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EXECUTIVE SUMMARY 

Neubauer, P.; Abraham, E.R.; Knox, C.; Richard, Y. (2015). Assessing the performance of pāua 
Haliotis iris fisheries using GPS logger data. 

New Zealand Fisheries Assessment Report 2015/71. 39 p. 

The pāua Haliotis iris dive-logger data collection programme is an industry-led initiative aimed at achiev-
ing near real-time monitoring of the fishery. The dive loggers record the position, depth, and duration of 
individual dives, and allow the individual catch to be recorded. This detailed data recording is expected 
to allow the management of the fishery to be at finer spatial and temporal scales than is currently possible. 

Here, we provide a first description of the dive-logger programme. We assessed the current coverage of 
the fishery by the logger programme by comparing dive-logger data with data reported on Pāua Catch 
Effort and Landing Return (PCELR) forms. To determine whether the dive-logger programme is relevant 
for fisheries management, we used Bayesian linear mixed models to gain an understanding of the rela-
tionship between logger-derived effort and catch data, both at large scales (using daily records from all 
Quota Management Areas (QMAs) and years) and small scales (catches and individual dives aggregated 
to 1-hectare (ha; 10 000 m2) hexagons). 

We found that an increasing number of divers participated in the data-logger programme in the period 
from the 2010–11 to the 2013–14 fishing year. The catch recorded on data loggers also covered an 
increasing percentage of the total catch of the pāua fishery, including more than 50% of the total catch 
in QMAs PAU 7 and PAU 3 in 2012–13 and 2013–14. Some limitations remain, both with reporting 
(erroneous diver identifiers or catch reported) and with the logger hardware (e.g., missing locations); 
however, the quality of the data are improving as the coverage increases. 

The data provided insights into dive patterns within QMAs, which, although variable, showed some 
consistent trends towards longer and shallower dives. Models at both large and small scales suggested 
that dive variables, especially bottom time (the time spent diving relative to the total fishing time), were 
strongly related to catch. At equivalent total effort (total fishing time), increased bottom times thus 
predicted increased catches. From the modelling, we recommend bottom time (relative to total fishing 
time) as a useful indicator of fishery status. 

Spatial patterns in the fishery were also investigated using areas and effort concentration measures cal-
culated from kernel utilisation densities (KUDs). On large scales, patchy diving within the total area 
searched over the day was correlated with lower catches, whereas on the hexagon scale, patchy diving 
was correlated with higher catches, possibly due to diving on pāua aggregations. We suggest that daily 
area and concentration indices could serve as indicators of trends in the fishery if monitored over time. 

Overall, the logger data provide considerable information about the fishery, and are likely to provide 
fishery-relevant data that can be used to gain an understanding of patterns and trends in the fishery. As 
both the quality of the data and the volume of data increase, the proposed metrics will become more 
useful, and more complex metrics such as spatial catch-per-unit-effort (CPUE) can be constructed to 
identify local depletion. To illustrate this potential, we estimated a CPUE index at both statistical-area 
and 1-ha hexagon scales. This estimation showed up to fourfold differences in CPUE among statistical 
areas within QMAs. 

1. INTRODUCTION 

Pāua (Haliotis iris) are one of New Zealand’s most valuable seafood resources. Pāua fisheries are cur-
rently managed under the Quota Management System (QMS), involving the setting of a minimal legal 
size (MLS) and a Total Allowable Commercial Catch (TACC) as two of the management tools used 
within each Quota Management Area (QMA; Ministry for Primary Industries 2012). While QMAs are 
regional-scale areas (covering hundreds of kilometres of coastline), pāua populations may be spatially 
structured over much smaller spatial scales (kilometres or less) (Prince & Hilborn 1998, McShane et al. 

Ministry for Primary Industries Monitoring fishery performance from GPS loggers • 1 



1988) due to limited larval dispersal from local populations (McShane et al. 1988) and variation in pāua 
habitat. As a consequence, life-history parameters that are relevant to the fishery, such as growth and 
size-at-maturity, may also vary at kilometre scales (McShane & Naylor 1995). 

In pāua stock assessments, the primary indicator of stock abundance hs been fishery-dependent catch-
per-unit-effort (CPUE) data (Fu 2012, Fu et al. 2012, Breen & Smith 2008). Analysis of CPUE currently 
relies on Pāua Catch Effort Landing Return (PCELR) forms, which record daily fishing time and catch 
per diver. Data from these forms are recorded in pāua statistical areas, which generally encompass tens 
of kilometres of coastline. With catch and effort reporting at this scale, it is possible for changes in CPUE 
measures to be masked by hyper-stability (where there is a non-linear relationship between abundance 
and CPUE, so abundance may decrease without a proportional decrease in CPUE). Hyper-stability can 
result from aggregating behaviour of pāua, causing them to form high-density patches even at low num-
bers (Prince & Hilborn 1998). Serial depletion, where divers sweep reefs and successively deplete local 
populations, as well as advances in technology and harvesting techniques, may further contribute to a 
hyper-stable CPUE index. 

Pāua are predominantly harvested by free diving. To provide catch and effort information at reef scales, 
data loggers were recently introduced to the fishery. These data loggers consist of two units, a boat 
unit, used to record catch, boat position and daily dive conditions, and a so-called “turtle logger”. The 
turtle loggers fit into a pouch on the diver’s back. When the diver is underwater, the logger records dive 
profiles with a pressure sensor, and when the diver is on the surface, it records the location with a Global 
Positioning System (GPS) sensor. Information about the catch is provided by the boat loggers, which are 
used to record the position of each landed catch bag of pāua, and also to capture information about the 
daily catch by each diver. The development of the dive loggers followed the introduction of similar units 
to the Tasmanian abalone fishery (Mundy 2012). The unprecedented resolution of the data allowed for a 
detailed spatial analysis of diver data that produced valuable information on “hotspots” of fishing activity 
and patterns of resource use. In the context of Tasmanian fisheries, management strategies incorporating 
such fine scale data are currently being developed. 

In addition to providing an improved qualitative understanding of the fishery, recent reviews (McCluskey 
& Lewison 2008) and analyses of fishing data (e.g., Hanchet et al. 2005) suggest that using fishing data 
logged at fine spatial and temporal scales can substantially improve effort calculation and resulting CPUE 
indices. The temporal and spatial resolution of the dive loggers make it possible, in theory, to test the 
hypothesis that divers adjust their fishing behaviour to maintain high average catch rates when there are 
declines in the resource. This adjustment may involve increases in dive depth and bottom times, and 
changes in search patterns (e.g., surface intervals). These differences may be seen as additional effort 
being expended beyond the baseline effort of standard fishing, and are a form of effort creep that would 
not be detectable from fishing activity time measures alone (Marchal et al. 2001, 2006). 

Dive loggers were first used in New Zealand in 2010, and a fish-down experiment to validate the utility 
of logger data to estimate local catch rates was conducted in the summer of 2011–12 (Abraham 2012). 
During the experiment, an area previously closed to fishing (Fighting Bay) was fished to deplete local 
biomass. Abraham (2012) found that CPUE calculated from boat and turtle unit data was strongly related 
to biomass throughout the experiment, and hyper-stability was not observed, thus suggesting a basis for 
the use of dive-logger derived CPUE data in the fishery. Catch rates during the experiment, however, 
were well above those experienced in adjacent fishing grounds, and the relationship of CPUE to biomass 
may not be as clear at lower abundance. Furthermore, fishing was conducted during several bouts of 
2–3 consecutive days, over several months. It is possible, that there may not have been sufficient time 
between fishing bouts to allow the remaining animals to aggregate and cause hyper-stability. Neverthe-
less, the experiment provided promising initial results about the relationship of catch rates to biomass, 
and valuable detail about dive patterns throughout the fishing activity. 

In addition to collecting data at the spatial scale of individual dive events, the dive logger programme is 
expected to allow for timely monitoring of the fishery. Currently, assessments of stock status are typically 
carried out every three years using a length-based stock-assessment model. The logger data may allow 
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for monitoring and management of the fishery at much shorter time scales. To explore whether the 
logger data will be useful for this purpose, it is necessary to understand how the signals in the logger 
data relate to the pāua catch. In this report, we provide a characterisation of the logger programme, and 
a demonstration of the signals in the data that are predictive of catch. 

Specifically, the purpose of this study was to identify potential indicators of fishery status and perform-
ance that could provide early warning signs of local depletion of the resource. To investigate this pos-
sibility, we first (i) described the dive logger program and data set, and (ii) assessed the uptake and 
coverage to date by comparing to PCELR records. We then (iii) used logger derived data to investig-
ate the influence of dive parameters such as dive depth and bottom time on CPUE on both large scales 
(encompassing all QMAs) and within QMA scales. We lastly (iv) used fine-scale spatial data from the 
loggers to construct local metrics of spatial utilisation, and investigated their relationship to local catch 
rates and catch per unit area. 

2. METHODS 

2.1 Data loggers 

Pāua dive loggers were developed by Zebra-Tech (Nelson, New Zealand) and were introduced into the 
New Zealand commercial pāua fishery in October 2010. The dive loggers consist of two units, a boat 
unit used to record catch, boat position and daily dive conditions, and so-called “turtle logger”. The turtle 
loggers are compact units that fit in a pocket on the back of a diver’s wetsuit. When the diver is at the 
surface they record depth and position, using a GPS (in 10 s intervals), whereas underwater the loggers 
record the diver’s depth at 1 s intervals. The switch between recording modes is automated with a depth 
sensor that initiates surface and dive modes. The boat unit is used to record the location and time of catch 
bags being brought onboard (Figure 1). 

The two units together are referred to as pāua dive loggers, and records from both are needed to calculate 
CPUE. Divers enter their Seafood Industry Training Organisation number (“SITO ID”) in the boat unit 
along the with number of their turtle unit (the “turtle ID”). Turtle units are thus assigned to individual 
divers, although turtle loggers do change owners on occasion. The turtle ID then links the turtle logger 
data to the boat data, and the SITO ID attributes the boat and turtle data to the diver. Failure to enter the 
correct turtle ID thus leads to difficulties linking the two data types, whereas entering the wrong SITO 
ID makes it difficult to attribute catch and effort data to a particular diver. 

The development and deployment of the loggers is being managed by the fishing industry, through the 
Paua Industry Council Limited (PICL), supported by Seafood Innovations Limited (SIL) and the Min-
istry for Primary Industries (MPI). The current intention is to work towards complete monitoring of all 
commercial pāua diving in New Zealand. 

2.2 The dive-logger database 

Data were downloaded from the turtle logger and boat units as separate text logfiles, which were uploaded 
to a PostgreSQL database. Turtle unit IDs and diver SITO numbers were entered into the boat unit at the 
start of each day’s fishing. All daily records from the boat unit were matched with the daily dive records 
(from the turtle unit), based on records meeting the following criteria: 

• The turtle unit ID entered into the boat unit matched the turtle unit’s ID (see previous section). 

• The SITO ID entered into the boat unit matched the SITO number that the turtle unit had been 
assigned to. 

• The bounding box of all of a day’s dives was within 50 m of the bounding box of all the bag 
landings for the day, and the dive events and bag events were not more than 30 minutes apart. This 
criterion (at the day level) ensured that wrong turtle IDs entered into a boat unit did not lead to 
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Figure 1: Pāua (Haliotis iris) dive loggers consisting of a larger boat unit (with buttons for recording catch 
bags and a key pad for entering catch weight and other data) and ”turtle loggers” carried by divers. 

erroneous matches. 

Once matched, the daily records (dive conditions, use of boat assistants), dive and bag events for each 
boat, diver, and day combination were aggregated into a diver-day, and the individual dive and bag events 
were stored as properties of the diver-day, through the following database tables: 

• Individual dive table: bottom time, depth, start and end location and timestamps of individual 
dives. These records are linked to the diver-day, but can be linked to individual landed bags by 
attributing dives occurring prior to a bag being landed to that bag. The surface interval can be 
calculated as the interval between successive dives. 

• Bag record table: location, weight (approximated as an equal fraction of the day’s total catch 
weight) and timestamp. 

• Boat record table: boat locations, boat ID (linking boat units to owners). 

• Fishing day table: diver (SITO) ID, turtle ID, boat assistant usage, swell, visibility. 

To construct the dive table, we corrected occasional failures to switch from surface into dive mode by 
removing all records that indicated depths over 1 m, but where the dive sensor indicated that the diver 
was at the surface. Conversely, the turtle logger will occasionally switch into dive mode if the diver 
carrying the logger is immersed, even if the diver is not diving (i.e., are vertical in the water rather than 
swimming horizontally on the surface). To filter out such dive data, we defined a surface depth which 
was intended to represent the average immersion depth of the turtle logger at the surface. The surface 
depth was calculated using a moving window of 10-minute medians of depth records while the unit was 
in surface mode. Data recorded in dive mode were retained as actual dives if the dive depth was 20 cm 
below the corresponding 10-minute median surface depth. 

A dive event was marked by a diver exceeding the depth threshold, and the bottom time was the period 
of time spent below this depth threshold (e.g., for a single dive, or summed within a spatial or temporal 
unit, such as over a day or within a hectare of the fishery; Table 1). We note here that any definition of a 
dive from depth data is somewhat arbitrary, as divers may be fishing at shallow depth, when they do not 
have to dive below the surface for extended periods of time. 
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2.3 Uptake and coverage of the logger programme 

To be useful as a data source that can inform both voluntary management by the industry and, ultimately, 
to provide data to inform stock assessments, it is necessary that the logger data are representative of the 
fishery, both geographically and in terms of catch volume and fisher effort. We characterised the uptake 
and coverage of the dive loggers by i) investigating the number of divers participating in the programme, 
ii) the geographical coverage of the programme in terms of statistical areas visited by divers with turtle 
loggers, and iii) the proportion of catch that was taken by divers operating with data loggers. 

We assessed the coverage of the logger programme using the PCELR records from MPI’s warehou catch-
effort database as a reference. Given that the information on diver identities was not identical between 
the PCELR records and the dive logger database, we matched turtle logger records to PCELR records 
using known diver names for logger units and diver initials on the PCELR forms. Both of these records 
contained errors (see Subsection 3.1 for a detailed discussion), and we applied heuristic matching rules 
to improve the overall matching of the data sources. 

Data collected on PCELR forms are currently used to estimate CPUE indices of abundance, and these 
data are likely to remain the main dataset for informing stock assessments and formal management in 
the medium term. A potential immediate benefit of the turtle logger data is to give context to CPUE 
data from PCELR forms, as well as providing access to detailed spatial information. The latter can 
be used to refine sampling protocols for growth and maturation sampling, and provide information to 
spatially characterise the fishery. To investigate whether data recorded in the logger programme and 
data on PCELR forms are comparable for matching events, we compared effort and CPUE calculated 
from PCELR forms with corresponding metrics calculated from the dive-logger database. 

Abraham (2012) used two measures of effort calculated from the turtle loggers: bottom time was cal-
culated for each diver by assuming a surface depth (see above) and taking logger depth records below 
this depth to be dive events. The bottom times of individual dive events were then added up to an effort 
measure that was meant to reflect actual fishing activity. A second measure was derived by dividing the 
day into half-hour intervals and counting the intervals in which bags were landed (subsequently called 
boat activity time). This measure has the potential to account for differences in fishing styles (surface 
versus underwater search behaviour, for instance), that may lead to overly pronounced differences in 
effort from bottom time alone. It was found that CPUE calculated using this second approach to define 
effort most tightly corresponded with remaining biomass. In this project, we compared effort reported on 
PCELR forms (total time in water) to the two effort measures mentioned above, as well as to a third turtle 
logger-derived measure that was calculated by adding up half-hour intervals (as above) during which the 
turtle unit logged activity (the total fishing time; Table 1). We used this latter effort measure throughout 
as a proxy of the total time spent in the water over a day. 

Table 1: Effort measures and their calculation used in the comparison of fishing effort reported on PCELR 
(Pāua Catch Effort Landing Return) forms (total time in water) and from dive-logger data. 

Source Effort measure Calculation 

PCELR PCELR effort Reported as total time in water per day (in h) 
Data loggers Bottom time Sum of time spent diving (i.e., 20 cm below calculated 

surface depth) in a day or within a spatial unit (e.g., 1-
hectare hexagon). 

Depth Median dive depth for a day or within a spatial unit (e.g., 
1-hectare hexagon). 

Surface interval standard deviation Standard deviation of surface intervals between dives 
within a day or a spatial unit (e.g., 1-hectare hexagon). 

Boat effort Sum of half-hour intervals within a day during which bags 
were landed (and reported on the boat unit). 

Total fishing time Sum of half-hour intervals within a day during which the 
turtle logger was recording data. 
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2.4 Spatial and temporal patterns in dive parameters 

2.4.1 Preparation of dive logger data 

The data-logger database for the fishing years 2010–11 to 2013–14 consisted of nearly 1 million indi-
vidual dive events as of 10 February 2014. An increasing number of dives have been recorded within all 
QMAs across years (Table 2), reflecting the increased uptake of the dive-logger programme within the 
pāua fishing industry. 

Table 2: Number of individual dive event records (in thousands) by pāua Quota Management Area (QMA) 
and fishing year for the reporting period. 

QMA Fishing year 

2009–10 2010–11 2011–12 2012–13 2013–14 Total 

PAU 2 6.95 13.79 12.64 17.81 44.73 95.92 
PAU 3 0.00 9.16 29.05 36.76 8.63 83.60 
PAU 4 1.56 22.95 27.84 30.85 20.09 103.29 
PAU 5A 0.00 3.90 5.96 10.53 8.69 29.08 
PAU 5B 1.05 12.82 14.67 29.34 15.25 73.13 
PAU 5D 0.00 4.65 6.65 16.12 2.89 30.31 
PAU 6 0.00 0.25 0.62 0.24 0.00 1.11 
PAU 7 2.94 85.24 153.13 188.34 99.98 529.63 
Total 12.50 152.76 250.56 329.99 200.26 946.07 

We also assessed the dive data based on dive durations and surface interval times since the initial defin-
ition of dives (see Subsection 2.2) produced both erroneously long dives (where the unit did not switch 
back into surface mode and remained below the depth threshold of 20 cm below surface depth) and dives 
of 0 seconds length. For this reason, we constrained dives to be at least 1 second long (potentially suf-
ficient time to examine a boulder or similar), and at most 120 seconds long. Only very few dives were 
longer than this latter threshold, and most dives above this limit were obviously erroneous (e.g., longer 
than three minutes). We also constrained surface intervals to be between 1 second and 10 minutes. We 
considered that longer surface intervals were likely unrelated to the fishing activity. Last, median dive 
depths below 20 m were also considered errors (i.e., the average depth for any dive was unlikely to be 
below 20 m). 

Some divers in PAU 4 (Chatham Islands) fish on SCUBA (self-contained underwater breathing appar-
atus), and we aimed to remove these data by restricting data in PAU 4 to days on which no dive records 
exceeded 3 minutes bottom time (in other QMAs, only individual dives with bottom times longer than 
120 seconds were removed). We further removed dives in PAU 4 where the proportion of total fishing 
activity spent diving (i.e., calculating bottom time over total fishing time) was greater than the highest 
corresponding proportion of daily bottom time in all other QMAs (Figure 2). This approach was based 
on the assumption that the physical limit of time spent at depth per total fishing time is the maximum 
observed in other QMAs (and that the physical ability of divers in PAU 4 was not greater that that of 
divers elsewhere). The data preparation resulted in a total of 1020 matched diver-days across all QMAs 
and fishing years (Table 3). 

Many of the spatial (GPS) records that were uploaded to the database prior to the 2012–13 fishing year 
were affected by a fault in the uploading software, that was only subsequently fixed (version 2.3 of the 
software). The fault caused leading zeros in the decimal places of GPS coordinates to be omitted from 
the record, causing frequent errors in recorded dive and boat locations. These records were discarded 
for all spatial analyses as a post-hoc correction of this data-recording error was beyond the scope of the 
current project. 

For 40.37% of all dive records, location information was missing. Missing location data occurred for 
single dive events as well as longer periods of several consecutive missing dive locations (up to 494 
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Figure 2: Effort ratio (diver bottom time divided by total fishing time) for all pāua divers with matched 
dive records by pāua Quota Management Area (QMA). Boxes indicate the interquartile range (IQR), and 
whiskers extend to data within 1.5 times the IQR; points are outliers beyond this range. 

Table 3: Data set of the number of diver-days per pāua Quota Management Area (QMA) and fishing year 
following the data preparation. 

Fishing year 

QMA 2010–11 2011–12 2012–13 2013–14 Total 

PAU 2 0 4 23 36 63 
PAU 3 2 38 22 0 62 
PAU 4 8 33 45 0 86 
PAU 5A 1 9 25 1 36 
PAU 5B 9 22 35 11 77 
PAU 5D 2 13 37 2 54 
PAU 7 117 197 265 63 642 
Total 139 316 452 113 1020 
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Figure 3: Distribution of a) the numbers of consecutive dives, b) surface interval duration, c) bottom times 
and d) median depths, for data with (TRUE) and without (FALSE) location information. 

consecutive records), although short sequences of consecutive missing dives accounted for most of the 
missing data (95% of intervals with missing data were shorter than 15 dives). We found that the most 
likely explanation was that surface intervals between dives were too short to obtain a GPS position, or 
that the unit remained too deeply immersed to obtain a position. Furthermore, our definition of dive 
events effectively overwrites the GPS unit’s own pressure threshold. This new definition led to data 
recorded in dive mode (without GPS positions) to be considered as surface intervals (i.e., dives that are 
above the 20 cm below-surface depth limit), thereby leading to surface intervals that do not have location 
positions. 

A comparison of distributions of surface intervals suggested that surface intervals between dives with 
missing location data were shorter than those for dives with a recorded position (Figure 3). Comparing 
other dive parameters (depth and bottom time) between records with and without location did not suggest 
that these parameters were different between data with and without GPS positions. 

2.4.2 Daily models of diver catch and effort 

To gain an understanding of differences in fishing patterns among QMAs and years, we compared the 
distributions and summary statistics of dive parameters among QMAs and fishing years. To test whether 
these differences were associated with variation in catches, we used linear mixed models relating the log 
of daily catch to total fishing time, as well as dive variables (i.e., depth and bottom time) and external 
predictors, including co-variates for fishing-year within QMA, boat assistants and dive conditions (swell, 
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visibility). All variables were centered and divided by twice their standard deviation to compare effect 
sizes relative to the standard deviation of the variable. A larger estimated effect for one variable relative 
to another can thus be interpreted in terms of a difference in effect size relative to the variability in 
the input (i.e., a larger estimated coefficient means a stronger effect per standard deviation in the input 
variable). 

To examine the relationship between catch and different combinations of potential effort metrics (such 
as depth and bottom time), we tested a range of models and used model selection to compare model for-
mulations. The rationale for this approach is further described below. The most complex models always 
used total fishing time (Table 1) as the base effort measure, and included dive conditions (swell, visibil-
ity), the use of boat assistants, fishing year within QMA effects (as covariates, fixed effect and random 
effect, respectively). Logger dive effort measures were added to the base effort as separate models for 
each dive effort variable; specifically, we added depth, bottom time or surface interval standard deviation 
(Table 1), hypothesising that the latter would decrease with increasing catches as dives become more reg-
ular. The data logger effort variables were introduced either as (fixed) effects (e.g., over all divers) or 
individual regression coefficients (random slope) to investigate how individual dive behaviour relates 
to catch (at equivalent total fishing times). Each model also included a random intercept to account for 
differences in average catch rates among divers. The full model was thus specified as: 

log(Yd,i,q,y) = aiZd,i,q,y + /Xd,i,q,y + Ay : Qq + IDi + ϵd 

ϵd r N(0, (d
2)( ) (( ) ( ))

(2ai µ0 0 β(0(ID r N ,
IDi 0 β(0(ID (2 

ID 

Ay : Qq r N(0, (2),q 

where Yd,i,q,y is the catch of diver i in QMA q on day d in year y, ID is a diver specific random effect 
and ai is the effect of changes in the dive variable Z for diver i. Regression effects were included as 
/ = /1.../p, for the p remaining covariates (effort and external variables) in the matrix X . For population 
level effects (over all divers) of the dive variable Z, the subscript on ai is omitted (i.e., a can be included 
in the / vector as it is no longer a random slope, and Z can be specified as part of X). QMA Qq and 
fishing-year (Ay) specific random intercepts were included in the model, drawn from a prior with QMA-
specific population variance. The diver effects IDi and ai were modelled jointly using a multivariate 
normal distribution, which allowed us to explicitly model the correlation between the random slope and 
intercept parameters (Gelman et al. 2006). 

Priors for / and µ0 were vague normal with mean 0 and variance of 1 × 106, (hyper-)priors for variances 
were vague gamma with shape s and rate r set to s = r = 0.01. For the diver identifier and fishing-year 
within QMA interaction, the hyper-prior for the population variances was formulated as a half-Cauchy 
distribution according to Gelman (2006), with a scale parameter of 0.05. 

Our modelling strategy consisted of first building a base model that would incorporate covariates that 
would enter into model-based standardisation of PCELR CPUE data (i.e., total fishing time, dive condi-
tions and diver effects; Fu et al. 2012). We then added effort variables from the logger data to investigate 
how much of the model fit would improve from the data-logger effort measures. We started with a mean 
model that did not include any covariates as a reference, and then sequentially added covariates, start-
ing with total fishing time, then adding fishing-year within QMA effects, diver random effects, fishing 
conditions and the use of a boat assistant to build up to the base model. This approach allowed us to 
examine the importance of effects in the base model. To explore the effects of dive parameters on catch, 
dive effort measures (depth, bottom time, surface time standard deviation) were then added to the base 
model as covariates in either a fixed or random slope design. As dive depth was a significant contributor 
to bottom times, we included depth as a potential covariate for models with bottom time. Models were 
selected using the Deviance Information Criterion (DIC; Spiegelhalter et al. 2002). 

All models converged to stationary posterior distributions (using three independent chains started at ran-
dom starting values to verify convergence), and were run for 100 000 iterations with a thinning interval of 
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50 applied to each Markov Chain, resulting in 6000 samples from each chain being retained for analysis. 
Auto-correlation within chains was found to be negligible (using Gelman-Rubin and Raftery-Lewis dia-
gnostics in the R package coda to confirm). We further used posterior predictive assessments (Gelman 
et al. 2004) to confirm that our models provided a reasonable fit to the data (see appendix, Figure A-1). 

2.4.3 Investigating spatial metrics 

To analyse spatial metrics relating to resource abundance, we restricted further analyses to data that were 
not affected by the turtle logger’s geo-location fault (see Subsubsection 2.4.1). Specifically, we only 
used data with firmware versions greater than version number 2.3. This rule restricted the available data 
to the 2012–13 and 2013–14 fishing years and limited our ability to investigate temporal changes in the 
spatial data. 

Figure 4: Example of estimated daily kernel utilisation densities for two divers (red, blue). Lighter shade of 
each colour corresponds to the 75% isopleth of the distribution, darker shade to the 25% isopleth. Crosses 
indicate individual dive locations, land mass appears in grey. 

We initially calculated spatial metrics from dive data on a daily scale. Discussions with individual divers 
suggested that area searched per day should be sensitive to the density and overall abundance of the 
resource. To obtain a spatial index of daily fishing behaviour, we calculated isopleths of the daily ker-
nel utilisation density (KUD), as suggested by Mundy (2012). The KUD is a spatial distribution that 
estimates the likelihood of finding a diver in a given place (see Figure 4 for an illustration). In our case, 
we calculated it on a daily basis for each diver. We used Brownian bridge kernel utilisation methods 
(Benhamou 2011, Benhamou & Riotte-Lambert 2012), which fit a spatial random process (an advection-
diffusion model of movement) to the time and location data. To provide a measure of the spatial con-
centration of the diving, we calculated the ratio of areas of the 25% and 75% isopleths. We hypothesised 
that when the catch rates are high, the concentration index will be high (dive activity focused in a single 
area), and that when the catch rates are low, the concentration index will also be low (the dive activity 
would be dispersed, perhaps with patches of concentrated fishing). 

The KUD can be calculated on various scales, and was included in finer scale models, where it was 
calculated on smaller spatial scales. At the largest scale, KUDs provide an estimate of the core area 
within QMAs, and provide a way to monitor the performance of these core areas by assessing the catch 
reported from these areas through time. Changes in these core areas could also allow monitoring for 
serial depletion. We illustrated this approach in PAU 7 and PAU 4, two QMAs with known differences 
in fishery status and catch rates. We estimated core areas from KUD isopleths within each QMA, and 
calculated the isopleth ratios and catch per ha within the core area. As an additional spatial metric, the 
distance swum during each day was calculated as the sum of distances between successive dives. 
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Spatial metrics calculated at the day scale were first introduced as covariates into the best model that was 
determined from all models (formulated in the previous section). We only used a smaller subset of the 
total data set (2012–13 and 2013–14 fishing years) due to errors in the spatial location of data in earlier 
fishing years. As we only had reliable spatial data over one complete fishing season, we did not include 
a year effect in this model. The latter could be considered in the future to build a spatio-temporal CPUE 
index. 

Missing location data for many dives may introduce some error into the calculations. Nevertheless, 
the Brownian Bridge KUD method, being model based, interpolates between successive GPS positions. 
Furthermore, area fished and distance swum were strongly correlated (divers were searching in a narrow 
depth band along the coast). We thus only included the KUD 75% isopleth as a measure of search area, 
and the isopleth ratio as a measure of fishing concentration into our model. 

Figure 5: Dives by a single diver on a single day illustrating attribution of dives to catch bags and hexagons. 
Dives are colour coded corresponding to individual catch bags landed by that diver. For each bag, the catch 
was allocated to hexagons according to the proportion of dives within the hexagon. 

2.4.4 Fine-scale spatial CPUE models 

The model of daily catch detailed above may mask smaller scale patterns in abundance and fishing, and 
data from the turtle loggers should allow for a comparable analysis on finer scales. We split the analysis 
into finer spatial units with the aim of estimating a spatial index of CPUE. This split was achieved by 
applying a grid of 1-hectare (ha; 10 000 m2) hexagons and attributing catch to these hexagons. Specific-
ally, the day’s catch was first divided evenly over the reported catch bags and the bag weight was then 
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allocated to hexagons, according to the proportion of each bag’s dives within the hexagons (see Figure 5 
for an illustration). This process could not account for variability in weight between landed bags, but 
catch weights of individual bags were not reported. We lastly calculated diver behaviour (median dive 
depth, sum of bottom times for dives within a hexagon) as well as spatial (KUD) metrics within each 
hexagon. Some variables were only available at the day scale as the boat unit’s firmware only recorded 
them as part of the unit’s shut-down sequence (this feature was related to the firmware rather than the 
data treatment). 

Table 4: Summary of data used for modelling of catch-per-unit-effort within pāua Quota Management Areas 
(QMAs). The dataset has a record for each hexagon-day (each day’s fishing in each hexagon). 

Hexagon-days No. hexagons Statistical areas Divers Catch (t) 
PAU 7 1598 887 28 15 46.1 
PAU 4 321 193 21 8 36.5 
PAU 5B 350 305 35 7 7.7 
PAU 2 267 154 9 4 16.8 

The model with data at the hexagon scale is mostly equivalent to the previous model at the daily scale. 
To avoid having small scale variability swamped by inter-QMA differences, we performed this finer 
analysis within QMAs. The QMA effect (and subscript) were replaced by random effects at both the 
statistical area and hexagon scale. These random effects provided a spatial CPUE index at those scales. 
We did not estimate random slopes for each diver (but retained a random intercept) within this model 
as the inclusion of random slopes led to model fitting problems. We restricted the analysis to PAU 2, 
PAU 4, PAU 5B and PAU 7 since other QMAs did not have sufficient data to reliably estimate model 
parameters. These data were further restricted to hexagons with more than ten dives and gross errors in 
catch reporting were eliminated (see Subsection 3.1; input data are summarised in Table 4). 

3. RESULTS 

3.1 Uptake and coverage of the logger programme 

3.1.1 Programme uptake 

On the date that we extracted the data for our analysis (March 2014), the logger database contained a total 
of 1612 diver-day fishing records classified as valid activity, meaning that there was a match between 
turtle and SITO IDs from the turtle logger and boat unit. A large number of records could, however, not 
be matched because either the turtle or SITO ID numbers did not match between turtle and boat unit, 
or because only data from one type of the dive loggers was uploaded (e.g., turtle loggers were uploaded 
but not the boat unit). It is not possible to determine what the exact numbers or proportions of these 
mismatches are, as there is no straightforward way of distinguishing an ID mismatch from a case where 
two non-matching units were uploaded independently and missed uploads from the other data source 
(e.g., data from a turtle unit without boat data may just be the result of a wrong turtle ID in the boat unit, 
or may not have any associated boat unit (and catch) data in the database). 

The logger monitoring programme showed increasing uptake from the 2010–11 to the 2012–13 fishing 
year, with 56 and 79 fishers participating, respectively (Table 5, Figure 6). Nevertheless, turtle logger use 
did not necessarily carry over between years: 14 fishers who used turtle loggers in the 2010–11 fishing 
year did not carry loggers in 2012–13, despite a marked increase in the total number of divers using the 
loggers. There were 37 divers that fished with loggers in 2012–13, but have not yet reported data for the 
2013–14 fishing year. As PAU 6 only accounts for 2 t of catch per year that are completely monitored, 
we do not report on patterns in this QMA in further analyses. 

PAU 7 had the highest number of divers using dive loggers (Table 5, Figure 6), although 15 fewer divers 
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Table 5: Number of divers reporting data in the dive-logger programme by pāua Quota Management Area 
(QMA) between 2010–11 and 2013–14 (up to February 2014). 

QMA 
Year 2 3 4 5A 5B 5D 6 7 Total 

2010–11 6 9 11 2 3 4 3 32 56 
2011–12 8 16 13 9 8 13 3 35 75 
2012–13 15 17 18 10 15 17 4 29 79 
2013–14 19 8 11 5 7 11 0 14 61 

Figure 6: Number of divers using data (“turtle”) loggers by pāua Quota Management Area (QMA) and 
fishing year. Lines on the graph indicate trends over time within each QMA. Data for the 2013–14 fishing 
year are up to February 2014 only. 
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Table 6: Comparison of pāua catch (t) reported on Pāua Catch Effort Landing Return (PCELR) forms and 
in the dive logger programme (Logger catch). Data are by fishing year and by Quota Management Area 
(QMA). 

(a) Catch by fishing year 

Year PCELR landings Logger catch Proportion 

2010–11 853 113 0.13 
2011–12 834 249 0.30 
2012–13 836 290 0.35 
2013–14 448 139 0.31 
Total 2971 791 0.27 

(b) Catch by QMA 

QMA PCELR landings Logger catch Proportion 

PAU 2 426 40 0.09 
PAU 3 293 105 0.36 
PAU 4 929 292 0.31 
PAU 5A 300 38 0.13 
PAU 5B 244 56 0.23 
PAU 5D 292 36 0.12 
PAU 7 480 223 0.46 
Total 2971 791 0.27 

Figure 7: Percentage of total catch by QMA and fishing year recorded in the dive logger programme. Lines 
on the graph indicate trends over years within QMAs. Data for the 2013–14 fishing year is up to February 
2014 only. 

fished in PAU 7 in the 2012–13 fishing year than in previous years, with many (13) divers fishing in other 
QMAs in 2012–13. In other QMAs, the use of loggers generally increased up to the 2012–13 fishing 
year, while data for the 2013–14 fishing year were not complete at the time of reporting. 

The amount of catch recorded by the logger programme increased overall and within individual QMAs 
(Table 6, Figure 7). When compared to PCELR data, more than half the catch in PAU 7, and close to 
40% of the catch in PAU 4 was recorded in the logger programme in 2011–12 and 2012–13. 
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Geographically, the number of statistical areas covered by the dive logger programme increased markedly 
from the start of the programme in the 2010–11 fishing year (Table 7), with catch from a total of 87% of 
statistical areas recorded on PCELR forms covered in 2012–13. In PAU 7, where coverage was highest 
over all years (Table 7), the logger data from the 2011–12 fishing year included dives in statistical areas 
not noted in the PCELR forms (i.e., the number of statistical areas in the dive logger database for that 
year was larger than the number of statistical areas recorded from PCELR forms). This discrepancy may 
have been due to incomplete recording on PCELR forms, where lightly fished statistical areas may not 
be reported. 

Table 7: Statistical areas (SAs) recorded on Pāua Catch Effort Landing Return (PCELR) forms, inferred 
from data-(“turtle”)-logger Global Positions System positions, and proportion of statistical areas recorded on 
PCELR covered by logger data, by fishing year and Quota Management Area (QMA). (Note that proportions 
covered <1 despite a larger number of statistical areas inferred from logger data indicated that the number 
of statistical areas differed between PCELR and dive loggers.) 

(a) Statistical Area by Year 

Year PCELR SAs Logger SAs Proportion 

2010–11 250 285 0.88 
2011–12 248 280 0.89 
2012–13 235 271 0.87 
2013–14 200 219 0.91 
Total 269 333 0.81 

(b) Statistical Area coverage by QMA 

QMA PCELR SAs Logger SAs Proportion 

PAU 2 18 27 0.67 
PAU 3 25 29 0.86 
PAU 4 49 54 0.91 
PAU 5A 40 45 0.89 
PAU 5B 63 79 0.80 
PAU 5D 27 36 0.75 
PAU 7 51 61 0.84 
Total 269 333 0.81 

3.1.2 Correspondence of PCELR and dive-logger records 

Investigating the overlap of PCELR and dive-logger data in terms of boats and individual fishing days 
proved difficult due to several limitations: 

• PCELR forms do not include names, but record initials, which may be prone to errors during data 
entry or due to multiple initials for any one diver. For example, any one diver may have a match 
in PCELR initials, but multiple potential matches that only require one letter to be substituted or 
deleted. Resolving this matter with certainty is made more difficult by family members diving 
together. An important point would, therefore, be to establish an explicit link between the dive-
logger and PCELR data, possibly by entering the PCELR form numbers in the boat unit (although 
this linking would require a firmware update, and forms to be assigned prior to the day’s fishing). 

• Turtle loggers are usually registered to a diver, but the unit may be passed on to other divers (e.g., 
family members), which are then recorded on the PCELR forms. 

• The submission of erroneous SITO ID numbers (pertaining to the dive-logger database only). 

Notwithstanding these limitations, we matched turtle logger records to PCELR records where possible. 
Matching was initially based on both perfect matches between name records from dive loggers for fishing 

Ministry for Primary Industries Monitoring fishery performance from GPS loggers • 15 



days in the dive-logger database (using both matched and unmatched days, i.e., days for which we only 
had boat-unit or turtle-logger data) and PCELR initials. This matching allowed us to determine the 
amount of matching to be expected if the matching in the data-logger database was perfect. The name-
based matching accounted for 3004 matches for a total of 16 631 PCELR entries, corresponding to 
18.06% of PCELR data and 63.64% of dive days in the logger database. To make further matches, we 
built a correspondence table that matched boat IDs in the dive-logger database to particular boats for all 
QMA/year combinations. We then attempted to match diver names based on boat ID and initials that 
allowed for one letter substitutions or deletions, which allowed us to match a further 244 diver-days. 

Nevertheless, due to these limitations, some diver-days in the logger data set could not be matched to 
PCELR data. We matched a total of 3248 of diver-days in the dive-logger database, which correspon-
ded to 73.53% of all recorded fishing days. Within QMAs (Table 8), the proportion of unambiguously 
matched dive-logger data matched to PCELR data increased from low levels in PAU 2 (20% in the 
2011–12 fishing year) and PAU 5A (12% in 2010–11) to above 70% in both QMAs in 2012–13. For all 
other QMAs, the proportion of matched diver- -days remained reasonably high, although PAU 5B and 
PAU 3 had lower percentages of matched dive records in the 2012–13 fishing year. 

Table 8: Proportion of diver-days in the logger database matched to Pāua Catch Effort Landing Return 
(PCELR) form records by Quota Management Area (QMA) and fishing year. 

QMA 
Year 2 3 4 5A 5B 5D 7 

2010–11 0.33 0.90 0.52 0.12 0.67 0.77 0.72 
2011–12 0.20 0.93 0.53 0.68 0.69 0.63 0.80 
2012–13 0.70 0.81 0.76 0.73 0.55 0.76 0.80 
2013–14 0.63 0.67 0.49 0.32 0.53 0.56 0.83 

3.1.3 Comparing reported statistical areas within days 

To assess if there was a systematic difference between the number of statistical areas reported by divers 
on PCELR forms and dives recorded in the dive-logger database, we compared matched records with 
reliable locations for the logger data (i.e., firmware versions with the location error fixed, Section 2.4.1). 
The comparison was based on 380 individual diver-days (i.e., matched data from the 2012–13 fishing 
year and the 2013–14 fishing year to February 2014). 

Although the number of statistical areas coincided between both reporting methods for the majority 
of matched days (Figure 8a), there was a tendency to report fewer statistical areas on PCELR forms, 
meaning that the true spatial effort of fishing may often have been more spread out than reported on 
PCELR forms. In terms of actual dives, a combined 29% of dives were outside of statistical areas reported 
on PCELR forms. On a daily basis, the proportion of dives within statistical areas recorded on PCELR 
forms varied, with a substantial number of diver-days where the reported statistical areas was inaccurate 
(Figure 8b). 

The increased number of areas reported by the dive loggers may be partly caused by GPS location errors. 
Although these errors were typically on the order of a few metres (and should, therefore, only have very 
minor impacts on analyses reported in this project), fishers diving near the boundary of a statistical area 
may occasionally be recorded as diving within adjacent statistical areas. Furthermore, missing location 
data on many dives (see Subsection 2.4.1) may lead to errors in the reported quantities if locations were 
not missing at random. 
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Figure 8: Comparison of statistical areas (SAs) reported on Pāua Catch Effort Landing Return (PCELR) 
forms and obtained from diver-logger data. (a) Difference between the number of SAs reported on PCELR 
forms and assessed from individual dive locations within a day (negative number indicates that fewer stat-
istical areas were reported on PCELR forms). (b) Proportion of dives in SAs that were also recorded on 
PCELR forms (a value of one suggests that all dives on that day were within SAs reported on PCELR forms, 
a value of zero suggests that diving occurred exclusively in SAs not reported on PCELR forms). 
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Figure 9: Distribution of swell and visibility records from the turtle logger database with matched condition 
indices reported on Pāua Catch Effort Landing Return (PCELR) forms. 

3.1.4 Comparing reported dive condition 

Dive conditions are reported on PCELR forms using a qualitative index with five categories, ranging 
from “Very Poor”, “Poor”, “Average”, and “Good” to “Excellent”. For the turtle loggers, divers recorded 
condition as swell height and visibility (both in metres). The condition index recorded on PCELR forms 
reflected both swell and visibility, with linear increases in the mean visibility and near linear decreases 
in swell height from Very Poor to Excellent (Figure 9). 

3.1.5 Comparing reported catch and effort data 

Catch and effort data were compared for diver-days with an exact match to PCELR data using both 
diver initials and names over all years, corresponding to 2608 of the 3004 diver-day records matched to 
PCELR data for which catch information was available (i.e., for which we had either matched boat and 
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Figure 10: Comparison of recorded catches for matched dives from Pāua Catch Effort Landing Return 
(PCELR) forms and dive-logger databases. 
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Figure 11: Difference in recorded catches for matched dives from Pāua Catch Effort Landing Return 
(PCELR) forms and the dive-logger database. 

turtle logger records, or only the boat unit was uploaded for that day). 

Reported catches coincided for 39% of matched records, while 62% of records had a difference of less 
than 50 kg. Comparing original and log scales, there were a few large errors that were likely to be due to 
data entry errors (such as accidentally repeated numbers that inflate actual catch, e.g., 250 kg 2250 kg) 
(see Figure 10). These obvious outliers were removed from all analyses relying on catch data (i.e., models 
for catch rate) to avoid biases or errors in inferences. 

Most of the remaining discrepancies between matched catches in the two databases were evenly distrib-
uted around zero, with a slight bias towards inflated catches in the logger database (Figure 11). We found 
no indication that the discrepancy in reported catches improved with fishing years or within QMAs since 
the inception of the logger programme (multiple regression, r2 = 0.01). 

Comparisons among effort measures from logger and PCELR data showed that the total fishing time, 
measured by the sum of half-hour intervals with turtle logger activity (see Table 1), was most closely 

2correlated to reported effort on PCELR forms (total time in water (in h); r = 0.34, Figure 12). There 
was no evidence of systematic bias towards higher or lower reported effort in either measure. The two 
other effort measures calculated from logger data, the boat-effort measure and bottom time (see Table 1), 
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Figure 12: Comparison of effort measures for matched dives calculated from the dive-logger database (x-
axis) and data from Pāua Catch Effort Landing Return (PCELR) forms (y-axis). 

were less closely related to PCELR effort, with regression values of r2 = 0.26 for the boat measure and 
r2 = 0.08 for bottom-time effort. This finding suggests that the time in water reported on PCELR forms 
was, as expected, most closely related with the total time that loggers were active (the total fishing time 
effort), but did not reflect bag landings or bottom time. 

3.2 Relating dive parameters to catch 

3.2.1 Spatial and temporal patterns in dive patterns 

Most pāua fishing happened on short and relatively shallow dives (Figure 13), with an average median 
depth of 1.2 m (interquartile range (IQR): 0.71 to 2 m) and median bottom time of 11 s (IQR: 5 to 18 
s). Median surface intervals were 37 s long, with an IQR of 24 to 57 s. All dive parameters had long 
tailed-distributions with standard deviations of 10.63 s, 1.23 m and 48.58 s, for bottom times, median 
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depths and surface interval duration, respectively. 

Diving patterns were relatively consistent over fishing years, as the distributions of both bottom time 
and depths showed little variation among years and among most QMAs (Figure 13). Bottom times were 
more evenly distributed towards longer bottom times in PAU 4 and PAU 3 (Figure 13a), whereas the 
bulk of the fishing activity happened on short dives in all other QMAs. This finding is likely to reflect 
the greater average dive depth in these two QMAs, although PAU 3 showed a trend towards shallower, 
shorter dives over the years. In other QMAs, an opposing yearly trend towards more evenly distributed 
bottom times was apparent, suggesting a shift towards longer bottom times despite a slight decrease in 
dive depths. This shift towards shallower yet longer dives can be visualised as a shift in average dive 
parameters (Figure 14). Because of the progressive introduction of the loggers, it is unclear whether 
these changes are due to changes in the fishery, or are due to different divers using the loggers. 

3.2.2 Modelling daily catch as a function of dive parameters 

Starting with a mean model that initially only included an intercept term, other terms were sequentially 
added to build the base model (Table 9). The base model included total fishing time effort, dive con-
ditions, diver and year in QMA random effects. This base model was the basis for developing more 
complex models, adding dive parameters as additional effort as either fixed effects or diver-specific ran-
dom coefficients. The models developed from the base model did not build on each other, but were 
separate models for combinations of dive-effort measures. 

Selection between models for daily catch showed that a full model, including dive parameters and a ran-
dom slope for the diver bottom-time effect, performed substantially better than all other models (Table 9). 
Compared with the simple mean model, including only total fishing time led to significant improve-
ments in model fit. Including effects for fishing year within QMA and individual divers demonstrated 
the importance of differences in average catch rates among QMAs and individual divers by leading to 
progressively improved (i.e., lower) DIC values. 

Table 9: Deviance Information Criterion (DIC) for models used to relate catch to effort and dive conditions 
in pāua fishing. The base model was developed by sequentially adding terms to the mean model that initially 
only included an intercept term. Models developed from the base model were separate models for combin-
ations of dive effort measures (QMA, Quota Management Area; random, diver-specific random coefficient; 
SD, standard deviation). 

Model DIC
 

Mean model 2037
 
+ total fishing time 1945 
+ year:QMA 1551 
+ diver ID 1208 
+ condition 1192 
Base model: + boat assistant 1178 
+ depth 1178 
+ bottom time 1177 
+ surface interval SD 1176 
+ depth + bottom time 1173 
+ random depth 1157 
+ random surface interval SD 1155 
+ random depth +Bottom time 1151 
+ random bottom time 1115 
Best Model: + depth + random bottom time 1113 

Models including dive condition provided a further improvement over models with only total activity
 
time and QMA, year and diver differences (Tables 9 and 10, Figure 15). Increased swell and visibility
 
were correlated with lower and higher CPUE, respectively. The presence of a boat assistant also improved
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(a) Bottom time 

(b) Median depths 

(c) Surface intervals 

Figure 13: Distribution of a) bottom time, b) median dive depth and c) surface interval duration from dive-
logger records by pāua Quota Management Area and fishing year. Boxes span the interquartile range, 
whiskers cover data within the 95% interpercentile range. 
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(a) Bottom time 

(b) Median depths 

Figure 14: Deviation in mean bottom time and median depth among years relative to the mean bottom time 
and depth within pāua Quota Management Areas (QMAs) over the reporting period. Lines on graph indicate 
trends in bottom time and depth over years within individual QMAs. 
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(a) Random bottom time (b) Total fishing time 
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Figure 15: Posterior distributions for models with a) random bottom time (best model) and b) total activity 
time (and external variables). In a), the effect for bottom time is displayed at the population level. (A larger 
estimated coefficient (positively or negatively) indicates a stronger effect per standard deviation in the input.) 

Table 10: Posterior means, 95% posterior quantiles and probability of being strictly positive for model 
parameters from the best model identified by Deviance Information Criterion model selection. 

Parameter mean(α) P(α > 0) 2.5% 97.5% 

Boat assistant use 0.18 1.00 0.10 0.26 
Bottom time 0.18 0.99 0.03 0.33 
Median depth -0.06 0.05 -0.13 0.01 
Swell -0.05 0.08 -0.11 0.02 
Total fishing time 0.24 1.00 0.15 0.32 
Visibility 0.11 1.00 0.05 0.18 

models for daily catch (Table 9), and the consistently positive coefficient of this factor suggested that 
crews using a boat assistant were able to achieve higher catch rates (Table 10, Figure 15). 

For the best model, the estimated QMA effects were consistent with expectations of relative status of 
the fisheries in that PAU 4 consistently had the highest posterior CPUE index across years (Figure 16). 
Nevertheless, PAU 5A and PAU 5D had comparably high posterior CPUE indices in some years. PAU 7 
had the consistently lowest year-within-QMA indices, showing a decreasing trend over the past four 
years. These estimates were based on data-logger data only, which was a subset of the total fishing 
activity in each QMA. For this reason, inter-annual changes may reflect changes in the uptake of the 
loggers. In the indices for QMA and year combinations (with comparably few data), there was large 
variability. 

In the best model, total fishing time was the predictor with the largest coefficient (Table 10, Figure 15a), 
followed by bottom time and boat assistant use as predictors of catches. Both total activity time and 
bottom time were strongly positively related to catch. A comparison with a model that had total activity 
time as the only measure of effort (Figure 15b) suggested that bottom time diminished the estimated effect 
of total fishing time when added into the model: the effect for total fishing time in the base model was 
larger than the estimated effect in the best model. Despite this interaction, the correlation of coefficients 
for both parameters in the posterior distribution of the full model was reasonably low (β ≃ −0.47), 
and the posterior mean of the combined effect of bottom time and total activity time ( /̄sum = 0.42) 
was substantially higher than the effect of total activity time in the base model without dive parameters 
(/̄ = 0.31). 
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Figure 16: Posterior distributions for combinations of pāua Quota Management Area (QMA) and year-
specific (interaction) random effects. Median values with boxes marking the 75% quantiles of the posterior 
distributions, whiskers enclose the 95% interval of the Markov Chain Monte Carlo draws from the posterior 
distribution. 
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Figure 17: Predicted catch-per-unit-effort (CPUE) as a function of the proportion of bottom time for one 
hour of total fishing time, with all other covariates held at their mean value. The population level effect and 
regression uncertainty are plotted as the solid line and blue ribbon (95% posterior quantiles), respectively. 
Posterior means of individual divers as dotted lines, dashed lines indicate the range of predictions from the 
mean effect. 

The response of catch to changes in bottom time was variable among divers (Figure 17); however, the 
population-level effect was significantly positive (P < 0.01). While few divers showed a strongly op-
posing response, there was a significant negative correlation between the response of catch to individual 
bottom times and diver-specific random intercepts, suggesting that divers who consistently had higher 
catches did not show trends in catch with changes in bottom times (Figure 17). 

Depth was consistently negatively related to catch (Figure 15), although it only became a significant 
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Table 11: Posterior mean, probability of being strictly positive, and 95% credible interval for model para-
meters of the model for daily catches with spatial metrics. KUD 75% area refers to the kernel utilisation 
density area within the 75% KUD isopleth. 

Parameter mean(α) P(α > 0) 2.5% 97.5% 

Boat assistant use 0.12 0.95 -0.02 0.27 
Bottom time 0.15 0.82 -0.17 0.46 
KUD 75% area -0.11 0.09 -0.26 0.05 
KUD ratio 0.13 0.98 0.01 0.26 
Median depth 0.13 0.97 -0.01 0.25 
Swell -0.09 0.10 -0.23 0.05 
Total fishing time 0.61 1.00 0.39 0.83 
Visibility 0.05 0.71 -0.12 0.23 

0

2

4

6

−0.5 0.0 0.5 1.0
Coefficient

D
en

si
ty

Effect

Boat assistant use

Bottom time

KUD 75% area

KUD ratio

Median depth

Swell

Total fishing time

Visibility

Figure 18: Posterior distributions for model coefficients in the model for daily catches with spatial predictors. 
KUD 75% area refers to the kernel utilisation density area within the 75% KUD isopleth. (A larger estimated 
coefficient (positively or negatively) indicates a stronger effect per standard deviation in the input.) 

factor (in the sense of P (x > 0)) when bottom time was included in the model, and the effect size 
remained relatively small compared to fishing time and bottom time. 

3.3 Investigating spatial performance metrics 

3.3.1 Spatial effort metrics on large scales 

The best model for daily catch, including bottom time and depth as predictors, was extended to include 
spatial metrics (see posterior distributions for model coefficients in Table 11, Figure 18). This model 
was restricted to data after the GPS position error was fixed (i.e., excluding many of the records before 
the 2012–13 fishing year). The model showed a similar pattern to the non-spatial analysis on the whole 
dataset. The overall estimated effects of dive metrics (bottom time and depth), however, were not as 
strong as total fishing time. Depth appeared as a significant predictor in this new model, whereas the 
population level effect of bottom time adjustments was less likely to be different from zero. 

Spatial metric variables appeared as important predictors of catch on a daily scale, with catch increasing 
with the KUD ratio, which represents effort concentration. An increase of the ratio (and effort concen-
tration) from 0.1 to 0.2 was associated with a 21% higher CPUE (Figure 19). Conversely, catch declined 
with the size of the 75% isopleth of the KUD. The overall effect was less strong, with CPUE decreasing 
7% when the KUD area increased from 20% to 200% relative to the mean KUD area. (Note that after 
an initial run including distance travelled, we discarded the variable as it was highly correlated with area 
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Figure 19: Predicted catch-per-unit-effort (CPUE) as a function of the proportion of a) the kernel utilisation 
density (KUD) ratio, and b) the area of the 75% isopleth of the KUD relative to the average area (integrated 
over random effects and with all other covariates held at their mean). Solid line shows the prediction and the 
posterior mean of the regression parameter; blue shading indicates predictions at parameter values within 
the 95% quantiles of the posterior distribution for regression parameters; dashed lines indicate the range of 
predictions. 

fished, and led to highly correlated posterior distributions for both variables.) 

As an illustration of the potential of KUD metrics to reflect status and changes in the fishery, we compared 
KUD areas within PAU 7 and PAU 4. This comparison between QMAs was chosen as the amount of 
data within a single QMA was insufficient to contrast spatial resource use through time (due to the short 
time since the inception of the data-logger programme). The two QMAs had similar TACCs, but catch 
rates were markedly higher in PAU 4, helping to clarify patterns in spatial resource use. Nevertheless, 
the logger data to the reporting date only represented a subset of divers in each QMA. For this reason, 
the current results are presented for illustrative purposes only as comparisons need to be made within 
QMAs and over time. 

For a similar TACC, the 75% isopleth in PAU 7 was large and covered much of outer Marlborough 
Sounds facing Cook Strait (Figure 20), whereas in PAU 4, the 75% isopleth was patchier, broken into 
distinct spots on the coastline (Figure 21). Although more data were available to estimate core areas in 
PAU 7 (about 40 000 dives compared with about 12 000 dives in PAU 4), this pattern suggested that most 
of the potential fishing ground within PAU 7 was visited regularly, whereas only a few spots in PAU 4 
were fished (based on the subset of divers participating in the data-logger programme). Accordingly, 
the area inscribed by the 75% isopleth contours in PAU 4 was only 8% of the size of the corresponding 
area in PAU 7, and the 25% KUD area in PAU 4 was only 2% of the size of the corresponding area in 
PAU 7. Furthermore, over the entire reporting period, the catch from the 25% KUD area in PAU 7 was 
approximately 11 kg ha−1, whereas the catch in the 25% KUD area in PAU 4 was 133 kg ha−1 . 

3.3.2 Within QMA models of spatial CPUE 

Models on the hexagon scale (i.e., on a rasterised coastline) within QMAs showed a reasonable fit (see 
appendix, Figure A-2), and gave consistent results for both spatial metrics and dive effort metrics (ie., 
bottom time and depth effort). Bottom time in particular was found to be the most important predictor of 
catch, and was consistently more important than total fishing time (Table 12, Figure 22). At equivalent 
total fishing times, increasing bottom times over the observed range led to an increase of over 300% 
in predicted CPUE within QMAs (Figure 23). This effect was an order of magnitude stronger when 
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Figure 20: Kernel utilisation densities (KUDs) estimated over all dives in pāua Quota Management Area 
PAU 7, Marlborough Sounds. Lighter and darker shades indicate estimated 75% and 25% isopleths, re-
spectively. 
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Figure 21: Kernel utilisation densities (KUDs) estimated over all dives in pāua Quota Management Area
 
PAU 4, Chatham Islands. Lighter and darker shades indicate estimated 75% and 25% isopleths, respectively.
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Figure 22: Posterior distributions for model coefficients in models at the hexagon scale within pāua Quota 
Management Areas with spatial predictors. KUD 75% area refers to the kernel utilisation density area 
within the 75% KUD isopleth. (A larger estimated coefficient (positively or negatively) indicates a stronger 
effect per standard deviation in the input.) 

estimated within QMAs on small spatial scales, compared with estimates across QMA models on the 
daily scale. Catch was also negatively related to median depth in all QMAs, although it was only in 
PAU 4 that the effect was on the same order of magnitude as the effort metrics bottom time and total 
fishing time. 

At average bottom and fishing times within hexagons, PAU 7 and PAU 5B had low Catch Per Unit Area 
(CPUA, measured by catch per 1-ha hexagon) compared with PAU 2 and PAU 4 (Figure 23, see also 
Table 4). Nevertheless, given that for PAU 5B, PAU 4 and PAU 2, there were only limited amounts 
of data available for fine-scale models, these estimates should be regarded as initial indications only. 
Absolute values within QMAs are likely to change once more data become available. 

Spatial metrics (KUD ratio and KUD area) were inversely related to catch in PAU 7 and PAU 2; in 
PAU 5B, only KUD area was negatively related to catch. The KUD ratio thus showed an inverse pattern 
(as compared to the daily scale) for both PAU 2 and PAU 7 (Figure 23). The effect of both KUD ratio 
and area fished was not nearly as large as the effect of dive-related variables, but still showed a consistent 
pattern across QMAs. 

The response of catch rates to dive conditions showed consistent patterns in terms of visibility, with 
higher visibility leading to increased catch rates (Table 12). The response to swell was variable, with 
catch rates in PAU 7 and PAU 2 being negatively related to swell, whereas catch rates in PAU 4 and 
PAU 5B showed a strong positive correlation with swell height. 
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Table 12: Posterior means, probability of being strictly positive, and 95% credible interval for model para-
meters of models on a scale of individual hexagons within pāua Quota Management Areas. KUD 75% area 
refers to the kernel utilisation density area within the 75% KUD isopleth. 

(a) PAU 7 

Parameter mean(α) P(α > 0) 2.5% 97.5% 

Bottom time 1.06 1.00 0.95 1.17 
KUD 75% area -0.17 0.00 -0.24 -0.09 
KUD ratio -0.11 0.00 -0.19 -0.04 

Median depth -0.36 0.00 -0.45 -0.27 
Swell -0.24 0.00 -0.33 -0.16 
Total fishing time 0.54 1.00 0.45 0.64 
Visibility 0.05 0.86 -0.04 0.14 

(b) PAU 4 

Parameter mean(α) P(α > 0) 2.5% 97.5% 

Bottom time 1.60 1.00 1.27 1.93 
KUD 75% area -0.19 0.06 -0.43 0.05 
KUD ratio -0.09 0.24 -0.33 0.16 

Median depth -0.29 0.03 -0.59 0.00 
Swell 0.44 0.99 0.08 0.80 
Total fishing time 0.47 1.00 0.15 0.79 
Visibility 0.83 1.00 0.41 1.26 

(c) PAU 5B 

Parameter mean(α) P(α > 0) 2.5% 97.5% 

Bottom time 0.84 1.00 0.58 1.10 
KUD 75% area -0.15 0.03 -0.32 0.01 
KUD ratio -0.03 0.36 -0.18 0.13 

Median depth -0.18 0.04 -0.38 0.02 
Swell 0.83 0.99 0.17 1.52 
Total fishing time 0.68 1.00 0.48 0.88 
Visibility 0.40 1.00 0.12 0.68 

(d) PAU 2 

Parameter mean(α) P(α > 0) 2.5% 97.5% 

Bottom time 1.15 1.00 0.92 1.38 
KUD 75% area -0.04 0.33 -0.21 0.13 
KUD ratio -0.16 0.02 -0.32 -0.01 

Median depth -0.49 0.00 -0.70 -0.28 
Swell -0.27 0.03 -0.55 0.01 
Total fishing time 0.49 1.00 0.30 0.69 
Visibility 0.06 0.66 -0.30 0.36 
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(a) Bottom time 

(b) KUD ratio 

(c) KUD 75% Area 

Figure 23: Posterior mean of predicted Catch Per Unit Area (CPUA) as a function of a) proportion bottom 
time (relative to average fishing time within hexagons), b) kernel utilisation density (KUD) ratio, and c) KUD 
area relative to the average KUD area fished. All predictions are plotted over ranges of predictors observed 
within pāua Quota Management Areas (QMAs). 
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Figure 24: Spatial index of catch-per-unit-effort (CPUE), with maps showing statistical areas dived by pāua 
crews corresponding to at least three Annual Catch Entitlement holders. Land is indicated in grey and 
statistical areas are coloured according to the posterior mean of the CPUE index as estimated from Quota 
Management Area specific standardisations at the hexagon scale. 
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Table 13: Posterior means of estimated random effect variances within individual pāua Quota Management 
Areas. 

Effect PAU 7 PAU 4 PAU 5B PAU 2 

Diver 
Statistical Area 
Hexagon 

0.79 
0.11 
0.41 

1.43 
0.17 
0.85 

0.97 
0.48 
0.45 

0.17 
0.10 
0.29 

The model at hexagon scale allowed us to estimate both statistical area and hexagon-specific random 
effects. For PAU 7 and PAU 4, there was a hierarchy of effect sizes for random effects (Table 13). 
Diver effects showed the highest population level variance, while the statistical area effect variance was 
on the order of half the diver effect. Hexagon-specific effects were the smallest by nearly an order of 
magnitude, meaning that most of the detectable variability in catch rates was on spatial scales larger 
than 1-ha hexagons. This pattern was the same in PAU 5B for diver and statistical area effects. The 
hexagon effect, however, was on the same order of magnitude as the statistical area effect, suggesting 
small scale variability within statistical areas. In PAU 2, the estimated effects were all small relative to 
other QMAs, and the statistical area effect variance was nearly twice as large as the diver effect variance. 
The hexagon-specific effects were again the smallest. 

The spatial random effects can be visualised on a map as a spatial index of CPUE (Figure 24). On the 
statistical area scale, estimated differences between individual areas were large (up to 400%) in PAU 4 
and PAU 5B, and approached 100% in PAU 7 and PAU 2. A geographical pattern of higher CPUE within 
Cook Strait compared with outer Marlborough Sounds was evident in PAU 7, whereas in other QMAs 
such large-scale patterns were less evident. In PAU 4, a single exceptional fishing spot accounted for 
much of the difference between statistical areas. 

4. DISCUSSION 

This study provides a first quantitative assessment of the dive-logger programme. The data contain a 
substantial amount of information that can be used to calculate relevant metrics to monitor catch on 
small spatial and temporal scales. Although many of the benefits may not become apparent until a time 
series of logger-derived metrics can be established, the consistent relationships between dive parameters, 
spatial metrics and CPUE found in our models provide a strong basis for monitoring. 

4.1 Programme uptake: limitations and considerations 

Our analyses suggest that the dive loggers have the potential to provide automated reporting that has 
several benefits over the current reporting practice (i.e., PCELR forms). Dive conditions reported as 
Good on PCELR forms, for example, were negatively related to swell, and positively correlated with 
visibility. Our spatial models for logger data within QMAs (at hexagon scales), however, suggest that in 
some areas (e.g., PAU 4, PAU 5B) both swell and visibility can positively influence catches, most likely 
because the most productive fishing grounds consistently receive high swells, but yield high catches at 
good visibility. The combined condition index currently used on the PCELR forms would not allow for 
this possibility. 

The modelling also suggested that the use of a boat assistant leads to increased catch rates, and the 
logger programme allows for monitoring of their use. The positive effect of dive assistants on catch rates 
(see Figure 15) does suggest that the widespread introduction of this practice is a form of effort creep 
that may have masked declines in CPUE. This effect has not been included in pāua stock assessments. 
Nevertheless, it is possible that the crews that do not use boat assistants are generally less efficient, and 
that the boat-assistant effect is a general marker for more efficient crews. The diver effect should account 
for this potential difference in efficiency. 
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Additionally, the data loggers provide a way to increase the accuracy of spatial reporting. Although only 
a subset of divers are currently participating in the programme, it is apparent that spatial reporting on 
PCELR forms is often inaccurate. This finding is not surprising, as filling in PCELR forms is a manual 
process, and it may not always be straightforward for divers to correctly identify all statistical areas from 
which a day’s catch originated. With turtle loggers, the statistical areas can be automatically inferred 
from the GPS position of the diver. 

Inconsistencies with the data collection and reporting remain, and currently restrict some analyses of 
dive-logger data. In some cases, divers did not record catch bags until the end of the fishing day. This 
data recording makes it impossible to spatially disaggregate the catch, as any dive on that day could have 
been associated with any landed catch bag. Consistent reporting of catch bags when they are landed on 
the boat by divers will improve the information from the dive-logger programme. 

Furthermore, the catch weight is only reported at the end of the day, which also prevents an accurate 
disaggregation the day’s catch. We addressed this limitation by evenly dividing the day’s catch among 
dive bags. This approach introduces a spatial smoothing that will increase the difficulty of estimating a 
spatial CPUE. A recent firmware change makes it possible for divers to report estimated catch weight for 
each bag. This reporting practise could further improve the accuracy of inferences made from the logger 
data. Nevertheless, conversations with divers made it clear that they consider this reporting practice as 
additional effort, and that they are reluctant to adopt it. Meanwhile, aggregating data at the 1-ha hexagon 
scale provides a way to address this limitation to some extent, depending on how much the fishers move 
between hexagons during the day. 

Missing dive location data further complicated some of our analyses, and introduced unknown (although 
probably small) errors in inferences made here. As most missing data intervals were relatively short, it is 
unlikely that they introduced large errors or biases in our inferences. Missing GPS position data seemed 
to be largely due to short surface intervals. We also suggest that the proportion of GPS positions lost 
will further depend on the way divers position the loggers on their wetsuit (e.g., whether the loggers are 
worn on the belt or back, in a casing or not), and on the spatial location of the dives themselves. When 
dives occur close to high coastal features such as cliffs, the latter may block the signal from the satellites, 
leading to failed GPS records on the turtle logger units. 

Lastly, the location-reporting error in the hardware led us to discard a large amount of dive data that were 
recorded before the correction for the fine-scale analysis was implemented. We attempted to correct 
these incomplete dive data using both heuristic and machine-learning techniques, both of which failed to 
provide satisfactory results. In many cases, erroneous locations could not be differentiated from divers 
changing location. A related problem with the data loggers was that some of the units did not turn on 
or off at the appropriate time. The water switch on dive units is prone to turn on and record dives in 
locations that are unlikely to correspond to actual dive locations. Given the large amount of dive data 
from the programme (more than a million lines of dive data to date), it is difficult to filter out these 
locations manually. In addition, automated corrections based on heuristics were not always successful at 
discarding erroneous dive data. We did, however, only include hexagons with more than ten dives in our 
analysis of fine-scale spatial data in an attempt to reduce these shortfalls. Any dive positions recorded 
on land were also discarded. 

Despite some remaining limitations with the data logger data, consistent patterns can be inferred from the 
data collected since the start of the programme. Addressing the reporting and hardware issues outlined 
above will increase confidence in the inferences made from the logger data, and ensure that the maximum 
benefit is gained from the data collection. 

4.2 Dive metrics 

The dive data collected as part of the logger programme provided indications of temporal trends in the 
fishery. Most noticeably, there was a trend towards longer bottom times yet slightly shallower average 
depths in some QMAs over the four years of the logger programme. Despite the small magnitude of 
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the changes (less than 10 s and less than 1 m, respectively), these adjustments may reflect a response by 
divers to changing catch rates. An increase in bottom time in particular may be indicative of a change 
in the resource. Nevertheless, dive parameters also varied strongly among divers of different fitness, 
habits and preferences. For this reason, changes in the mean values of dive parameters may reflect an 
increased uptake of the logger programme by divers with different dive styles. Additionally, dives are 
likely to reflect the resource density and distribution, which in turn may change due to fishing, biotic 
(e.g., abundance of algal food sources for pāua) and abiotic (e.g, wave climate) factors. 

Our modelling results consistently found that bottom time and depth were strong predictors of catch, both 
on daily scales and within individual 1-ha hexagon blocks. The results were consistent among QMAs, 
and extend patterns first reported by Abraham (2012) from a pāua fish-down experiment in Fighting Bay, 
Marlborough Sounds. Although the overall distributions of dive duration and surface swimming distance 
did not change markedly during the fish-down experiment, it was evident that an increasing proportion 
of daily catches came from deeper dives as abundance in the area declined. 

We found that the variation in the effect of bottom time depended on the diver. Divers that generally 
achieved high CPUE did not consistently increase their catches by spending more time at depth, whereas 
divers with lower average catch rates did (Figure 17). Divers fishing at low CPUE could thus potentially 
increase their bottom time to increase their fishing power, potentially leading to hyper-stable CPUE 
indices. In PAU 7, for example, the model at the daily scale suggested that catch rates within this QMA 
had been declining, despite increasing bottom times. This finding could be interpreted as a potential 
warning sign that divers spend increasing time at depth to offset lower catches. (Note, however, that 
data for the 2013–14 fishing year was incomplete and inferred patterns may change with more complete 
data.) 

Our results suggest that a model including both total fishing time and bottom time provides higher pre-
dictive power (i.e., lower DIC) than a model including only the total fishing time. Although a comparison 
of our best model on the daily scale and the base model suggested that there is some redundancy in these 
two effort measures, their combined effect was clearly larger than the effect of total fishing time alone. 
This result indicates that traditional CPUE based on total daily fishing effort may miss patterns related to 
bottom time. For example, stable catches at stable total fishing times may mask a decline in the resource 
if bottom times increase over the same period. Estimating temporal and spatial (e.g., at the statistical 
area level) CPUE indices from logger-derived data could considerably improve the robustness of these 
indices in the future. 

The strength of dive effects varied with the geographical scale of the analysis. Some small scale spa-
tial variation was smoothed out over the day, such that effects on a daily scale were not as strong as 
inferred effects on the hexagon scale. Despite this smoothing, median depths and bottom times of divers 
could provide an index of performance on both small (reef level) scales and large (day level) scales. 
For example, consistent increases in bottom time that coincide with stable or decreasing CPUE may be 
indicative of a decline in the resource. Nevertheless, given that the effect of bottom time is strongly 
dependent on individual divers, a model framework that accounts for individual diver effects would be 
needed to infer such a change. 

4.3 Spatial metrics 

Estimates of core areas, using the KUD, illustrate how the spatial data from the logger programme can 
be used to construct metrics that relate to catch rates at both daily and hexagon scales. Both the area 
fished and the concentration index measured by KUD isopleth ratios were consistently related to catch, 
although the KUD ratio showed opposing patterns at daily and hexagon scales. A likely explanation for 
this outcome is related to the scale itself. At large spatial scales such as the area covered in a day, patchy 
core areas for the day relative to a large search area should indicate that the overall abundance is low 
and the distribution is patchy. On a reef scale, however, the size of the hexagon constrains the maximum 
size of the search area, and a more patchy distribution of the dives may indicate that the diver found 
aggregations of pāua that led to higher catches within a given hexagon. 
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The overall effect size of these spatial metrics on CPUE at the fine scale, however, was comparatively 
low (see Figure 23), so that monitoring these metrics at a fine scale may be of limited use for predicting 
the performance of individual reefs. On a day scale, the patterns were more pronounced, and monitoring 
daily areas and KUD ratios may be used as an indicator of changes in the resource. 

Furthermore, KUD area can be monitored at various isopleth percentages to give an indication of whether 
core areas are expanding, moving or contracting. For example, in PAU 4, the 25% isopleth contained 
a very small area. An expansion or shift of this area could indicate that divers are moving from a few 
very productive reefs to new areas, which could be taken as a warning sign for serial depletion (Mundy 
2012). 

The KUD ratios and areas may be useful spatial metrics of fishery performance at both the day level 
and QMA level. In particular, they provide a means of estimating relative fishing pressure in a given 
area while being able to account for missing dive locations. This reporting is more resource oriented 
than reporting by statistical areas, and would be more likely to detect serial depletion as patterns are not 
smoothed out by the arbitrary division of effort into statistical areas. 

4.4 Towards spatial CPUE 

Within our models, we showed that data from the logger programme can be used to construct a spatial (or 
non-spatial) index of CPUE. Such a CPUE index could be monitored on different spatial scales and over 
time. Over short timescales (e.g., between months), this monitoring would require large amounts of data. 
To allow detection of a spatial signal, data would need to provide near-complete coverage of the fishery 
to ensure sufficient overlap among fishing operations. Nevertheless, the present analysis suggested that 
with the current, relatively small dataset spanning two years, strong spatial variability in CPUE can be 
estimated within a model to provide baseline information about spatial patterns in the fishery. 

As diver effects in our models were consistently estimated to be larger than spatial effects (except in 
the model that was specific to PAU 2), accounting for diver effects is crucial to make inferences about 
spatial patterns that may otherwise be obscured by the dominant diver effects. The relative strength of 
random effects in our models suggests that raw spatial CPUE alone will only reveal limited information 
about true spatial patterns in the resource itself, and that model-based inference of spatial patterns will 
be essential for spatial management. 

In the short term, indirect performance metrics such as KUD related metrics (e.g., catch within core area, 
KUD ratio) may provide immediate means to detect potential changes in the fishery. These changes 
can then be more thoroughly investigated using a model-based approach. In the present study, the lim-
ited amount of data with reliable locations (only one full fishing year), and the corresponding lack of a 
timeseries with reliable spatial data makes it difficult to assess which spatial indicators will prove most 
useful at this stage. Nevertheless, this study suggests that the information and performance measures that 
can be gained from the logger programme will be valuable in time for allowing the effective management 
of the pāua fishery on smaller spatial and temporal scales than is currently possible. 
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APPENDIX A: Posterior predictive model assessments 

Figure A-1: Posterior predictive assessment of the Bayesian mixed model considered the best model for 
predicting daily pāua catch (see subsubsection 3.2.2). Green band indicates the 95% credible interval for 
predictions at each point. 
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Figure A-2: Posterior predictive assessment of Bayesian mixed models for predicting daily pāua catch at the 
hexagon scale for different Quota Management Areas. Green bands indicate the 95% credible interval for 
predictions at each point 

(a) PAU 7 (b) PAU 2 
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