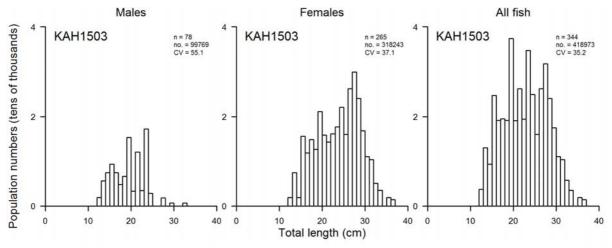
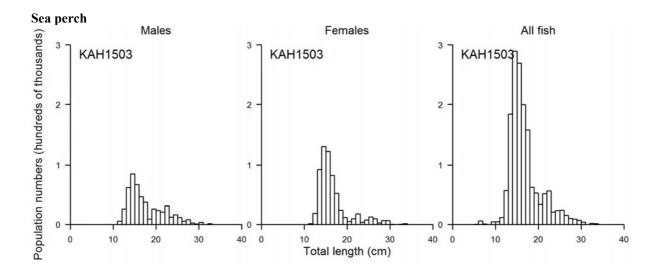




Figure 6—continued.



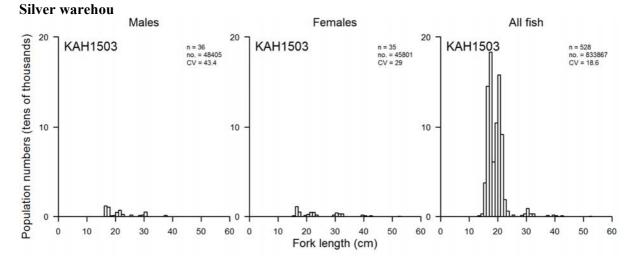



Figure 6—continued.

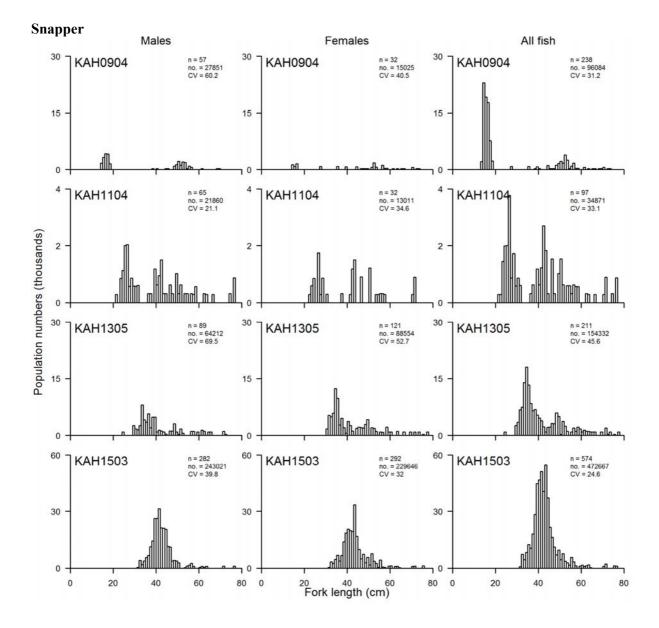
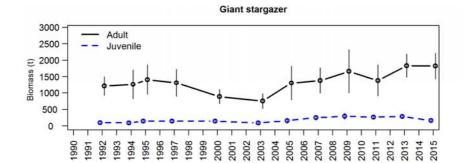
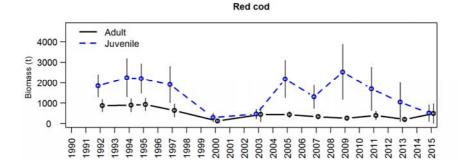
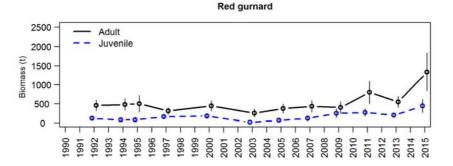
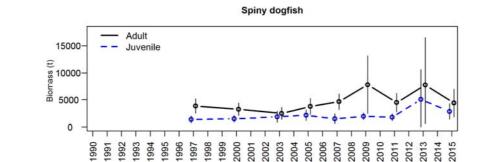







Figure 6—continued.









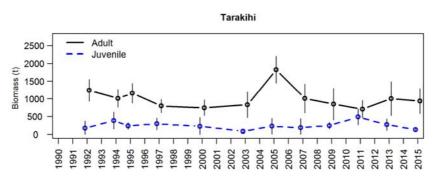



Figure 7: Biomass trends with 95% confidence intervals for juveniles (dashed blue lines) and adults (solid black lines) for the target species (all sexes combined) from all surveys in the series. For 50% maturity lengths, see Table 5.

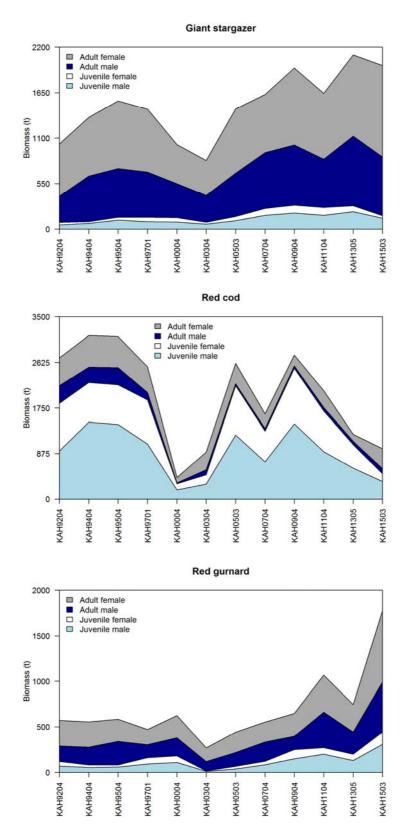



Figure 8: Biomass trends for juveniles and adults by sex for the target species for all surveys in the series. For 50% maturity lengths, see Table 5.

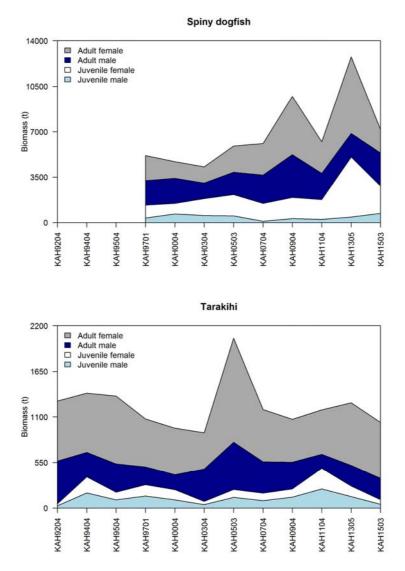



Figure 8 continued.

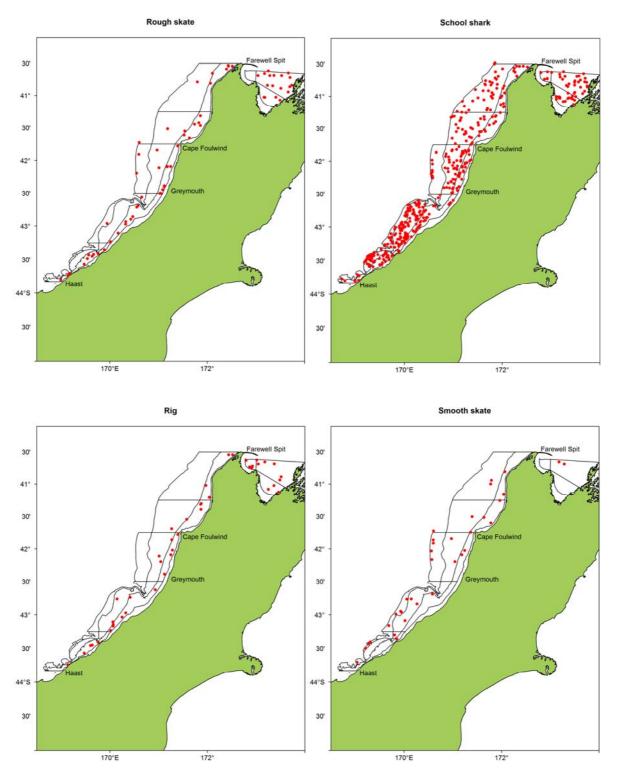



Figure 9: Release positions of tagged elasmobranchs by species for all surveys in the time series. Note that release positions often include more than one individual of a species.

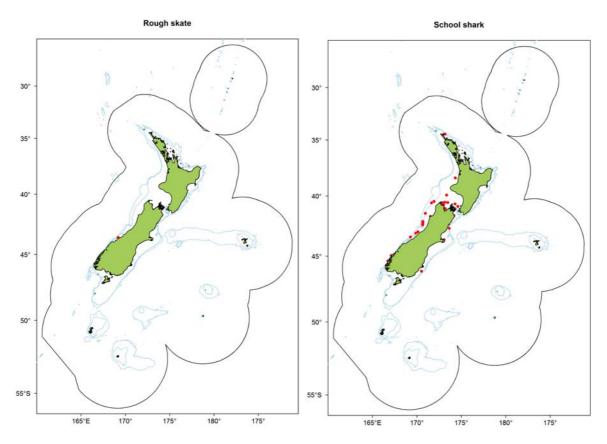



Figure 10: Positions of returned elasmobranch tags (NB: to date, no tags have been returned for smooth skate, and no location data provided by fishers for rig).

## Appendix 1: Length-weight relationship parameters used to scale length frequencies and calculate length class biomass estimates. (Ministry for Primary Industries *trawl* database; –, no data; n, sample size.)

 $W = aL^b$  where W is weight (g) and L is length (cm);

|                      |        |        |     |        | Length     |                    |
|----------------------|--------|--------|-----|--------|------------|--------------------|
| C                    |        | 1      |     | Min.   | range (cm) | Determine          |
| Species              | а      | b      | n   | IVIII. | Max.       | Data source        |
| Barracouta           | 0.0056 | 2.9766 | 408 | 13.2   | 91.4       | KAH1305            |
| Blue cod             | 0.0089 | 3.1285 | 109 | 20     | 50.1       | KAH1305            |
| Blue warehou         | 0.0144 | 3.1050 | 338 | 27.4   | 69.6       | TAN9604            |
| Carpet shark         | 0.0018 | 3.2854 | 199 | 30.5   | 91.2       | This survey        |
| Dark ghost shark     | 0.0015 | 3.3611 | 332 | 21.2   | 67.9       | KAH9704            |
| Elephantfish         | 0.0049 | 3.1654 | 378 | 13.4   | 91         | KAH9618            |
| Frostfish            | 0.0004 | 3.1629 | 450 | 10.4   | 153        | KAH0004            |
| Gemfish              | 0.0017 | 3.3419 | 391 | 32     | 107        | KAH9304 KAH9602    |
| Giant stargazer      | 0.0116 | 3.0991 | 545 | 11.2   | 76.9       | This survey        |
| Hake                 | 0.0049 | 3.1072 | 260 | 10.7   | 45.2       | KAH1104            |
| Hapuku               | 0.0078 | 3.1400 | 307 | 49     | 108        | TAN9301            |
| Hoki                 | 0.0046 | 2.8840 | 525 | 22     | 110        | SHI8301            |
| Jack mackerel        |        |        |     |        |            |                    |
| (Trachurus declivis) | 0.0165 | 2.9300 | 200 | 15     | 53         | COR9001            |
| (T. novaezelandiae)  | 0.0163 | 2.9230 | 200 | 15     | 40         | COR9001            |
| John dory            | 0.0142 | 3.0708 | 337 | 19.9   | 58.9       | This survey        |
| Leatherjacket        | 0.0088 | 3.2110 |     |        |            | IKA8003            |
| Lemon sole           | 0.0080 | 3.1278 | 524 | 14.6   | 41.2       | KAH9809            |
| Ling                 | 0.0016 | 3.2477 | 232 | 27     | 122        | KAH1305            |
| New Zealand sole     | 0.0049 | 3.2151 | 114 | 20     | 48         | KAH0304            |
| Northern spiny       |        |        |     |        |            |                    |
| dogfish              | 0.0034 | 3.0781 | 207 | 43     | 90.3       | combined surveys   |
| Red cod              | 0.0124 | 2.9162 | 552 | 11.4   | 65.9       | This survey        |
| Red gurnard          | 0.0076 | 3.0893 | 572 | 14.4   | 47.2       | This survey        |
| Rig                  | 0.0046 | 2.9781 | 321 | 34.6   | 126        | This survey        |
| Rough skate          | 0.0257 | 2.9454 | 206 | 17     | 62         | This survey        |
| Sand flounder        | 0.0207 | 2.8768 | 282 | 13.5   | 44.5       | KAH9809            |
| School shark         | 0.0036 | 3.0775 | 436 | 31.9   | 144        | This survey        |
| Sea perch            | 0.0262 | 2.9210 | 210 | 7      | 42         | KAH9618            |
| Silver dory          | 0.0191 | 2.9650 | 506 | 13.2   | 27.5       | KAH0904            |
| Silver warehou       | 0.0058 | 3.3279 | 146 | 15.8   | 43.2       | TAN502             |
| Smooth skate         | 0.0254 | 2.9279 | 52  | 21.2   | 105        | This survey        |
| Snapper              | 0.0447 | 2.7930 | 780 | 8      | 71         | Paul, FRD Bull. 13 |
| Spiny dogfish        | 0.0015 | 3.2254 | 931 | 28.8   | 90.6       | This survey        |
| Tarakihi             | 0.0163 | 3.0346 | 727 | 11.2   | 49.1       | This survey        |
| Two-saddle rattail   | 0.0015 | 3.31   | 605 | 18     | 55.8       | KAH0904            |

|         |         | of station da | -    |          |              |          |            |         |         | Distance   |            |            | Surface | Bottom |             |
|---------|---------|---------------|------|----------|--------------|----------|------------|---------|---------|------------|------------|------------|---------|--------|-------------|
|         |         |               |      |          | Start of tow |          | End of tow | Gear de | pth (m) | trawled    | Headline   | Doorspread | temp    |        | Warp length |
| Station | Stratum | Date          | Time | °' S     | ° ' E        | °' S     | ° ' E      | Min.    | Max.    | (n. miles) | height (m) | •          | (°C)    | (°C)   | 1 0         |
| 1       | 19      | 28 Mar 15     | 1236 | 40 59.25 | 173 39.57    | 40 58.53 | 173 43.21  | 39      | 39      | 2.84       | 4.6        | 72.9       | 19.0    | 17.1   | 20          |
| 2       | 18      | 28 Mar 15     | 1357 | 41 01.32 | 173 34.15    | 41 03.62 | 173 31.78  | 33      | 38      | 2.91       | 4.8        | 72.9       | 18.9    | 17.6   | 20          |
| 3       | 19      | 29 Mar 15     | 712  | 40 37.75 | 173 07.71    | 40 40.14 | 173 10.21  | 42      | 46      | 3.05       | 4.7        | 74.0       | 18.3    | 16.3   | 20          |
| 4       | 17      | 29 Mar 15     | 947  | 40 40.30 | 172 57.19    | 40 42.49 | 172 59.74  | 31      | 32      | 2.92       | 4.8        | 71.8       | 18.6    | 17.6   | 20          |
| 5       | 17      | 29 Mar 15     | 1347 | 40 42.15 | 172 50.04    | 40 43.77 | 172 52.12  | 24      | 24      | 2.26       | 4.3        | 70.3       | 18.7    | 18.2   | 20          |
| 6       | 17      | 29 Mar 15     | 1441 | 40 37.79 | 172 56.37    | 40 37.84 | 173 00.44  | 30      | 34      | 3.08       | 4.5        | 70.6       | 18.6    | 17.6   | 20          |
| 7       | 19      | 30 Mar 15     | 616  | 40 45.78 | 173 10.12    | 40 44.41 | 173 13.72  | 41      | 44      | 3.05       | 4.8        | 74.3       | 18.6    | 16.4   | 20          |
| 8       | 19      | 30 Mar 15     | 840  | 40 42.88 | 173 27.44    | 40 41.64 | 173 31.15  | 51      | 53      | 3.07       | 4.6        | 76.2       | 18.7    | 16.8   | 20          |
| 9       | 19      | 30 Mar 15     | 1059 | 40 46.27 | 173 41.15    | 40 47.93 | 173 44.43  | 56      | 63      | 2.98       | 4.7        | 74.4       | 18.5    | 17.1   | 20          |
| 10      | 19      | 30 Mar 15     | 1332 | 40 49.37 | 173 32.17    | 40 51.58 | 173 34.85  | 49      | 54      | 2.99       | 4.7        | 74.4       | 19.0    | 16.6   | 20          |
| 11      | 18      | 31 Mar 15     | 618  | 40 53.57 | 173 15.85    | 40 56.32 | 173 16.63  | 38      | 39      | 2.81       | 4.6        | 70.9       | 18.6    | 17.0   | 20          |
| 12      | 18      | 31 Mar 15     | 841  | 40 59.69 | 173 17.37    | 41 01.55 | 173 17.76  | 38      | 39      | 1.88       | 4.5        | 73.2       | 18.7    | 16.6   | 20          |
| 13      | 1       | 1 Apr 15      | 627  | 40 29.33 | 172 27.44    | 40 30.99 | 172 24.21  | 83      | 84      | 2.96       | 4.9        | 77.8       | 17.9    | 14.2   | 24          |
| 14      | 1       | 1 Apr 15      | 954  | 40 46.49 | 172 08.15    | 40 49.19 | 172 06.43  | 72      | 75      | 2.99       | 4.8        | 73.4       | 17.4    | 14.1   | 20          |
| 15      | 1       | 1 Apr 15      | 1200 | 40 51.22 | 172 01.48    | 40 53.95 | 171 59.91  | 94      | 95      | 2.97       | 4.9        | 78.1       | 18.8    | 13.9   | 27          |
| 16      | 2       | 1 Apr 15      | 1401 | 40 47.56 | 171 58.44    | 40 44.61 | 171 59.67  | 109     | 111     | 3.09       | 4.8        | 84.7       | 19.1    | 14.1   | 31          |
| 17      | 6       | 2 Apr 15      | 634  | 41 18.61 | 171 34.30    | 41 16.04 | 171 36.41  | 126     | 128     | 3.01       | 4.5        | 83.4       | 18.6    | 13.6   | 35          |
| 18      | 2       | 2 Apr 15      | 857  | 41 06.47 | 171 33.00    | 41 03.72 | 171 34.57  | 132     | 137     | 2.99       | 4.5        | 85.2       | 18.8    | 14.0   | 38          |
| 19      | 2       | 2 Apr 15      | 1112 | 41 07.86 | 171 38.02    | 41 10.64 | 171 36.47  | 129     | 133     | 3.01       | 4.7        | 83.4       | _       | -      | 36          |
| 20      | 2       | 2 Apr 15      | 1318 | 41 11.11 | 171 43.92    | 41 08.36 | 171 45.42  | 115     | 117     | 2.97       | 4.9        | 82.7       | _       | -      | 33          |
| 21      | 2       | 2 Apr 15      | 1506 | 41 08.14 | 171 49.91    | 41 10.80 | 171 51.57  | 101     | 106     | 2.93       | 4.1        | 84.8       | 18.9    | 13.8   | 30          |
| 22      | 9       | 3 Apr 15      | 621  | 42 02.16 | 170 35.82    | 41 59.38 | 170 36.78  | 308     | 318     | 2.87       | 4.8        | 90.6       | 18.7    | 11.9   | 80          |
| 23      | 9       | 3 Apr 15      | 826  | 41 55.13 | 170 38.34    | 41 52.35 | 170 39.10  | 314     | 322     | 2.83       | 4.0        | 90.2       | 18.7    | 12.1   | 80          |
| 24      | 9       | 3 Apr 15      | 1034 | 41 52.42 | 170 35.91    | 41 49.47 | 170 35.68  | 391     | 395     | 2.95       | 4.5        | 88.2       | 18.5    | 11.3   | 95          |
| 25      | 8       | 3 Apr 15      | 1334 | 41 45.88 | 170 51.87    | 41 48.73 | 170 51.00  | 194     | 195     | 2.92       | 4.2        | 90.5       | 18.7    | 13.1   | 53          |
| 26      | 8       | 4 Apr 15      | 630  | 42 00.48 | 170 50.04    | 42 03.31 | 170 50.60  | 184     | 188     | 2.86       | 4.8        | 84.3       | 18.5    | 12.9   | 50          |
| 27      | 8       | 4 Apr 15      | 915  | 42 03.09 | 171 04.10    | 42 06.04 | 171 03.94  | 137     | 144     | 2.95       | 4.5        | 87.4       | 18.4    | 13.0   | 40          |
| 28      | 7       | 4 Apr 15      | 1149 | 42 15.15 | 171 07.13    | 42 12.60 | 171 09.27  | 58      | 67      | 3.00       | 4.7        | 70.5       | 18.3    | 14.9   | 20          |
| 29      | 7       | 4 Apr 15      | 1358 | 42 05.62 | 171 12.89    | 42 03.81 | 171 16.27  | 45      | 60      | 3.09       | 4.8        | 70.1       | 18.2    | 14.7   | 20          |
| 30      | 6       | 5 Apr 15      | 627  | 41 27.50 | 171 08.37    | 41 25.04 | 171 10.50  | 164     | 164     | 2.93       | 4.8        | 92.5       | 18.6    | 13.0   | 45          |
| 31      | 6       | 5 Apr 15      | 850  | 41 29.56 | 171 17.35    | 41 27.09 | 171 19.34  | 142     | 147     | 2.88       | 4.8        | 82.5       | 18.6    | 13.1   | 40          |

| Appendix 2– | -continued | ł         |      |          |              |          |            |         |         |                     |            |            |                 |                |             |
|-------------|------------|-----------|------|----------|--------------|----------|------------|---------|---------|---------------------|------------|------------|-----------------|----------------|-------------|
|             |            |           |      |          | Start of tow |          | End of tow | Gear de | pth (m) | Distance<br>trawled | Headline   | Doorspread | Surface<br>temp | Bottom<br>temp | Warp length |
| Station     | Stratum    | Date      | Time | °' S     | °' E         | °' S     | ° ' E      | Min.    | Max.    | (n. miles)          | height (m) | (m)        | (°C)            | (°C)           |             |
| 32          | 8          | 5 Apr 15  | 1251 | 41 48.63 | 171 07.08    | 41 51.48 | 171 06.21  | 153     | 157     | 2.92                | 4.8        | 91.5       | 18.5            | 12.9           | 44          |
| 33          | 8          | 5 Apr 15  | 1453 | 41 55.81 | 171 11.19    | 41 57.74 | 171 10.09  | 124     | 126     | 2.09                | 4.6        | 86.3       | 18.5            | 13.0           | 35          |
| 34          | 5          | 6 Apr 15  | 624  | 41 27.29 | 171 52.76    | 41 29.98 | 171 50.85  | 35      | 35      | 3.04                | 4.7        | 74.5       | 18.4            | 16.9           | 20          |
| 35          | 5          | 6 Apr 15  | 825  | 41 34.41 | 171 43.57    | 41 36.63 | 171 40.64  | 37      | 38      | 3.11                | 4.7        | 73.9       | 18.4            | 16.4           | 20          |
| 36          | 7          | 8 Apr 15  | 1320 | 41 54.08 | 171 17.11    | 41 57.01 | 171 15.70  | 77      | 79      | 3.11                | 4.8        | 73.1       | 18.3            | 14.1           | 22          |
| 37          | 11         | 9 Apr 15  | 629  | 42 29.99 | 170 59.87    | 42 32.65 | 170 58.18  | 78      | 80      | 2.93                | 4.8        | 75.4       | 18.4            | 14.8           | 23          |
| 38          | 11         | 9 Apr 15  | 940  | 42 45.40 | 170 39.88    | 42 46.48 | 170 36.06  | 40      | 54      | 3.00                | 4.7        | 75.0       | 17.7            | 16.7           | 20          |
| 39          | 11         | 9 Apr 15  | 1140 | 42 50.33 | 170 41.63    | 42 51.85 | 170 38.00  | 27      | 30      | 3.06                | 4.9        | 74.1       | 17.6            | 18.1           | 20          |
| 40          | 11         | 9 Apr 15  | 1353 | 42 46.01 | 170 30.42    | 42 46.94 | 170 26.48  | 50      | 64      | 3.03                | 4.8        | 72.1       | 18.0            | 16.1           | 20          |
| 41          | 12         | 9 Apr 15  | 1546 | 42 45.56 | 170 20.08    | 42 47.12 | 170 16.55  | 111     | 125     | 3.02                | 4.6        | 87.1       | 17.7            | 13.4           | 35          |
| 42          | 12         | 10 Apr 15 | 641  | 43 02.53 | 169 51.56    | 43 04.94 | 169 49.33  | 178     | 183     | 2.90                | 4.7        | 89.4       | 17.6            | 13.0           | 50          |
| 43          | 13         | 10 Apr 15 | 929  | 43 06.05 | 169 45.58    | 43 08.25 | 169 42.75  | 217     | 242     | 3.01                | 4.5        | 90.0       | 17.7            | 12.9           | 60          |
| 44          | 12         | 10 Apr 15 | 1253 | 43 12.68 | 169 53.85    | 43 14.66 | 169 50.66  | 149     | 160     | 3.05                | 4.8        | 86.4       | 17.9            | 13.0           | 43          |
| 45          | 15         | 10 Apr 15 | 1516 | 43 15.16 | 169 53.78    | 43 17.34 | 169 50.89  | 132     | 135     | 3.02                | 4.8        | 89.7       | _               | -              | 37          |
| 46          | 14         | 11 Apr 15 | 630  | 43 49.77 | 168 54.32    | 43 48.82 | 168 58.15  | 37      | 46      | 2.92                | 4.7        | 71.1       | 17.4            | 16.7           |             |
| 47          | 16         | 11 Apr 15 | 1008 | 43 31.06 | 169 10.55    | 43 28.95 | 169 13.43  | 280     | 301     | 2.96                | 4.6        | 91.4       | 17.2            | 12.8           | 75          |
| 48          | 14         | 12 Apr 15 | 703  | 43 31.00 | 169 36.34    | 43 32.82 | 169 33.01  | 25      | 25      | 3.02                | 4.8        | 75.4       | 17.7            | 17.6           | 20          |
| 49          | 14         | 14 Apr 15 | 1142 | 43 35.40 | 169 19.91    | 43 33.67 | 169 23.20  | 85      | 90      | 2.94                | 4.8        | 83.0       | 15.9            | 13.1           | 25          |
| 50          | 15         | 14 Apr 15 | 1346 | 43 32.17 | 169 19.98    | 43 29.72 | 169 22.37  | 113     | 117     | 3.00                | 4.8        | 85.0       | 16.8            | 13.3           | 33          |
| 51          | 15         | 15 Apr 15 | 636  | 43 28.80 | 169 20.39    | 43 27.05 | 169 23.68  | 120     | 127     | 2.96                | 4.7        | 87.5       | 16.9            | 13.3           | 35          |
| 52          | 16         | 15 Apr 15 | 933  | 43 24.81 | 169 17.98    | 43 23.11 | 169 21.05  | 326     | 330     | 2.80                | 4.8        | 93.3       | 16.3            | 11.6           | 840         |
| 53          | 16         | 15 Apr 15 | 1151 | 43 20.58 | 169 28.29    | 43 19.47 | 169 31.87  | 278     | 299     | 2.83                | 4.6        | 92.3       | 16.5            | 11.9           | 750         |
| 54          | 13         | 15 Apr 15 | 1612 | 42 58.95 | 169 52.04    | 42 57.37 | 169 55.17  | 301     | 311     | 2.78                | 4.5        | 91.3       | 17.0            | 12.9           | 78          |
| 55          | 13         | 16 Apr 15 | 650  | 42 55.53 | 169 58.07    | 42 53.48 | 170 00.41  | 250     | 279     | 2.67                | 4.6        | 88.9       | 16.9            | 13.1           | 70          |
| 56          | 12         | 16 Apr 15 | 901  | 42 52.50 | 170 07.61    | 42 50.39 | 170 09.88  | 156     | 164     | 2.68                | 4.7        | 84.7       | 16.8            | 13.2           | 44          |
| 57          | 12         | 16 Apr 15 | 1117 | 42 43.39 | 170 11.28    | 42 41.37 | 170 14.05  | 145     | 149     | 2.86                | 4.7        | 85.2       | 17.3            | 13.2           | 410         |
| 58          | 11         | 16 Apr 15 | 1402 | 42 54.81 | 170 17.11    | 42 57.29 | 170 14.87  | 94      | 95      | 2.97                | 4.7        | 82.7       | 17.1            | 13.6           | 27          |
| 59          | 5          | 17 Apr 15 | 634  | 41 24.45 | 171 51.70    | 41 22.08 | 171 53.86  | 43      | 45      | 2.87                | 4.6        | 75.3       | 17.1            | 15.6           | 200         |
| 60          | 2          | 17 Apr 15 | 1025 | 40 58.51 | 171 54.35    | 40 55.96 | 171 56.45  | 107     | 108     | 3.00                | 4.6        | 75.7       | 17.0            | 14.2           | 30          |

| code(kg)nameScientific namecatchstationsoccurrenceMinMaxSPD8406.4Spiny dogfishSquadus acanthias2.75693.324327BAR2991.2BarracoutaThyrsites atun8.1488024318HOK2945.4HokiMacruronus novaezelandiae7.9213550327GIZ2477.5Giant stragazerKathetostoma giganteum6.74676.730327GUR2020GumardChelidonichtyps kumu5.94168.324185SNA127.2SnapperPagrus auratus3.42033.324164RCO1249.3Red codPseudophycis bachus3.4396524327SNM1015.6Ghost sharkHydrolagus novaezealandiae2.72846.767327SDO918.1Silver doryCyttus novaezealandiae2.52338.363392SCH88.6School sharkGaeorhinus galeus2.4457525279LIN835.8LingGenypterus blacodes2.33151.725279SPO792.6RigMustelus lenticulatus2.13253.324185SCG76.2Scaly gumardLepidotrigla brachyoptera2.13253.324185SCG701.7Rubish fishing otherN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Species | Catch  | Common                   |                                 | % of  | No. of   | %          |     | Depth (m) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------------------------|---------------------------------|-------|----------|------------|-----|-----------|
| BAR         2991.2         Baracouta         Thyrsites atun         8.1         48         80         24         318           HOK         2945.4         Hoki         Macruronus novaezelandiae         7.9         21         35         50         327           GIZ         2477.5         Giant stargazer         Kathetostoma giganteum         6.7         46         76.7         30         327           GUR         202         Gurmard         Chelidonichthys kumu         5.9         41         68.3         24         185           SNA         1277.2         Snapper         Pagrus auratus         3.4         20         33.3         24         164           RCO         1249.3         Red cod         Pseudophycis bachus         3.4         39         65         24         327           NMP         1212.3         Tarakihi         Nemadoctylus novaezealandiae         2.7         28         46.7         67         327           SDO         918.1         Silver dory         Cyttus novaezealandiae         2.5         23         38.3         63         392           SCH         886.6         School shark         Galeorhinus galeus         2.4         45         75 <t< td=""><td>code</td><td>(kg)</td><td>name</td><td>Scientific name</td><td>catch</td><td>stations</td><td>occurrence</td><td>Min</td><td>Max</td></t<>                 | code    | (kg)   | name                     | Scientific name                 | catch | stations | occurrence | Min | Max       |
| HOK         2945.4         Hoki         Macruronus novaezelandiae         7.9         21         35         50         327           GIZ         2477.5         Giant stargazer         Kathetostoma giganteum         6.7         46         76.7         30         327           GUR         2202         Gurnard         Chelidonichthys kunu         5.9         41         68.3         24         185           SNA         1277.2         Snapper         Pagrus auratus         3.4         20         33.3         24         164           RCO         1249.3         Red cod         Pseudophycis bachus         3.4         39         65         24         327           NMP         1212.3         Tarakihi         Nemadacrylus movaezealandiae         2.7         28         46.7         67         327           SDO         918.1         Silver dory         Cyttus novaezealandiae         2.5         23         38.3         63         392           SCH         888.6         School shark         Galeorhinus galeus         2.4         45         75         25         279           LIN         835.8         Ling         Gurperinticularus         2.1         32         53.3 <t< td=""><td>SPD</td><td>8406.4</td><td>Spiny dogfish</td><td>Squalus acanthias</td><td>22.7</td><td>56</td><td>93.3</td><td>24</td><td>327</td></t<>                   | SPD     | 8406.4 | Spiny dogfish            | Squalus acanthias               | 22.7  | 56       | 93.3       | 24  | 327       |
| GIZ         2477.5         Giant stargazer         Kathetostoma giganteum         6.7         46         76.7         30         327           GUR         2202         Gurnard         Chelidonichthys kumu         5.9         41         68.3         24         185           SNA         1277.2         Snapper         Pagrus auratus         3.4         20         33.3         24         164           RCO         1249.3         Red cod         Pseudophycis bachus         3.4         39         65         24         327           NMP         1212.3         Tarakihi         Nemadactylus macropterus         3.3         45         75         30         318           GSH         1015.6         Ghost shark         Hydrolagus novaezealandiae         2.7         28         46.7         67         25         279           SDO         918.1         Silver dory         Cyttus novaezealandiae         2.4         45         75         25         279           LIN         835.8         Ling         Galeorhinus galeus         2.4         45         75         25         237           SPO         792.6         Rig         Mustelus lenticulans         2.1         32         53.3                                                                                                                                                                   | BAR     | 2991.2 | Barracouta               | Thyrsites atun                  | 8.1   | 48       | 80         | 24  | 318       |
| GUR         2202         Gurnard         Chelidonichthys kumu         5.9         41         68.3         24         185           SNA         1277.2         Snapper         Pagrus auratus         3.4         20         33.3         24         164           RCO         1243.3         Red cod         Pseudophycis bachus         3.4         39         65         24         327           NMP         1212.3         Tarakihi         Nemadacrylus macropterus         3.3         45         75         30         318           GSH         1015.6         Ghost shark         Hydrolagus novaezealandiae         2.7         28         46.7         67         327           SDO         918.1         Silver dory         Cyttus novaezealandiae         2.5         23         38.3         63         392           SCH         88.6         School shark         Galeorhinus galeus         2.4         45         75         25         279           LIN         835.8         Ling         Mustelus lenticulatus         2.1         32         53.3         24         185           SCG         768.2         Scaly gurnard         Lepidotrigla brachyoptera         2.1         47         78.3                                                                                                                                                                   | HOK     | 2945.4 | Hoki                     | Macruronus novaezelandiae       | 7.9   | 21       | 35         | 50  | 327       |
| SNA         1277.2         Snapper         Pagrus auratus         3.4         20         33.3         24         164           RCO         1249.3         Red cod         Pseudophycis bachus         3.4         39         65         24         327           NMP         1212.3         Tarakihi         Nemadactylus macropterus         3.3         45         75         30         318           GSH         1015.6         Ghots shark         Hydrolagus novaezealandiae         2.7         28         46.7         67         327           SDO         918.1         Silver dory         Cytus novaezealandiae         2.5         23         38.3         63         392           SCH         888.6         School shark         Galeorhinus galeus         2.4         45         75         25         279           LIN         835.8         Ling         Genypterus blacodes         2.3         31         51.7         25         327           SPO         701.7         Rubish fishing other         NA         1.9         2         3.3         128         194           CAR         582.1         Carpet shark         Cephaloscyllium isabellum         1.6         46         76.7 <td< td=""><td>GIZ</td><td>2477.5</td><td>Giant stargazer</td><td>Kathetostoma giganteum</td><td>6.7</td><td>46</td><td>76.7</td><td>30</td><td>327</td></td<>            | GIZ     | 2477.5 | Giant stargazer          | Kathetostoma giganteum          | 6.7   | 46       | 76.7       | 30  | 327       |
| RCO         1249.3         Ref cod         Pseudophycis bachus         3.4         39         65         24         327           NMP         1212.3         Tarakihi         Nemadactylus macropterus         3.3         45         75         30         318           GSH         1015.6         Ghost shark         Hydrolagus novaezealandiae         2.7         28         46.7         67         327           SDO         918.1         Silver dory         Cyttus novaezealandiae         2.5         23         38.3         63         392           SCH         888.6         School shark         Galeorhinus galeus         2.4         45         75         25         279           LIN         835.8         Ling         Genypterus blacodes         2.3         31         51.7         25         327           SPO         792.6         Rig         Mustelus lenticulatus         2.1         32         53.3         24         185           SCG         768.2         Scaly gurnard         Lepidotrigla brachyoptera         2.1         47         78.3         30         318           CUC         488.8         Cucumber fish         Paraulopus nigripinnis         1.3         24         40<                                                                                                                                                          | GUR     | 2202   | Gurnard                  | Chelidonichthys kumu            | 5.9   | 41       | 68.3       | 24  | 185       |
| NMP         1212.3         Tarakihi         Nemdaciylus macropterus         3.3         45         75         30         318           GSH         1015.6         Ghost shark         Hydrolagus novaezealandiae         2.7         28         46.7         67         327           SDO         918.1         Silver dory         Cytus novaezealandiae         2.5         23         38.3         63         392           SCH         888.6         School shark         Galeorhinus galeus         2.4         45         75         25         279           LIN         835.8         Ling <i>Genypterus blacodes</i> 2.3         31         51.7         25         327           SPO         792.6         Rig <i>Mustelus lenticulatus</i> 2.1         32         53.3         24         185           SCG         768.2         Scaly gurnard <i>Lepidotrigla brachyoptera</i> 2.1         47         78.3         30         318           CVC         488.8         Cucumber fish         Paraulopus nigripinis         1.3         27         45         63         392           DDO         421.5         John dory         Zeus faber         1.1         27         45                                                                                                                                                                                                 | SNA     | 1277.2 | Snapper                  | Pagrus auratus                  | 3.4   | 20       | 33.3       | 24  | 164       |
| GSH       1015.6       Ghost shark       Hydrolagus novaezealandiae       2.7       28       46.7       67       327         SDO       918.1       Silver dory       Cyttus novaezealandiae       2.5       23       38.3       63       392         SCH       888.6       School shark       Galeorhinus galeus       2.4       45       75       25       279         LIN       835.8       Ling       Genypterus blacodes       2.3       31       51.7       25       327         SPO       792.6       Rig       Mustelus lenticulatus       2.1       32       53.3       24       185         SCG       768.2       Scaly gurnard       Lepidotrigla brachyoptera       2.1       47       78.3       30       318         ZFO       701.7       Rubbish fishing other       NA       1.9       2       3.3       128       194         CAR       582.1       Carpet shark       Cephaloscyllium isabellum       1.6       46       76.7       30       318         CUC       488.8       Cucumber fish       Paraulopus nigripinnis       1.3       24       40       24       107         JDO       421.5       John dory       Zeus fabe                                                                                                                                                                                                                                         | RCO     | 1249.3 | Red cod                  | Pseudophycis bachus             | 3.4   | 39       | 65         | 24  | 327       |
| SDO         918.1         Silver dory         Cytus novaezealandiae         2.5         23         38.3         63         392           SCH         888.6         School shark         Galeorhinus galeus         2.4         45         75         25         279           LIN         835.8         Ling         Genypterus blacodes         2.3         31         51.7         25         327           SPO         792.6         Rig         Mustelus lenticulatus         2.1         32         53.3         24         185           SCG         768.2         Scaly gurnard         Lepidotrigla brachyoptera         2.1         47         78.3         30         318           ZFO         701.7         Rubbish fishing other         NA         1.9         2         3.3         128         194           CAR         582.1         Carpet shark         Cephaloscyllium isabellum         1.6         46         76.7         30         318           CUC         488.8         Cucumber fish         Paraulopus nigripinnis         1.3         2.4         40         24         107           JDO         421.5         John dory         Zeus faber         1.1         27         45         2                                                                                                                                                                   | NMP     | 1212.3 | Tarakihi                 | Nemadactylus macropterus        | 3.3   | 45       | 75         | 30  | 318       |
| SCH         888.6         School shark         Galeorhinus galeus         2.4         45         75         25         279           LIN         835.8         Ling         Genypterus blacodes         2.3         31         51.7         25         327           SPO         792.6         Rig         Mustelus lenticulatus         2.1         32         53.3         24         185           SCG         768.2         Scaly gurnard         Lepidotrigla brachyoptera         2.1         47         78.3         30         318           ZFO         701.7         Rubbish fishing other         NA         1.9         2         3.3         128         194           CAR         582.1         Carpet shark         Cephaloscyllium isabellum         1.6         46         76.7         30         318           CUC         488.8         Cucumber fish         Paraulopus nigripinnis         1.3         25         41.7         79         392           JMN         473.4         Yellowtail jack mackerel         Trachurus novaezelandiae         1.3         24         40         24         107           JDO         421.5         John dory         Zeus faber         1.1         25         41.7 </td <td>GSH</td> <td>1015.6</td> <td>Ghost shark</td> <td>Hydrolagus novaezealandiae</td> <td>2.7</td> <td>28</td> <td>46.7</td> <td>67</td> <td>327</td> | GSH     | 1015.6 | Ghost shark              | Hydrolagus novaezealandiae      | 2.7   | 28       | 46.7       | 67  | 327       |
| LIN835.8LingGenypterus blacodes2.33151.725327SPO792.6RigMustelus lenticulatus2.13253.324185SCG768.2Scaly gurnardLepidotrigla brachyoptera2.14778.330318ZFO701.7Rubbish fishing otherNA1.923.3128194CAR582.1Carpet sharkCephaloscyllium isabellum1.64676.730318CUC488.8Cucumber fishParaulopus nigripinis1.3274563392CDO485.2Capro doryCaprominus abbreviatus1.3244024107JMN473.4Yellowtail jack mackerelTrachurus novaezelandiae1.3244024107JDO421.5John doryZeus faber1.1274524194FRO421.3FrostfishLepidopus caudatus1.12033.390311SSK420.9Smooth skateDipturus innominatus1.12541.743392SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP27.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO27.5Gemf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDO     | 918.1  | Silver dory              | Cyttus novaezealandiae          | 2.5   | 23       | 38.3       | 63  | 392       |
| SPO       792.6       Rig       Mustelus lenticulatus       2.1       32       53.3       24       185         SCG       768.2       Scaly gurnard       Lepidotrigla brachyoptera       2.1       47       78.3       30       318         ZFO       701.7       Rubbish fishing other       NA       1.9       2       3.3       128       194         CAR       582.1       Carpet shark       Cephaloscyllium isabellum       1.6       46       76.7       30       318         CUC       488.8       Cucumber fish       Paraulopus nigripinnis       1.3       27       45       63       392         CDO       485.2       Capro dory       Capromimus abbreviatus       1.3       24       40       24       107         JDO       421.5       John dory       Zeus faber       1.1       27       45       24       194         FRO       421.3       Frostfish       Lepidopus caudatus       1.1       20       33.3       90       311         SSK       420.9       Smooth skate       Dipturus innominatus       1.1       25       41.7       43       392         SQU       363       Arrow squid       Nototodarus sloanii & N.                                                                                                                                                                                                                                          | SCH     | 888.6  | School shark             | Galeorhinus galeus              | 2.4   | 45       | 75         | 25  | 279       |
| SCG       768.2       Scaly gurnard       Lepidotrigla brachyoptera       2.1       47       78.3       30       318         ZFO       701.7       Rubbish fishing other       NA       1.9       2       3.3       128       194         CAR       582.1       Carpet shark       Cephaloscyllium isabellum       1.6       46       76.7       30       318         CUC       488.8       Cucumber fish       Paraulopus nigripinnis       1.3       27       45       63       392         CDO       485.2       Capro dory       Capromimus abbreviatus       1.3       25       41.7       79       392         JMN       473.4       Yellowtail jack mackerel       Trachurus novaezelandiae       1.3       24       40       24       107         JDO       421.5       John dory       Zeus faber       1.1       27       45       24       194         FRO       421.3       Frostfish       Lepidopus caudatus       1.1       20       33.3       90       311         SSK       420.9       Smooth skate       Dipturus innominatus       1.1       25       41.7       43       392         SQU       363       Arrow squid       N                                                                                                                                                                                                                                         | LIN     | 835.8  | Ling                     | Genypterus blacodes             | 2.3   | 31       | 51.7       | 25  | 327       |
| ZFO701.7Rubbish fishing otherNA1.923.3128194CAR582.1Carpet sharkCephaloscyllium isabellum1.64676.730318CUC488.8Cucumber fishParaulopus nigripinnis1.3274563392CDO485.2Capro doryCapromimus abbreviatus1.32541.779392JMN473.4Yellowtail jack mackerelTrachurus novaezelandiae1.3244024107JDO421.5John doryZeus faber1.1274524194FRO421.3FrostfishLepidopus caudatus1.12033.390311SSK420.9Smooth skateDipturus innominatus1.12541.743392SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPO     | 792.6  | Rig                      | Mustelus lenticulatus           | 2.1   | 32       | 53.3       | 24  | 185       |
| CAR582.1Carpet sharkCephaloscyllium isabellum1.64676.730318CUC488.8Cucumber fishParaulopus nigripinnis1.3274563392CDO485.2Capro doryCapromimus abbreviatus1.32541.779392JMN473.4Yellowtail jack mackerelTrachurus novaezelandiae1.3244024107JDO421.5John doryZeus faber1.1274524194FRO421.3FrostfishLepidopus caudatus1.12033.390311SSK420.9Smooth skateDipturus innominatus1.12541.743392SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.75083.324392WIT250.9Witch<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCG     | 768.2  | Scaly gurnard            | Lepidotrigla brachyoptera       | 2.1   | 47       | 78.3       | 30  | 318       |
| CUC488.8Cucumber fishParaulopus nigripinnis1.3274563392CDO485.2Capro doryCaprominus abbreviatus1.32541.779392JMN473.4Yellowtail jack mackerelTrachurus novaezelandiae1.3244024107JDO421.5John doryZeus faber1.1274524194FRO421.3FrostfishLepidopus caudatus1.12033.390311SSK420.9Smooth skateDipturus innominatus1.12541.743392SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.73761.730392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZFO     | 701.7  | Rubbish fishing other    | NA                              | 1.9   | 2        | 3.3        | 128 | 194       |
| CDO485.2Capro doryCapromised breviatus1.32541.779392JMN473.4Yellowtail jack mackerelTrachurus novaezelandiae1.3244024107JDO421.5John doryZeus faber1.1274524194FRO421.3FrostfishLepidopus caudatus1.12033.390311SSK420.9Smooth skateDipturus innominatus1.12541.743392SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.73761.730392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CAR     | 582.1  | Carpet shark             | Cephaloscyllium isabellum       | 1.6   | 46       | 76.7       | 30  | 318       |
| JMN473.4Yellowtail jack mackerelTrachurus novaezelandiae1.3244024107JDO421.5John doryZeus faber1.1274524194FRO421.3FrostfishLepidopus caudatus1.12033.390311SSK420.9Smooth skateDipturus innominatus1.12541.743392SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.75083.324392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CUC     | 488.8  | Cucumber fish            | Paraulopus nigripinnis          | 1.3   | 27       | 45         | 63  | 392       |
| JDO421.5John doryZeus faber1.1274524194FRO421.3FrostfishLepidopus caudatus1.12033.390311SSK420.9Smooth skateDipturus innominatus1.12541.743392SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.75083.324392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CDO     | 485.2  | Capro dory               | Capromimus abbreviatus          | 1.3   | 25       | 41.7       | 79  | 392       |
| FRO421.3FrostfishLepidopus caudatus1.12033.390311SSK420.9Smooth skateDipturus innominatus1.12541.743392SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.73761.730392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JMN     | 473.4  | Yellowtail jack mackerel | Trachurus novaezelandiae        | 1.3   | 24       | 40         | 24  | 107       |
| SSK       420.9       Smooth skate       Dipturus innominatus       1.1       25       41.7       43       392         SQU       363       Arrow squid       Nototodarus sloanii & N. gouldi       1       52       86.7       31       392         WAR       334.8       Common warehou       Seriolella brama       0.9       23       38.3       24       150         POP       287.6       Porcupine fish       Allomycterus jaculiferus       0.8       14       23.3       38       142         RSO       275.5       Gemfish       Rexea solandri       0.7       11       18.3       150       392         LEA       270       Leatherjacket       Meuschenia scaber       0.7       10       16.7       30       63         ONG       259.3       Sponges       Porifera (Phylum)       0.7       7       11.7       38       134         SPE       251       Sea perch       Helicolenus spp.       0.7       37       61.7       30       392         WIT       250.9       Witch       Arnoglossus scapha       0.7       50       83.3       24       392                                                                                                                                                                                                                                                                                                                     | JDO     | 421.5  | John dory                | Zeus faber                      | 1.1   | 27       | 45         | 24  | 194       |
| SQU363Arrow squidNototodarus sloanii & N. gouldi15286.731392WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.75083.324392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FRO     | 421.3  | Frostfish                | Lepidopus caudatus              | 1.1   | 20       | 33.3       | 90  | 311       |
| WAR334.8Common warehouSeriolella brama0.92338.324150POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.73761.730392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SSK     | 420.9  | Smooth skate             | Dipturus innominatus            | 1.1   | 25       | 41.7       | 43  | 392       |
| POP287.6Porcupine fishAllomycterus jaculiferus0.81423.338142RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.73761.730392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SQU     | 363    | Arrow squid              | Nototodarus sloanii & N. gouldi | 1     | 52       | 86.7       | 31  | 392       |
| RSO275.5GemfishRexea solandri0.71118.3150392LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.73761.730392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WAR     | 334.8  | Common warehou           | Seriolella brama                | 0.9   | 23       | 38.3       | 24  | 150       |
| LEA270LeatherjacketMeuschenia scaber0.71016.73063ONG259.3SpongesPorifera (Phylum)0.7711.738134SPE251Sea perchHelicolenus spp.0.73761.730392WIT250.9WitchArnoglossus scapha0.75083.324392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POP     | 287.6  | Porcupine fish           | Allomycterus jaculiferus        | 0.8   | 14       | 23.3       | 38  | 142       |
| ONG         259.3         Sponges         Porifera (Phylum)         0.7         7         11.7         38         134           SPE         251         Sea perch         Helicolenus spp.         0.7         37         61.7         30         392           WIT         250.9         Witch         Arnoglossus scapha         0.7         50         83.3         24         392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RSO     | 275.5  | Gemfish                  | Rexea solandri                  | 0.7   | 11       | 18.3       | 150 | 392       |
| SPE         251         Sea perch         Helicolenus spp.         0.7         37         61.7         30         392           WIT         250.9         Witch         Arnoglossus scapha         0.7         50         83.3         24         392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LEA     | 270    | Leatherjacket            | Meuschenia scaber               | 0.7   | 10       | 16.7       | 30  | 63        |
| WIT         250.9         Witch         Arnoglossus scapha         0.7         50         83.3         24         392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ONG     | 259.3  | Sponges                  | Porifera (Phylum)               | 0.7   | 7        | 11.7       | 38  | 134       |
| 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPE     | 251    | Sea perch                | Helicolenus spp.                | 0.7   | 37       | 61.7       | 30  | 392       |
| RUB         220.4         Rubbish other than fish         NA         0.6         4         6.7         39         41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WIT     | 250.9  | Witch                    | Arnoglossus scapha              | 0.7   | 50       | 83.3       | 24  | 392       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RUB     | 220.4  | Rubbish other than fish  | NA                              | 0.6   | 4        | 6.7        | 39  | 41        |

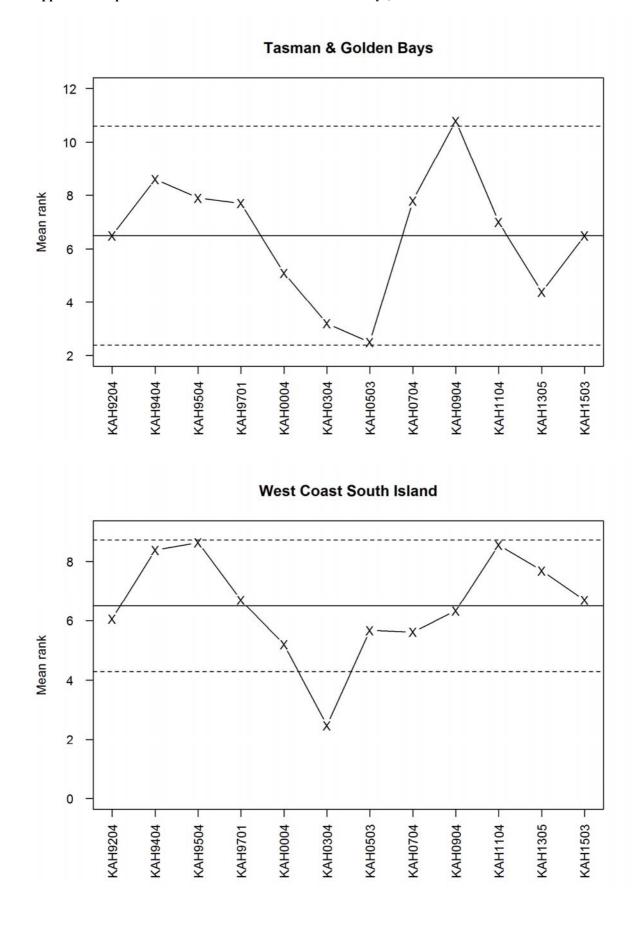
## Appendix 3: Catch summary in order by weight. \* = less than 0.5%.

| CDI | 207.2 | T                         |                               | 0.6      | 16 | 267  | 42       | 270 |
|-----|-------|---------------------------|-------------------------------|----------|----|------|----------|-----|
| CBI | 207.3 | Two saddle rattail        | Coelorinchus biclinozonalis   | 0.6      | 16 | 26.7 | 43       | 279 |
| NSD | 175.1 | Northern spiny dogfish    | Squalus griffini              | 0.5      | 14 | 23.3 | 95<br>24 | 392 |
| SFL | 174   | Sand flounder             | Rhombosolea plebeia           | 0.5<br>* | 11 | 18.3 | 24       | 43  |
| RSK | 158.9 | Rough skate               | Zearaja nasuta                | *        | 26 | 43.3 | 35       | 185 |
| WOD | 147.6 | Wood                      | Wood                          |          | 9  | 15   | 38       | 327 |
| GLB | 129.4 | Globefish                 | Contusus richei               | *        | 6  | 10   | 30       | 60  |
| SWA | 125.8 | Silver warehou            | Seriolella punctata           | *        | 35 | 58.3 | 38       | 327 |
| HAK | 113.9 | Hake                      | Merluccius australis          | *        | 21 | 35   | 24       | 327 |
| LSO | 112.3 | Lemon sole                | Pelotretis flavilatus         | *        | 23 | 38.3 | 24       | 164 |
| ESO | 105.6 | N.Z. sole                 | Peltorhamphus novaezeelandiae | *        | 10 | 16.7 | 24       | 60  |
| ELE | 96.2  | Elephant fish             | Callorhinchus milii           | *        | 8  | 13.3 | 25       | 79  |
| JAV | 95.8  | Javelin fish              | Lepidorhynchus denticulatus   | *        | 5  | 8.3  | 279      | 392 |
| HAP | 64.6  | Hapuku                    | Polyprion oxygeneios          | *        | 7  | 11.7 | 95       | 217 |
| CCX | 58.1  | Small banded rattail      | Coelorinchus parvifasciatus   | *        | 9  | 15   | 90       | 392 |
| BCO | 55.4  | Blue cod                  | Parapercis colias             | *        | 11 | 18.3 | 30       | 63  |
| RHY | 54    | Common roughy             | Paratrachichthys trailli      | *        | 3  | 5    | 180      | 311 |
| SSI | 49.4  | Silverside                | Argentina elongata            | *        | 28 | 46.7 | 78       | 311 |
| JMD | 44.5  | Greenback jack mackerel   | Trachurus declivis            | *        | 14 | 23.3 | 30       | 142 |
| KIN | 41.3  | Kingfish                  | Seriola lalandi               | *        | 8  | 13.3 | 30       | 90  |
| OCT | 40.6  | Octopus                   | Pinnoctopus cordiformis       | *        | 8  | 13.3 | 30       | 327 |
| ATT | 40.1  | Kahawai                   | Arripis trutta                | *        | 5  | 8.3  | 24       | 53  |
| ERA | 39.9  | Electric ray              | Torpedo fairchildi            | *        | 6  | 10   | 24       | 327 |
| CBO | 36.4  | Bollons rattail           | Coelorinchus bollonsi         | *        | 2  | 3.3  | 301      | 327 |
| CON | 35.4  | Conger eel                | Conger spp.                   | *        | 9  | 15   | 25       | 51  |
| EGR | 33.8  | Eagle ray                 | Myliobatis tenuicaudatus      | *        | 5  | 8.3  | 24       | 39  |
| CRM | 30.3  | Airy finger sponge        | Callyspongia cf ramosa        | *        | 10 | 16.7 | 24       | 83  |
| THR | 27.1  | Thresher shark            | Alopias vulpinus              | *        | 1  | 1.7  | 53       | 53  |
| FHD | 25    | Deepsea flathead          | Hoplichthys haswelli          | *        | 4  | 6.7  | 296      | 327 |
| HEP | 22.1  | Sharpnose sevengill shark | Heptranchias perlo            | *        | 3  | 5    | 316      | 392 |
| PRK | 19.4  | Prawn killer              | Ibacus alticrenatus           | *        | 16 | 26.7 | 95       | 318 |
| COL | 16.7  | Olivers rattail           | Coelorinchus oliverianus      | *        | 2  | 3.3  | 301      | 327 |
| JGU | 15.8  | Spotted gurnard           | Pterygotrigla picta           | *        | 6  | 10   | 164      | 327 |
| BRI | 14.4  | Brill                     | Colistium guntheri            | *        | 6  | 10   | 25       | 60  |
| SBR | 12.6  | Southern bastard cod      | Pseudophycis barbata          | *        | 3  | 5    | 180      | 217 |
| SCC | 12.0  | Sea cucumber              | Stichopus mollis              | *        | 7  | 11.7 | 38       | 72  |
| 500 | 14.4  | Sea edealitioei           | Suchopus noms                 |          | /  | 11./ | 50       | 14  |

| RBT | 12   | Redbait               | Emmelichthys nitidus           | * | 7  | 11.7 | 129 | 318 |
|-----|------|-----------------------|--------------------------------|---|----|------|-----|-----|
| OPE | 11.5 | Orange perch          | Lepidoperca aurantia           | * | 4  | 6.7  | 164 | 392 |
| SPT | 10.5 | Heart urchin          | Spatangus multispinus          | * | 7  | 11.7 | 116 | 301 |
| COZ | 8.6  | Bryozoan              | Bryozoa (Phylum)               | * | 2  | 3.3  | 51  | 63  |
| SSH | 8.4  | Slender smooth-hound  | Gollum attenuatus              | * | 1  | 1.7  | 392 | 392 |
| EMA | 5.9  | Blue mackerel         | Scomber australasicus          | * | 1  | 1.7  | 25  | 25  |
| SPR | 5.5  | Sprats                | Sprattus antipodum S. muelleri | * | 4  | 6.7  | 25  | 95  |
| ASC | 5    | Sea squirt            | Ascidiacea                     | * | 1  | 1.7  | 39  | 39  |
| BTS | 4.4  | Prickly deepsea skate | Brochiraja spinifera           | * | 3  | 5    | 194 | 327 |
| TRU | 4.3  | Trumpeter             | Latris lineata                 | * | 1  | 1.7  | 217 | 217 |
| ROK | 4.2  | Rocks stones          | Geological specimens           | * | 2  | 3.3  | 83  | 217 |
| PAG | 3.9  | Pagurid               | Paguroidea                     | * | 5  | 8.3  | 90  | 301 |
| ALL | 3.8  | Alcithoe larochei     | Alcithoe larochei              | * | 12 | 20   | 39  | 301 |
| BSQ | 3.1  | Broad squid           | Sepioteuthis australis         | * | 7  | 11.7 | 30  | 63  |
| MDO | 3    | Mirror dory           | Zenopsis nebulosa              | * | 2  | 3.3  | 279 | 296 |
| RBM | 2.9  | Rays bream            | Brama brama                    | * | 2  | 3.3  | 90  | 132 |
| PCO | 2.8  | Ahuru                 | Auchenoceros punctatus         | * | 6  | 10   | 35  | 79  |
| RMU | 2.3  | Red mullet            | Upeneichthys lineatus          | * | 1  | 1.7  | 39  | 39  |
| SCA | 2.2  | Scallop               | Pecten novaezelandiae          | * | 5  | 8.3  | 30  | 46  |
| STY | 2.1  | Spotty                | Notolabrus celidotus           | * | 2  | 3.3  | 24  | 30  |
| CDY | 2.1  | Cosmasterias dyscrita | Cosmasterias dyscrita          | * | 5  | 8.3  | 24  | 51  |
| HEX | 1.4  | Sixgill shark         | Hexanchus griseus              | * | 1  | 1.7  | 126 | 126 |
| SPM | 1.2  | Sprat                 | Sprattus muelleri              | * | 6  | 10   | 30  | 90  |
| RAN | 1.2  | Ranella olearium      | Ranella olearium               | * | 1  | 1.7  | 111 | 111 |
| TUR | 1.1  | Turbot                | Colistium nudipinnis           | * | 1  | 1.7  | 37  | 37  |
| JMM | 1.1  | Slender jack mackerel | Trachurus murphyi              | * | 1  | 1.7  | 180 | 180 |
| PSI | 0.9  | Geometric star        | Psilaster acuminatus           | * | 7  | 11.7 | 116 | 194 |
| NUD | 0.9  | Nudibranchia          | Nudibranchia (Order)           | * | 2  | 3.3  | 39  | 49  |
| JFI | 0.9  | Jellyfish             | NA                             | * | 1  | 1.7  | 25  | 25  |
| GFL | 0.9  | Greenback flounder    | Rhombosolea tapirina           | * | 1  | 1.7  | 30  | 30  |
| BRN | 0.9  | Barnacle              | Cirripedia (Class)             | * | 4  | 6.7  | 132 | 392 |
| WHE | 0.8  | Whelks                | NA                             | * | 4  | 6.7  | 78  | 301 |
| SEO | 0.8  | Seaweed               | NA                             | * | 3  | 5    | 41  | 72  |
| SPS | 0.8  | Speckled sole         | Peltorhamphus latus            | * | 2  | 3.3  | 24  | 39  |
| HDR | 0.7  | Hydroid               | Hydrozoa (Class)               | * | 5  | 8.3  | 24  | 63  |
|     |      |                       |                                |   |    |      |     |     |

| BRZ | 0.7 | Brown stargazer          | Xenocephalus armatus            | * | 1 | 1.7 | 128 | 128 |
|-----|-----|--------------------------|---------------------------------|---|---|-----|-----|-----|
| SDR | 0.6 | Spiny seadragon          | Solegnathus spinosissimus       | * | 3 | 5   | 51  | 217 |
| SPZ | 0.5 | Spotted stargazer        | Genyagnus monopterygius         | * | 1 | 1.7 | 24  | 24  |
| SPP | 0.5 | Splendid perch           | Callanthias spp.                | * | 1 | 1.7 | 217 | 217 |
| SIW | 0.5 | Siphon whelk             | Penion cuvieranus & P. sulcatus | * | 2 | 3.3 | 41  | 49  |
| SCI | 0.5 | Scampi                   | Metanephrops challengeri        | * | 2 | 3.3 | 279 | 327 |
| DIR | 0.5 | Pagurid                  | Diacanthurus rubricatus         | * | 5 | 8.3 | 95  | 327 |
| YEM | 0.4 | Yellow-eyed mullet       | Aldrichetta forsteri            | * | 1 | 1.7 | 39  | 39  |
| OPA | 0.4 | Opalfish                 | Hemerocoetes spp.               | * | 3 | 5   | 31  | 46  |
| ANC | 0.4 | Anchovy                  | Engraulis australis             | * | 2 | 3.3 | 35  | 49  |
| TOD | 0.3 | Dark toadfish            | Neophrynichthys latus           | * | 2 | 3.3 | 128 | 392 |
| LNV | 0.3 | Rock star                | Lithosoma novaezelandiae        | * | 3 | 5   | 144 | 392 |
| KWH | 0.3 | Knobbed whelk            | Austrofucus glans               | * | 2 | 3.3 | 39  | 164 |
| FMA | 0.3 | Fusitriton magellanicus  | Fusitriton magellanicus         | * | 2 | 3.3 | 194 | 318 |
| SPA | 0.2 | Slender sprat            | Sprattus antipodum              | * | 2 | 3.3 | 35  | 37  |
| SHO | 0.2 | Seahorse                 | Hippocampus abdominalis         | * | 2 | 3.3 | 30  | 39  |
| PIL | 0.2 | Pilchard                 | Sardinops sagax                 | * | 1 | 1.7 | 24  | 24  |
| PIG | 0.2 | Pigfish                  | Congiopodus leucopaecilus       | * | 1 | 1.7 | 90  | 90  |
| NAT | 0.2 | Natant decapod           | NA                              | * | 1 | 1.7 | 194 | 194 |
| LEH | 0.2 | Leech - generic          | Hirudinea                       | * | 2 | 3.3 | 153 | 392 |
| BAM | 0.2 | Bathyplotes spp.         | Bathyplotes spp.                | * | 1 | 1.7 | 316 | 316 |
| YCO | 0.1 | Yellow cod               | Parapercis gilliesi             | * | 1 | 1.7 | 180 | 180 |
| YBO | 0.1 | Yellow boarfish          | Pentaceros decacanthus          | * | 1 | 1.7 | 301 | 301 |
| SMO | 0.1 | Cross-fish               | Sclerasterias mollis            | * | 1 | 1.7 | 327 | 327 |
| SAR | 0.1 | Squilla armata           | Squilla armata                  | * | 1 | 1.7 | 164 | 164 |
| RCK | 0.1 | Rockfish                 | Acanthoclinidae                 | * | 1 | 1.7 | 194 | 194 |
| PUP | 0.1 | Pyura pulla              | Pyura pulla                     | * | 1 | 1.7 | 51  | 51  |
| PTM | 0.1 | Dells spider crab        | Platymaia maoria                | * | 1 | 1.7 | 392 | 392 |
| PRA | 0.1 | Prawn                    | NA                              | * | 1 | 1.7 | 301 | 301 |
| POL | 0.1 | Polychaete               | Polychaeta                      | * | 1 | 1.7 | 41  | 41  |
| PEP | 0.1 | Pentagonaster pulchellus | Pentagonaster pulchellus        | * | 1 | 1.7 | 39  | 39  |
| PAM | 0.1 | Pannychia moseleyi       | Pannychia moseleyi              | * | 1 | 1.7 | 392 | 392 |
| OPH | 0.1 | Ophiuroid (brittle star) | NA                              | * | 1 | 1.7 | 38  | 38  |
|     | 0.1 | Notopandalus             |                                 |   |   |     |     |     |
| NMA | 0.1 | magnoculus               | Notopandalus magnoculus         | * | 1 | 1.7 | 392 | 392 |

| NHU | 0.1 | Policeman crab     | Neommatocarcinus huttoni | * | 1 | 1.7 | 39  | 39  |
|-----|-----|--------------------|--------------------------|---|---|-----|-----|-----|
| GIL | 0.1 | Triplefin          | Gilloblennius sp.        | * | 1 | 1.7 | 39  | 39  |
| GAS | 0.1 | Gastropods         | Gastropoda               | * | 1 | 1.7 | 327 | 327 |
| EHI | 0.1 | Echiurans          | Echiura                  | * | 1 | 1.7 | 24  | 24  |
| ASH | 0.1 | Circular saw shell | Astraea heliotropium     | * | 1 | 1.7 | 51  | 51  |


## Appendix 4: Benthic macro-invertebrates taken as bycatch during the survey.

| Species |                                                | Common                   |                                 | No.<br>of |
|---------|------------------------------------------------|--------------------------|---------------------------------|-----------|
| code    | Taxon                                          | name                     | Scientific name                 | stations  |
| POL     | Annelida                                       | Polychaete               | Polychaeta                      | 1         |
| EHI     | Annelida: Echiura                              | Echiurans                | Echiura                         | 1         |
| LEH     | Annelida: Hirudinea                            | Leech - generic          | Hirudinea                       | 2         |
| PRA     | Arthropoda                                     | Prawn                    | NA                              | 1         |
| PUP     | Arthropoda: Ascidiacea                         | Pyura pulla              | Pyura pulla                     | 1         |
| BRN     | Arthropoda: Cirripedia                         | Barnacle                 | Cirripedia (Class)              | 4         |
| PTM     | Arthropoda: Decapoda                           | Dells spider crab        | Platymaia maoria                | 1         |
| NAT     | Arthropoda: Decapoda                           | Natant decapod           | NA                              | 1         |
| DIR     | Arthropoda: Decapoda                           | Pagurid                  | Diacanthurus rubricatus         | 5         |
| PAG     | Arthropoda: Decapoda                           | Pagurid                  | Paguroidea                      | 5         |
| SCI     | Arthropoda: Decapoda<br>Arthropoda:            | Scampi<br>Notopandalus   | Metanephrops challengeri        | 2         |
| NMA     | Malacostraca<br>Arthropoda:                    | magnoculus               | Notopandalus magnoculus         | 1         |
| NHU     | Malacostraca<br>Arthropoda:                    | Policeman crab           | Neommatocarcinus huttoni        | 1         |
| SAR     | Malacostraca                                   | Squilla armata           | Squilla armata                  | 1         |
| PRK     | Arthropoda: Palinura                           | Prawn killer             | Ibacus alticrenatus             | 16        |
| COZ     | Bryozoa                                        | Bryozoan                 | Bryozoa (Phylum)                | 2         |
| HDR     | Cnidaria: Anthozoa                             | Hydroid                  | Hydrozoa (Class)                | 5         |
| JFI     | Cnidaria: Scyphozoa                            | Jellyfish                | NA                              | 1         |
| CDY     | Echinodermata:<br>Asteroidea<br>Echinodermata: | Cosmasterias dyscrita    | Cosmasterias dyscrita           | 5         |
| PSI     | Asteroidea<br>Echinodermata:                   | Geometric star           | Psilaster acuminatus            | 7         |
| PEP     | Asteroidea<br>Echinodermata:                   | Pentagonaster pulchellus | Pentagonaster pulchellus        | 1         |
| LNV     | Asteroidea<br>Echinodermata:                   | Rock star                | Lithosoma novaezelandiae        | 3         |
| SPT     | Echinoidea<br>Echinodermata:                   | Heart urchin             | Spatangus multispinus           | 7         |
| BAM     | Holothuroidea<br>Echinodermata:                | Bathyplotes spp.         | Bathyplotes spp.                | 1         |
| PAM     | Holothuroidea<br>Echinodermata:                | Pannychia moseleyi       | Pannychia moseleyi              | 1         |
| SCC     | Holothuroidea<br>Echinodermata:                | Sea cucumber             | Stichopus mollis                | 7         |
| OPH     | Ophiuroidea                                    | Ophiuroid (brittle star) | NA                              | 1         |
| SCA     | Mollusca: Bivalvia                             | Scallop                  | Pecten novaezelandiae           | 5         |
| SQU     | Mollusca: Cephalopoda                          | Arrow squid              | Nototodarus sloanii & N. gouldi | 52        |
| BSQ     | Mollusca: Cephalopoda                          | Broad squid              | Sepioteuthis australis          | 7         |
| OCT     | Mollusca: Cephalopoda                          | Octopus                  | Pinnoctopus cordiformis         | 8         |
| ALL     | Mollusca: Gastropoda                           | Alcithoe larochei        | Alcithoe larochei               | 12        |
| ASH     | Mollusca: Gastropoda                           | Circular saw shell       | Astraea heliotropium            | 1         |
| FMA     | Mollusca: Gastropoda                           | Fusitriton magellanicus  | Fusitriton magellanicus         | 2         |
| GAS     | Mollusca: Gastropoda                           | Gastropods               | Gastropoda                      | 1         |

| KWH | Mollusca: Gastropoda   | Knobbed whelk      | Austrofucus glans               | 2  |
|-----|------------------------|--------------------|---------------------------------|----|
| NUD | Mollusca: Gastropoda   | Nudibranchia       | Nudibranchia (Order)            | 2  |
| RAN | Mollusca: Gastropoda   | Ranella olearium   | Ranella olearium                | 1  |
| SIW | Mollusca: Gastropoda   | Siphon whelk       | Penion cuvieranus & P. sulcatus | 2  |
| WHE | Mollusca: Gastropoda   | Whelks             | NA                              | 4  |
| ONG | Porifera               | Sponges            | Porifera (Phylum)               | 7  |
| CRM | Porifera: Demospongiae | Airy finger sponge | Callyspongia cf ramosa          | 10 |
| ASC | Tunicata               | Sea squirt         | Ascidiacea                      | 1  |

Appendix 5: Carpet shark — relative biomass estimates (t) and CVs by trip from the entire survey area, and separately for the west coast South Island and Tasman and Golden Bay areas.

| Survey  |         | Total area | Tasman and C | Golden Bays | West coast S | South Island |
|---------|---------|------------|--------------|-------------|--------------|--------------|
|         | Biomass | CV (%)     | Biomass      | CV (%)      | Biomass      | CV (%)       |
| kah9204 | 642     | 20         | 40           | 31          | 602          | 21           |
| kah9404 | 722     | 9          | 24           | 35          | 698          | 9            |
| kah9504 | 852     | 11         | 101          | 24          | 752          | 12           |
| kah9701 | 790     | 11         | 196          | 26          | 594          | 12           |
| kah0004 | 786     | 8          | 336          | 13          | 451          | 11           |
| kah0304 | 449     | 14         | 239          | 25          | 210          | 11           |
| kah0503 | 402     | 13         | 134          | 15          | 268          | 18           |
| kah0704 | 1 009   | 14         | 299          | 26          | 710          | 17           |
| kah0904 | 704     | 13         | 316          | 21          | 389          | 17           |
| kah1104 | 833     | 11         | 285          | 18          | 549          | 14           |
| kah1305 | 748     | 16         | 272          | 15          | 476          | 24           |
| kah1503 | 506     | 16         | 117          | 33          | 389          | 19           |



