Ministry for Primary Industries Manatū Ahu Matua

Northland Sediment Study

Whangarei Harbour Sediment Budget

MPI Technical Paper No: 2017/06

Prepared for the Ministry for Primary Industries

ISBN No: 978-1-77665-495-6 (online) ISSN No: 2253-3923 (online)

November 2015

New Zealand Government

Growing and Protecting New Zealand

Disclaimer

While every effort has been made to ensure the information in this publication is accurate, the Ministry for Primary Industries does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information.

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: <u>brand@mpi.govt.nz</u> Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/

© Crown Copyright - Ministry for Primary Industries

Northland Sediment Study

Whangarei Harbour Sediment Budget

Prepared for Ministry for Primary Industries

November 2015

www.niwa.co.nz

Prepared by: Malcolm Green

For any information regarding this report please contact:

Malcolm Green Principal Scientist Coastal and Estuarine Physical Processes +64-7-856 1747 Malcolm.Green@niwa.co.nz

National Institute of Water & Atmospheric Research Ltd PO Box 11115 Hamilton 3251

Phone +64 7 856 7026

NIWA Client Report No:	HAM2015-042
Report date:	November 2015
NIWA Project:	MPI15203

© All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system.

Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client.

Contents

Execu	itive si	ummary	4
1	Intro	duction	5
	1.1	The Northland Sediment Study	5
	1.2	The National Policy Statement for Freshwater Management	6
	1.3	Estuary sediment attribute decided for the Northland Sediment Study	7
	1.4	This report	7
2	Theo	ry	8
3	Const	ruction of the sediment budget for Whangarei Harbour	9
	3.1	Depositional basins	9
	3.2	Catchment sediment runoff	12
	3.3	Information available on harbour sediment-transport patterns	14
	3.4	Estimation of the sediment fate matrix	18
4	Sumn	nary	22
5	Discu	ssion	23
6	Refer	ences	26

Reviewed by

Approved for release by

an

Andrew Swales

David Roper

Formatting checked by:

A. Bartley

Executive summary

The aim of the Northland Sediment Study (NSS) is to develop a model that will integrate science and economics to assess the potential economic costs of meeting a range of attribute states for sediment and *E. coli* in Whangarei Harbour and freshwater environments that drain into Whangarei Harbour.

The NSS comprises two objectives:

- 1. To develop model frameworks and outputs that will enable the assessment of catchment sediment and *E. coli* loads and the expression of the environmental outcomes of these loads as attributes.
- 2. To incorporate the model frameworks and outputs developed in Objective 1 into a catchment economic model that will be used to identify cost-effective ways to manage sediment and *E. coli* loads in the Whangarei Harbour catchment.

Green et al. (2015) argued the case for using the annual-average sedimentation rate (AASR) as the single estuary attribute in the Northland Sediment Study on the basis that it is reasonable to assume that AASR is indicative of a wide range of sediment-related effects in Whangarei Harbour.

This report develops a sediment budget for Whangarei Harbour from which AASR in a number of individual depositional basins may be evaluated. The precise method for evaluating AASR from the sediment budget is given.

Equations are developed that relate catchment sediment runoff and mass of marine sediments transported by waves and currents to sedimentation rate in an estuary depositional basin.

Four depositional basins in Whangarei Harbour are identified which are presently depositing sediment of catchment origin. These are the unvegetated intertidal flats in the upper harbour, Parua Bay and Munro Bay, both in the lower harbour, and along the northern shore from Onerahi Peninsula east to Jacksons Bay, in the middle harbour.

Results from sediment coring reported by Swales et al. (2013) are used to estimate present-day sedimentation rate and density of deposited sediment in each of the four depositional basins. By combining sedimentation rate and deposited-sediment density with the area of the depositional basin, the mass of sediment depositing each year in each of the basins is estimated.

Results from Compound-Specific Stable Isotope source tracking reported by Swales et al. (2013) are used to estimate the percentage of the sediment depositing in each basin that is attributable to a catchment source. The remainder is assumed to be sediment of marine origin.

Using results from numerical model simulations of harbour sediment transport, terms in the "sediment fate matrix" are estimated. The sediment fate matrix gives the fraction of sediment derived from each of 11 subcatchments of Whangarei Harbour that deposits in each of the four harbour depositional basins on an annual-average basis.

Combining the sediment fate matrix with present-day catchment sediment runoff predicted by the SedNetNZ catchment sediment model yields the measured present-day sedimentation rate in each depositional basin.

Equations are given for predicting the change in sedimentation rate in a depositional basin resulting from either a decrease (for example, because of mitigation) or an increase in subcatchment sediment loads.

1 Introduction

1.1 The Northland Sediment Study

Northland Regional Council (NRC) has identified that sediment and *E. coli* are key water quality challenges in the Northland region (e.g., Ballinger et al., 2014).

As a result, the Ministry for Primary Industries (MPI) commissioned the Northland Sediment Study (NSS).

The aim of the NSS is to develop a model that will integrate science and economics to assess the potential economic costs of meeting a range of attribute states¹ for sediment and *E. coli* in Whangarei Harbour and freshwater environments that drain into Whangarei Harbour.

The Northland Sediment Study comprises two objectives:

- 1. Develop model frameworks and outputs that will enable the assessment of catchment sediment and *E. coli* loads and the expression of the environmental outcomes of these loads as attributes. MPI has contracted NIWA to deliver this objective.
- 2. Incorporate the model frameworks and outputs developed in Objective 1 into a catchment economic model that will be used to identify cost-effective ways to manage sediment and *E. coli* loads in the Whangarei Harbour catchment. MPI is contracting another provider to deliver this objective.

Objective 1 of the NSS comprises 6 workstreams.

- Workstream A Preparation. The tasks in Workstream A are: identify catchment locations for attribute evaluation; identify harbour habitats for attribute evaluation; digest feedback from November 19 (2014) workshop convened by the Ministry for the Environment on possible sediment attributes; develop thinking on possible *E. coli* attributes for freshwater and the estuary receiving waters, including a methodology for evaluating possible *E. coli* attributes from the products of the catchment and estuary modelling.
- Workstream B Attributes. The tasks in Workstream B are: make final choice of estuary sediment attributes; make final choice of freshwater sediment attributes; make final choice of freshwater and estuary *E. coli* attributes.
- Workstream C Whangarei catchment modelling. The tasks in Workstream C are: SedNetNZ sediment modelling; CLUES *E. coli* modelling.
- Workstream D Mitigation costs and efficiencies. The task in Workstream D is to agree on and specify mitigation (sediment and *E. coli*) costs and efficiencies to be included in the economic model.
- Workstream E Whangarei Harbour sediment budget. The task in Workstream E is to establish an annual-average sediment budget for Whangarei Harbour.
- Workstream F external review.

¹ The words "attribute" and "state" herein have the meanings ascribed by the National Policy Statement for Freshwater Management (NPSFM) (2014). An "attribute" is a measurable characteristic of freshwater, including physical, chemical and biological properties that support particular values. An "attribute state" is the level to which an attribute is to be managed to provide for a particular value.

The products from each workstream are to be provided to Objective 2 for incorporation in the catchment economic model.

1.2 The National Policy Statement for Freshwater Management

The National Policy Statement for Freshwater Management (NPSFM) (amended in 2014) establishes a legal and policy framework for building a national limits-based scheme for freshwater management. The Policy requires maintaining or improving overall water quality in a region and safeguarding of the life-supporting capacity, ecosystem processes and indigenous species (including their associated ecosystems) of freshwater. It also requires protection of (secondary) contact recreation.

Regional councils are required to have set freshwater objectives by 2030 that reflect national and local values; set flow, allocation and water quality limits to ensure freshwater objectives are achieved; address over-allocation; manage landuse and water in an integrated way; and involve iwi and hapū in freshwater decision-making. Councils and communities can choose the timeframes to meet freshwater objectives and limits.

The management process prescribed by the NPSFM centres on limiting resource use in "freshwater management units" in order to achieve specific, agreed values. The steps involved are:

- Agree on desired values, which are the intrinsic qualities that people appreciate or benefit from, or the uses to which people put freshwater. Examples are mahinga kai (Maori traditional food and other natural resources, including the places they are obtained and the practices around their acquisition) and swimming.
- For each value, identify the aspects to be managed. For example, for the value of ecosystem health, the aspects to be managed might include trophic state, toxicants and light.
- For each aspect to be managed, identify attributes. Attributes are the characteristics or properties of freshwater associated with each aspect to be managed. Examples are *E. coli* contamination, which is reflective of a health risk, or the DIN burden, which has a bearing on aesthetics (e.g., by stimulating periphyton blooms).
- Decide on the state of each attribute that is necessary to provide for the value at the desired level. This might be a particular DIN concentration during low flow.
- Convert attribute states into "SMART" (specific, measurable, achievable, realistic and time-bound) management objectives.
- Formulate limits to resource use that will result in the achievement of the objectives. There are two types of limit: limits to extraction (e.g., the amount of water taken for irrigation) and limits to disposal of contaminants (e.g., dairy-shed effluent).
- Develop a suite of management actions that, when implemented, will limit resource use accordingly.

The relationships between values, attributes and states in a range of freshwater environments are codified in the National Objectives Framework (NOF).

Estuaries and coastal systems are specifically excluded from consideration in the NPSFM, but they must be "given regard to" when setting limits for freshwater.

The Northland Sediment Study is designed to answer the question: what might it cost to manage, under the NPSFM, sediment and *E. coli* across a whole catchment that includes an estuary at the base of the freshwater drainage network?

The question is to be answered by developing a catchment economic model that links together sources and sinks of sediment and *E. coli* and overlays mitigation costs and efficiencies. Put simply, the model will allow different types and levels of mitigation to be applied to the catchment and will show, firstly, how sediment and *E. coli* in the waterways and in the estuary change as a result and, secondly, the costs incurred in applying the mitigation.

1.3 Estuary sediment attribute decided for the Northland Sediment Study

Green et al. (2015) argued the case for using the annual-average sedimentation rate (AASR) as the single estuary attribute in the Northland Sediment Study on the basis that it is reasonable to assume that AASR is indicative of a wide range of sediment-related effects in Whangarei Harbour. They defined AASR as the mass of sediment deposited per year divided by the product of the settled-sediment density and the area over which sediment deposits.

1.4 This report

This report, which arises from Workstream E – Whangarei Harbour sediment budget, develops a sediment budget for Whangarei Harbour from which AASR in a number of individual depositional basins may be evaluated.

The precise method for evaluating AASR from the sediment budget is given.

2 Theory

 D_e , the mass of catchment-derived sediment deposited in **depositional basin** e during the time period Γ , is given by:

$$D_e = \sum_{c=1}^{C} L_c F_{c,e} \tag{1}$$

where:

- L_c is the total (i.e., sum of all sediment grainsizes) mass of sediment that is discharged into the harbour from subcatchment *c* during the time period Γ , and there are *C* subcatchments;
- *F_{c,e}* is the total-sediment fate matrix, which is the fraction of the total sediment mass that is discharged from subcatchment *c* and that deposits in depositional basin *e* during the time period *Γ*.

Note that $0 < F_{c,e} < 1$ for all (c, e). If all of the depositional basins are accounted for (this might include the water column, if sediment does not settle on the bed, and the coastal ocean, if sediment escapes from the estuary) then the sum of $F_{c,e}$ over all values of c and e must be identically 1, otherwise, that sum must be less than 1. In the former case all of the catchment sediment is accounted for in the budget; in the latter case it is not.

Assuming that sediment of both catchment and marine origin can deposit in each depositional basin, then the sedimentation rate S_e in depositional basin e is related to the deposited subcatchment sediment D_e by:

$$S_e = \frac{D_e + M_e}{\rho_e A_e \Gamma} \tag{2}$$

where S_e is a vertical rate of accretion with units length per time, M_e is the mass of marine sediment deposited in depositional basin e during the time period Γ , ρ_e is the density of the deposited sediment in depositional basin e, and A_e is the area over which deposition occurs in depositional basin e.

Substituting (1) into (2), S_e is seen to be related to the sediment discharged from each subcatchment L_c by:

$$S_e = \frac{(\sum_{c=1}^{C} L_c F_{c,e}) + M_e}{\rho_e A_e \Gamma}$$
(3)

The time period Γ for this application will be one year; hence, S_e is the annual sedimentation rate.

3 Construction of the sediment budget for Whangarei Harbour

Figure 3-1 provides a handy summary of the nomenclature used in the following development.

Hatea River	Name of freshwater/catchment sediment source used in harbour modelling
•	Location of freshwater/catchment sediment source used in harbour modelling
Hatea River	Name of reporting zone used in SedNetNZ
HR (1)	Name (number, c) of subcatchment used in harbour sediment budget
UI (1)	Name (number, e) of depositional basin used in harbour sediment budget
Upper harbour	Informal division of the harbour

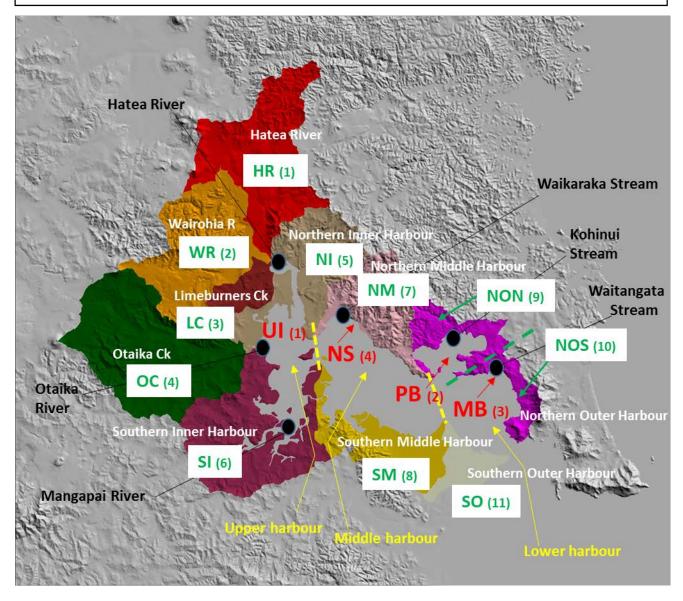
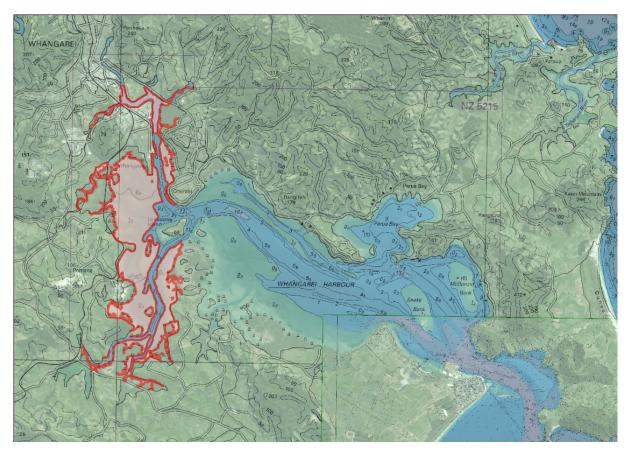


Figure 3-1: Summary of the nomenclature used in the Whangarei Harbour sediment budget.

3.1 Depositional basins

Using information from sediment-transport modelling, geochemical and radioisotopic dating of sediment cores and application of the Compound-Specific Stable Isotope (CSSI) source-tracking


method, Swales et al. (2013) (hereinafter "S2013") identified three areas in the upper Whangarei Harbour (i.e., west of Limestone Island, see Figure 3-2) that deposit catchment sediments and three long-term "mud sinks" east of Onerahi Peninsula (Figure 3-2). These are:

- Upper harbour mangrove habitats, which are assumed to be accreting at a rate that is equal to the long-term rate of relative sea-level rise (1.5 mm/y at the Ports of Auckland).
- Upper harbour saltmarsh habitats, also assumed to be accreting at a rate that is equal to the long-term rate of relative sea-level rise (1.5 mm/y at the Ports of Auckland).
- Upper harbour unvegetated intertidal flats, accreting at a spatially-averaged rate of 4 mm/y.
- Parua Bay, in the lower harbour (Figure 3-2), where the intertidal flat is accumulating sediment (2.9 mm/y) at a similar rate to the central subtidal basin (2.2 mm/y).
- Munro Bay, in the lower harbour (Figure 3-2), where mud has been depositing from the mid-1950s, burying the previous shell-rich sands.
- Along the northern shore from Onerahi Peninsula east to Jacksons Bay, in the middle harbour (Figure 3-2).

Figure 3-2: Location map, including the locations of the three long-term mud sinks east of Onerahi Peninsula identified by Swales et al. (2013). Reproduced from Swales et al. (2013). The light yellow areas showing the mud sinks correspond to (from west to east) the NS, PB and MB depositional basins in the harbour sediment budget.

For application in the Northland Sediment Study, we follow S2013 and choose the upper harbour unvegetated intertidal flats, Parua Bay, Munro Bay and the northern shore from Onerahi Peninsula east to Jacksons Bay as depositional basins. These depositional basins are given the codes, respectively, **UI**, **PB**, **MB** and **NS**. Depositional basin **UI** is shown in Figure 3-3, and the others are shown in Figure 3-2.

Figure 3-3: The upper harbour unvegetated intertidal flats defined by Swales et al. (2013). This is the UI depositional basin.

Hence, *E*, the total number of depositional basins, is 4.

• We disregard the upper harbour mangrove and upper harbour saltmarsh habitats as the sediment accumulation rate is thought to be controlled by the rate of sea level rise in these basins, as described by S2013.

These are not necessarily all of the depositional basins in Whangarei Harbour. Insufficient information precluded other possible basins from being included in the analysis.

Table 3-1 lists the depositional basins and provides some basic data for each basin. Notes follow the table.

Table 3-1:Whangarei Harbour depositional basins to be considered in the Northland Sediment Study.Refer to notes following the table for explanations.

Location	Depositional	е	A	S	ρ
	basin		(m²)	(mm/y)	(t/m³)
Upper harbour unvegetated intertidal flats	UI	1	2,660,000	4.0	1.18
Parua Bay	PB	2	3,500,000	2.5	1.25
Munro Bay	MB	3	518,900	3.1	1.00
Northern shore from Onerahi Peninsula east to Jacksons Bay	NS	4	1,459,000	1.0	1.25

A (area of depositional basin)

• S2013 reported the area of the upper harbour unvegetated intertidal flats, which corresponds to the UI depositional basin, as 2,660,000 m². This excluded 2.3 km² of intertidal

flat west of and between Knight Point (south of Limestone Island) and Onerahi Peninsula where cores showed that sediment is not accumulating. Shown in Figure 3-3

The respective areas of the PB, MB and NS basins were calculated using the ACME planimeter tool, which measures area from Google Map images (<u>http://acme.com/planimeter/</u>). The areas measured are those denoted by S2013 as the "mud sinks" in Figure 3-2 (the light yellow areas).

S (sedimentation rate)

- S2013 estimated the sediment accumulation rate averaged over UI as 4 mm/y from radioisotopic (lead-210) dating of three cores in the Mangapai Arm (WHG-1, WHG-2, WHG-3; sediment accumulation rates of 4.9 [applicable to the period 1949–2012], 3.0 [1909–2012] and 3.0 [1969–2012] mm/y, respectively) and two cores in the Hatea Arm (WHG-6 and WHG-14; sediment accumulation rates of 2.8 [1830–2012] and 6.5 [1974–2012] mm/y, respectively).
- For **PB**, S = 2.5 mm/y is an intermediate value between the two lead-210 sediment accumulation rates reported by S2013 (2.2 mm/y [1935–2012] and 2.9 mm/y [1953–2012] for cores WHG-10 and WHG-11, respectively).
- For MB, lead-210 dating of core WHG-7 yielded a sediment accumulation rate of 3.1 mm/y [1957–2012].
- S = 1.0 mm/y for NS is an estimate only. No cores were collected in this area. Compared to PB in particular, S for NS has been estimated as quite low. The reason is that NS is very elongated in shape and exposed to winds from the south, which will generate waves that will tend to scour the area of fine sediment. Compared to NS, PB is embayed, which will afford protection to winds and waves.

ho (deposited-sediment density)

- S2013 reported the deposited-sediment (dry-bulk) density averaged over UI as 1.18 t/m³.
- $\rho = 1.25 \text{ t/m}^3$ for **PB** is based on measurements reported by S2013 for the dry-bulk density of upper layers in cores WHG-10 and WHG-11.
- $\rho = 1.00 \text{ t/m}^3$ for **MB** is based on the dry-bulk density of the surface layer of core WHG-7 reported by S2013.
- $\rho = 1.25 \text{ t/m}^3$ for **NS** is an estimate only.

3.2 Catchment sediment runoff

The SedNetNZ catchment sediment model has been used to predict the total mass of sediment runoff per year from each of ten "catchment reporting zones" under the present-day catchment landuse (John Dymond, Landcare Research, personal communication). The reporting zones are shown in Figure 3-4.

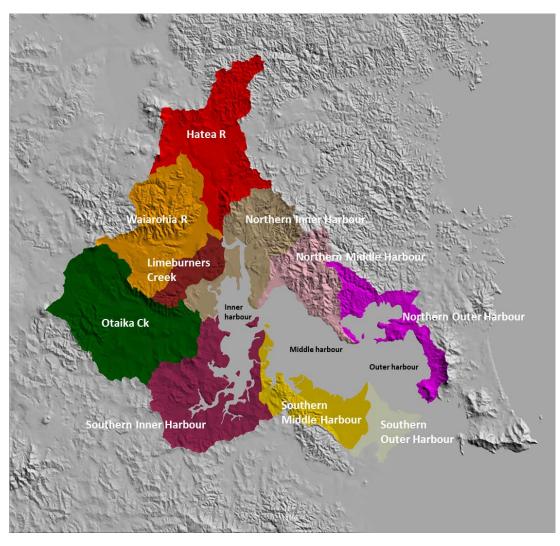


Figure 3-4: Catchment reporting zones used in the SedNetNZ model.

Eleven subcatchments have been defined for the purposes of developing the harbour sediment budget (C = 11). The correspondence between the SedNetNZ reporting zones and the subcatchments is given in Table 3-2 (see also Figure 3-1).

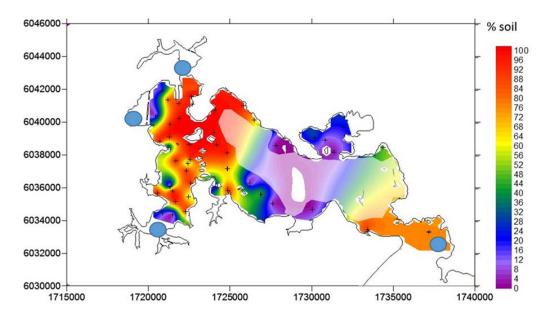
Table 3-2:Correspondence between SedNetNZ catchment reporting zones and subcatchments, with massof sediment discharged per year (L_c) into the harbour from each subcatchment.Sediment runoff ispredicted by SedNetNZ for the present-day catchment landuse.

SedNetNZ catchment reporting zone	Subcatchment	С	Subcatchment sediment load, L _c
			(t/y)
Hatea River	HR	1	4,482
Waiarohia River	WR	2	4,932
Limeburners Creek	LC	3	1,038
Otaika Creek	OC	4	11,204
Northern Inner Harbour	NI	5	2,143
Southern Inner Harbour	SI	6	2,424
Northern Middle Harbour	NM	7	2,944
Southern Middle Harbour	SM	8	555
Northern 2/3 of Northern Outer Harbour	NON	9	1,238
Southern 1/3 of Northern Outer Harbour	NOS	10	781
Southern Outer Harbour	SO	11	0

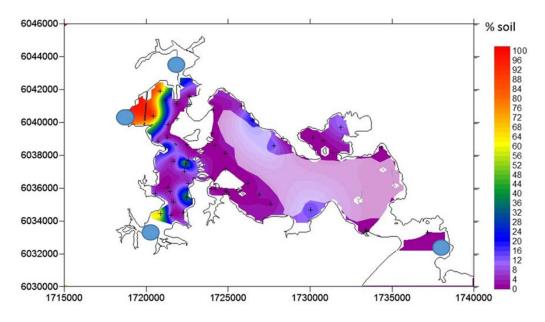
Note:

• The Northern Outer Harbour reporting zone is divided into two subcatchments: the NON subcatchment and the NOS subcatchment. NON occupies the northern part of the Northern Outer Harbour reporting zone, and NOS occupies the southern part of the Northern Outer Harbour reporting zone.

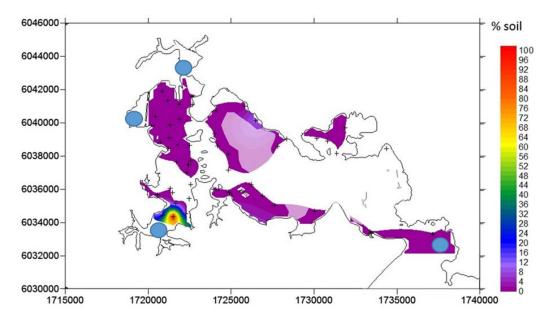
Table 3-2 also shows the annual sediment runoff predicted by SedNetNZ for the present-day landuse distributed by subcatchment. Note:

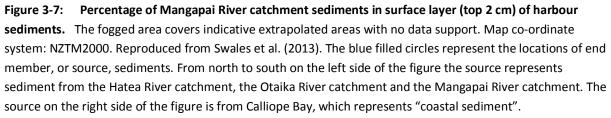

- The NON subcatchment carries 61% of the sediment runoff from the Northern Outer Harbour reporting zone (John Dymond, Landcare Research, personal communication).
- The NOS subcatchment carries 39% of the sediment runoff from the Northern Outer Harbour reporting zone (John Dymond, Landcare Research, personal communication).

The sediment discharged to the harbour from each reporting zone is composed entirely of fine silt (John Dymond, Landcare Research, personal communication).


3.3 Information available on harbour sediment-transport patterns

We have several types of quantitative information on harbour sediment-transport patterns that can be used in estimating the sediment fate matrix.


The first type of information is maps presented by S2013 that show the percentage of each of four "end members", or sources, of sediment in the surface layer (top 2 cm) of harbour sediments. The maps have been produced from CSSI (compound-specific stable isotope) analyses of sediment samples. The method is fully described in S2013. Some of the maps are reproduced in Figure 3-5 to Figure 3-8. The locations of the end member, or source, samples used in the CSSI analysis are shown as blue filled circles in the figures. Three of the end members represent sediments from catchments (the Hatea River catchment, the Otaika River catchment and the Mangapai River catchment) and the fourth is from Calliope Bay, which represents "coastal sediment".



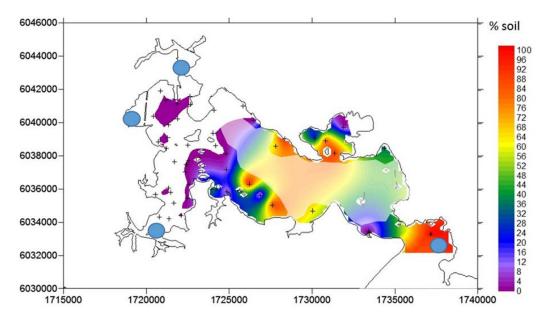
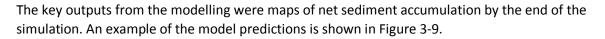
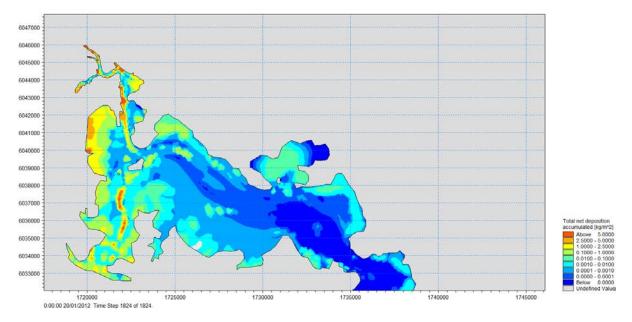

Figure 3-5: Percentage of Hātea River catchment sediments in surface layer (top 2 cm) of harbour sediments. The fogged area covers indicative extrapolated areas with no data support. Map co-ordinate system: NZTM2000. Reproduced from Swales et al. (2013). The blue filled circles represent the locations of end member, or source, sediments. From north to south on the left side of the figure the source represents sediment from the Hatea River catchment, the Otaika River catchment and the Mangapai River catchment. The source on the right side of the figure is from Calliope Bay, which represents "coastal sediment".

Figure 3-6: Percentage of Otaika River catchment sediments in surface layer (top 2 cm) of harbour sediments. The fogged area covers indicative extrapolated areas with no data support. Map co-ordinate system: NZTM2000. Reproduced from Swales et al. (2013). The blue filled circles represent the locations of end member, or source, sediments. From north to south on the left side of the figure the source represents sediment from the Hatea River catchment, the Otaika River catchment and the Mangapai River catchment. The source on the right side of the figure is from Calliope Bay, which represents "coastal sediment".




Figure 3-8: Percentage of Calliope Bay sediments in surface layer (top 2 cm) of harbour sediments. The fogged area covers indicative extrapolated areas with no data support. Map co-ordinate system: NZTM2000. Reproduced from Swales et al. (2013). The blue filled circles represent the locations of end member, or source, sediments. From north to south on the left side of the figure the source represents sediment from the Hatea River catchment, the Otaika River catchment and the Mangapai River catchment. The source on the right side of the figure is from Calliope Bay, which represents "coastal sediment".

The second type of information is simulations by a numerical model of the fate in the harbour of fine silt (20 micron particle size) discharged from the Hatea, Otaika and Mangapai Rivers under yearly-average freshwater runoff, freshwater runoff associated with a 1-year ARI storm and freshwater runoff associated with a 10-year ARI storm. These simulations were reported by S2013.

For these simulations, a five-layer three-dimensional hydrodynamic model was implemented and forced at the outer boundaries using the mean tidal range. No wind or wave effects were included.

Each river source was initially run at average flow and suspended-sediment concentration for 7.5 days then increased to the peak flood discharge and suspended-sediment concentration over 0.75 days, at which point the inputs were relaxed back to average conditions. The model was then run for a further 11 days to simulate post-event transport, Stokes settling and deposition of sediment. Erosion of the pre-existing bed sediments was excluded so that only the fate of the sediment discharged from the three rivers was determined.

Figure 3-9: Deposition of fine silt discharged from the Hatea, Otaika and Mangapai Rivers (combined) under freshwater runoff associated with a 1-year ARI storm. The units are kg of fine silt deposited per m² of seabed. Reproduced from Swales et al. (2013).

For the Northland Sediment Study, we reanalysed S2013's model outputs to calculate the fraction of fine silt from each of the three model river sources that deposits in each of the **UI**, **PB**, **MB** and **NS** depositional basins during each of the events simulated (i.e., the yearly-average freshwater and sediment runoff, freshwater and sediment runoff associated with a 1-year ARI storm, and freshwater and sediment runoff associated with a 10-year ARI storm). This was done by dividing the model domain into areas corresponding to each of the **UI**, **PB**, **MB** and **NS** depositional basins and then summing the sediment deposited (as shown in, for example, Figure 3-9) in each basin. The results are given in Table 3-3 as the average over the three events.

Table 3-3:The fraction of fine silt discharged from Hatea River, Otaika River, Mangapai River, WaikarakaStream, Kohinui Stream and Waitangata Stream (sources of freshwater and sediment used in harbour modelsimulations) that deposits in each of the UI, PB, MB and NS depositional basins averaged over the yearly-average runoff, runoff associated with a 1-year ARI storm and runoff associated with a 10-year ARI storm.

Depositional	Hatea River	Otaika River	Mangapai River	Waikaraka	Kohinui Stream	Waitangata
basin				Stream		Stream
UI	0.011	0.118	0.272	0.202	0.000	0.010
PB	0.071	0.037	0.027	0.150	1.000	0.100
MB			0.001	0.002	0.050	0.419
NS			0.028	0.000	0.000	0.000

We also ran a set of new model simulations with the harbour numerical model which were specifically designed for the Northland Sediment Study. These discharged fine silt at:

- the head of the NS depositional basin approximately where the Waikaraka Stream discharges, representing sediment discharged from the NM subcatchment;
- the head of the **PB** depositional basin approximately where the Kohinui Stream discharges, representing sediment discharged from the **NON** subcatchment; and
- the head of the **MB** depositional basin approximately where the Waitangata Stream discharges, representing sediment discharged from the **NOS** reporting zone.

We call these sources "Waikaraka Stream", "Kohinui Stream" and "Waitangata Stream", respectively. See Figure 3-1 for where these sources are located relative to the 11 subcatchments.

As in S2013, the simulations covered the yearly-average freshwater and sediment runoff, freshwater and sediment runoff associated with a 1-year ARI storm, and freshwater and sediment runoff associated with a 10-year ARI storm. As above, we calculated the fraction of fine silt from each of the stream sources that deposits in each of the **UI**, **PB**, **MB** and **NS** depositional basins in each simulation.

The results are given in Table 3-3 as the average over the three events.

3.4 Estimation of the sediment fate matrix

3.4.1 Depositional Basin **UI** (*e* = 1)

Rearranging equation (2) and inserting the data in Table 3-1 (A_1 = 2,660,000 m², ρ_1 = 1.18 t/m³, S_1 = 4 mm/y) yields $D_1 + M_1$ = 12,555 t of sediment of catchment and marine origin depositing per year in the **UI** basin.

Figure 3-8 shows that less than about 5% of the sediment depositing in the upper harbour is attributable to the Calliope Bay source, which is representative of "coastal sediment". We equate the Calliope Bay "coastal sediment" with sediment of marine origin in our model and, accordingly, we assume that 5% of the 12,555 t of sediment depositing in **UI** is of marine origin. Therefore $M_1 = 628$ t and $D_1 = 11,927$ t.

We now assume that:

- the Hatea River source used in the harbour sediment-transport modelling discharges fine silt from the HR (*c* = 1), WR (*c* = 2), LC (*c* = 3) and NI (*c* = 5) subcatchments
- the Otaika River source used in the harbour sediment-transport modelling discharges fine silt from the **OC** (*c* = 4) subcatchment

- the Mangapai River source used in the harbour sediment-transport modelling discharges fine silt from the SI (c = 6) subcatchment
- the Waikaraka Stream source used in the harbour sediment-transport modelling discharges fine silt from the NM (*c* = 7) subcatchment
- the Kohinui Stream source used in the harbour sediment-transport modelling discharges fine silt from the **NON** (*c* = 9) subcatchment, and
- the Waitangata Stream source used in the harbour sediment-transport modelling discharges fine silt from the **NOS** (*c* = 10) subcatchment.

Since the sediment discharged from the catchment is fine silt (section 3.2) and the model simulations are of fine silt, we simply pick values for the sediment fate matrix out of Table 3-3, which gives:

- $F_{1,1} = 0.011$, which is the fraction of the sediment (fine silt) discharged from the HR subcatchment (c = 1) that is deposited in UI (e = 1)
- $F_{2,1} = 0.011$, which is the fraction of the sediment (fine silt) discharged from the WR subcatchment (c = 2) that is deposited in UI (e = 1)
- $F_{3,1} = 0.011$, which is the fraction of the sediment (fine silt) discharged from the LC subcatchment (c = 3) that is deposited in UI (e = 1)
- $F_{4,1} = 0.118$, which is the fraction of the sediment (fine silt) discharged from the OC subcatchment (c = 4) that is deposited in UI (e = 1)
- $F_{5,1} = 0.011$, which is the fraction of the sediment (fine silt) discharged from the NI subcatchment (c = 5) that is deposited in UI (e = 1)
- $F_{6,1} = 0.272$, which is the fraction of the sediment (fine silt) discharged from the SI subcatchment (c = 6) that is deposited in UI (e = 1)
- F_{7,1} = 0.202, which is the fraction of the sediment (fine silt) discharged from the NM subcatchment (c = 7) that is deposited in UI (e = 1)
- $F_{9,1} = 0.000$, which is the fraction of the sediment (fine silt) discharged from the **NON** subcatchment (c = 9) that is deposited in **UI** (e = 1)
- $F_{10,1} = 0.010$, which is the fraction of the sediment (fine silt) discharged from the NOS subcatchment (c = 10) that is deposited in UI (e = 1)

Furthermore, we assume that no sediment from either the SM or SO subcatchments is deposited in UI (i.e., $F_{8,1} = F_{11,1} = 0$). This makes little difference to the results since, in the case of the former, the sediment load is very small compared to the rest of the reporting zones, and in the case of the latter, the sediment load is in fact zero (Table 3-2).

Applying these values for the sediment fate matrix to the catchment sediment runoffs given in Table 3-2 accounts for about one quarter (23%) of the catchment sediment that we estimate deposits in **UI** each year. That is, $D_1 = \sum_{c=1}^{11} L_c F_{c,1} = 2,724$ t of catchment sediment, which is about 23% of the required 11,927 t.

This is an encouraging result given that the model simulations on which our choices for $F_{c,1}$ are based are quite limited.

To deliver the required amount of fine silt to **UI** we increase $F_{c,1}$, c = 1, 2, 3 and 5 (sediment from the **HR**, **WR**, **LC** and **NI** subcatchments, delivered by the Hatea River in the harbour model simulations). We do this because the modelled values $F_{c,1}$, c = 1, 2, 3 and 5 are rather small relative to $F_{4,1}$ (sediment from the **OC** subcatchment, delivered by the Otaika River in the harbour model simulations) and $F_{6,1}$ (sediment from the **SI** subcatchment, delivered by the Mangapai River in the harbour. Also, the CSSI data indicate that sediment from the Hatea River is a dominant source of sediment deposited in

UI (see Figure 3-5). We also adjust $F_{4,1}$ and $F_{6,1}$ upwards slightly to come more in line with the adjusted values $F_{c,1}$, c = 1, 2, 3 and 5.

The final values for $F_{c,1}$ are given in Table 3-4. A greater fraction of the sediment from the **SI** subcatchment is retained in **UI**, which seems reasonable since the Hatea River (which drains the **HR**, **WR**, **LC** and **NI** subcatchments) and the Otaika River (which drains the **OC** subcatchment) discharge closest to the outlet from the upper harbour to middle harbour. Note, also, that a considerable fraction of the sediment from subcatchment **NM**, which discharges through the Waikaraka Stream into the middle harbour in the harbour model simulations, gets transported into and deposited in the upper harbour.

		Subcatchment										
	HR	×	/R	LC	ос	NI	SI	NM	SM	NON	NOS	SO
С	1		2	3	4	5	6	7	8	9	10	11
$F_{c,1}$	0.42	.6 0.4	26 0	.426	0.414	0.426	0.545	0.202	0.000	0.000	0.010	0.000

Table 3-4:	Values for the sediment fate matrix, depositional basin UI ($e = 1$).
------------	---

3.4.2 Depositional Basin **PB** (*e* = 2)

Rearranging equation (2) and inserting the data in Table 3-1 (A_2 = 3,500,000 m², ρ_2 = 1.25 t/m³, S_2 = 2.5 mm/y) yields $D_2 + M_2$ = 10,938 t of sediment of catchment and marine origin depositing per year in the **PB** basin.

Figure 3-8 suggests that about 50% of the sediment depositing in Parua Bay is attributable to the Calliope Bay source, which is representative of "coastal sediment". Accordingly, we assume that 50% of the 10,938 t of sediment depositing in **PB** is of marine origin. Therefore M_2 = 5,469 t and D_2 = 5,469 t.

Again, since the sediment discharged from the catchment is fine silt (section 3.2) and the model simulations are of fine silt, we simply pick values for the sediment fate matrix out of Table 3-3, and we again assume that no sediment from either the **SM** or **SO** subcatchments is deposited in **PB** (i.e., $F_{3,2} = F_{11,2} = 0$). As noted previously, this makes little difference to the results since, in the case of the former, the sediment load is very small compared to the rest of the reporting zones, and in the case of the latter, the sediment load is in fact zero (Table 3-2).

Applying these values for the sediment fate matrix to the catchment sediment runoffs given in Table 3-2 accounts for about 57% (3,137 t) of the catchment sediment that we estimate deposits in **PB** each year. Again, this is an encouraging result given that the model simulations on which our choices for $F_{c,2}$ are based are quite limited.

We now make the following adjustments to deliver the required amount of fine silt to PB.

- We consider a value of 1 for $F_{9,2}$ (the fraction of sediment from NON subcatchment that discharges into PB depositional basin) calculated from the harbour modelling to be extremely unlikely, even though Kohinui Stream (drains NON) discharges at the head of Parua Bay (depositional basin PB) in the model. Accordingly, we arbitrarily reduce $F_{9,2}$ to 0.6 to allow some sediment from NON to escape from PB into the wider harbour.
- With that reduction in $F_{9,2}$ we are now simply adjust every other value of $F_{c,2}$ upwards by a factor of about 2 to achieve the necessary fine silt deposition in **PB**.

The final values for $F_{c,2}$ are given in Table 3-5.

Table 3-5: Values for the sediment fate matrix, depositional basin PB (e = 2).

		Subcatchment									
	HR	WR	LC	ОС	NI	SI	NM	SM	NON	NOS	SO
С	1	2	3	4	5	6	7	8	9	10	11
<i>F</i> _{<i>c</i>,2}	0.150	0.150	0.150	0.131	0.150	0.137	0.300	0.000	0.600	0.200	0.000

We note that subcatchment **NON**, which drains directly into the **PB** depositional basin, deposits the largest fraction of its sediment load.

3.4.3 Depositional Basin **MB** (e = 3)

Rearranging equation (2) and inserting the data in Table 3-1 (A_3 = 518,900 m², ρ_3 = 1.00 t/m³, S_3 = 3.1 mm/y) yields $D_3 + M_3$ = 1609 t of sediment of catchment and marine origin depositing per year in the **MB** basin.

Figure 3-8 suggests that about 40% of the sediment depositing in Munro Bay is attributable to the Calliope Bay source, which is representative of "coastal sediment". Accordingly, we assume that 40% of the 1609 t of sediment depositing in **MB** is of marine origin. Therefore $M_3 = 644$ t and $D_3 = 965$ t.

As before, since the sediment discharged from the catchment is fine silt (section 3.2) and the model simulations are of fine silt, we simply pick values for the sediment fate matrix out of Table 3-3, and we again assume that no sediment from either the SM or SO subcatchments is deposited in MB (i.e., $F_{8,3} = F_{11,3} = 0$).

Applying these values for the sediment fate matrix to the catchment sediment runoffs given in Table 3-2 accounts for about 54% of the catchment sediment that we estimate deposits in MB each year (522 t, compared to 965 t required).

To deliver the required amount of fine silt to **MB** we simply increase all values of $F_{c,3}$ by about a factor of two. The final values for $F_{c,3}$ are given in Table 3-6.

We note that subcatchment **NOS**, which drains directly into the **MB** depositional basin, deposits the largest fraction of its sediment load.

Table 3-6: Values for the sediment fate matrix, depositional basin MB (e = 3).

			Subcatchment									
_		HR	WR	LC	ос	NI	SI	NM	SM	NON	NOS	SO
	С	1	2	3	4	5	6	7	8	9	10	11
	$F_{c,3}$	0.013	0.013	0.013	0.008	0.013	0.006	0.004	0.000	0.080	0.754	0.000

3.4.4 Depositional Basin **NS** (e = 4)

Rearranging equation (2) and inserting the data in Table 3-1 (A_4 = 1,459,000 m², ρ_4 = 1.25 t/m³, S_4 = 1 mm/y) yields $D_4 + M_4$ = 1,824 t of sediment of catchment and marine origin depositing per year in the **NS** basin.

Figure 3-8 suggests that about 10% of the sediment depositing in the **NS** basin is attributable to the Calliope Bay source, which is representative of "coastal sediment". Accordingly, we assume that 10% of the 1,824 t of sediment depositing in **NS** is of marine origin. Therefore M_4 = 183 t and D_4 = 1,641 t.

As before, since the sediment discharged from the catchment is fine silt (section 3.2) and the model simulations are of fine silt, we simply pick values for the sediment fate matrix out of Table 3-3, and we again assume that no sediment from either the SM or SO subcatchments is deposited in NS (i.e., $F_{8,4} = F_{11,4} = 0$).

Applying these values for the sediment fate matrix to the catchment sediment runoffs given in Table 3-2 accounts for about 32% of the catchment sediment that we estimate deposits in **NS** each year.

To deliver the required amount of fine silt to NS we increase $F_{7,4}$ from the very small value calculated from the harbour modelling (< 0.000, to 3 decimal places) to a value of 0.2, where $F_{7,4}$ is the fraction of sediment from the subcatchment (NM) that discharges into the head of depositional basin NS. (NM discharges into the head of NS through Waikaraka Stream in the harbour modelling.) We take this action because it seems very unlikely that virtually no sediment from NM would deposit in NS, given their physical arrangement. The final values for $F_{c,4}$ are given in Table 3-7. We note that subcatchment NM, which drains directly into the NS depositional basin, deposits the largest fraction of its sediment load.

Table 3-7:	Values for the sediment fate matrix, depositional basin NS ($e = 4$).
------------	---

			Subcatchment									
_		HR	WR	LC	ос	NI	SI	NM	SM	NON	NOS	SO
	С	1	2	3	4	5	6	7	8	9	10	11
Ī	$F_{c,4}$	0.040	0.040	0.040	0.037	0.040	0.056	0.200	0.000	0.000	0.000	0.000

4 Summary

The annual deposition rate in depositional basin **UI** (e = 1) is given by

$$S_1 = \frac{(\sum_{c=1}^{11} L_c F_{c,1}) + M_1}{\rho_1 A_1 \Gamma}$$
(4)

where $F_{c,1}$ is given in Table 3-4, L_c is given in Table 3-2, ρ_1 and A_1 are given in Table 3-1 and M_1 = 628 t.

We commented in section 3.4.1 on the relative amounts of sediment from the HR, WR, LC, OC, NI and SI subcatchments, all of which drain into the upper harbour, and the NM subcatchment, which drains into the middle harbour.

The annual deposition rate in depositional basin **PB** (e = 2) is given by

$$S_2 = \frac{(\sum_{c=1}^{11} L_c F_{c,2}) + M_2}{\rho_2 A_2 \Gamma}$$
(5)

where $F_{c,2}$ is given in Table 3-5, L_c is given in Table 3-2, ρ_2 and A_2 are given in Table 3-1 and M_2 = 5,469 t.

• We noted in section 3.4.2 that, for depositional basin **PB**, which is in the lower harbour, subcatchment **NON**, which drains directly into the **PB** depositional basin, deposits the largest fraction of its sediment load.

The annual deposition rate in depositional basin MB (e = 3) is given by

$$S_3 = \frac{(\sum_{c=1}^{11} L_c F_{c,3}) + M_3}{\rho_3 A_3 \Gamma}$$
(6)

where $F_{c,3}$ is given in Table 3-6, L_c is given in Table 3-2, ρ_3 and A_3 are given in Table 3-1 and $M_3 = 644$ t.

• We noted in section 3.4.3 that, for depositional basin MB, which is in the lower harbour, subcatchment NOS, which drains directly into the MB depositional basin, deposits the largest fraction of its sediment load.

The annual deposition rate in depositional basin NS (e = 4) is given by

$$S_4 = \frac{(\sum_{c=1}^{11} L_c F_{c,4}) + M_4}{\rho_4 A_4 \Gamma}$$
(7)

where $F_{c,4}$ is given in Table 3-7, L_c is given in Table 3-2, ρ_4 and A_4 are given in Table 3-1 and M_4 = 183 t.

• We noted in section 3.4.4 that, for depositional basin NS, which is in the middle harbour, subcatchment NM, which drains directly into the NM depositional basin, deposits the largest fraction of its sediment load.

5 Discussion

Inserting the subcatchment sediment loads L_c given in Table 3-2 into equations (4) – (7) will yield the sedimentation rates given in Table 3-1. Equations (4) – (7) may be used to predict the change in sedimentation rate resulting from either a decrease (for example, because of mitigation) or an increase in subcatchment sediment loads. Table 3-2 shows how SedNetNZ sediment loads distributed by reporting zone equate to subcatchment loads.

Table 5-1 shows the origin by subcatchment of the mass of sediment deposited in each depositional basin.

Depositional	Subcatchment										
basin	HR	WR	LC	ос	NI	SI	NM	SM	NON	NOS	SO
UI	1,910	2,102	442	4,664	913	1,320	595	0	0	8	0
РВ	672	739	156	1,469	321	331	883	0	742	156	0
MB	57	62	13	92	27	14	13	0	99	589	0
NS	177	195	41	419	85	135	589	0	0	0	0

Table 5-1:Mass (t) of sediment deposited per year in each depositional basin originating from eachsubcatchment source.

- Sedimentation in depositional basin UI in the upper harbour is dominated by sediment from catchments that drain into the upper harbour. The subcatchments drained by the Hatea River (HR, WR, LC and NI) together deposit the largest mass of sediment. The OC (drained by Otaika River) and SI (drained by Mangapai River) subcatchments deposit the next largest masses of sediment. This is consistent with the CSSI results of S2013 that show sedimentation in the upper harbour to be dominated by sediments from the Hatea River catchment.
- For depositional basin PB, which is in the lower harbour, subcatchments that drain to the upper harbour deposit the largest mass of sediment. This shows the widespread influence of the rivers that drain to the upper harbour. S2013 noted that export of sediments from the upper harbour has increased as the upper harbour has infilled. Depositional basin PB also deposits sediments from the adjacent subcatchment NON and from NM, immediately to the north, and NOS, immediately to the south.

- For depositional basin MB, which is in the lower harbour, the adjacent subcatchment (NOS) deposits the largest mass of sediment.
- For depositional basin NS, which is in the middle harbour, subcatchments that drain to the upper harbour deposit the largest mass of sediment. This shows the widespread influence of the rivers that drain to the upper harbour. S2013 noted that export of sediments from the upper harbour has increased as the upper harbour has infilled. Depositional basin NS also deposits sediments from the adjacent subcatchment NM.

The initial values for the sediment fate matrix were drawn from the results of the harbour sedimenttransport modelling. The initial values were tested by looking at how much they delivered of the sediment required to reproduce the present-day measured sedimentation rates (in one case the present-day sedimentation rate was estimated, not measured). Over all four depositional basins, one quarter to one half of the necessary sediment was delivered. We see these results as encouraging, since a factor-of-10 variation between predictions and measurements of marine sediment transport is more the norm. The model simulations on which the initial estimates of the sediment fate matrix were based are quite limited. Most notably, the model does not simulate the transport of sediment between rainstorm events, when waves and currents can redistribute sediments that are deposited in the aftermath of rainstorms. The initial values of the sediment fate matrix were subsequently altered to deliver just the right amount of sediment to each depositional basin; that is, the catchment sediment runoff has been matched to the known (in one case, estimated) sedimentation rates. After the adjustments, 56% of the total catchment sediment runoff is deposited in the four depositional basins. The remainder is not accounted for in the model: it may be lost to the coastal ocean or it may be deposited elsewhere in the harbour. The final adjustments to the sediment fate matrix have been kept as simple as possible (mainly, multiply all the values uniformly by the same factor) unless it was felt there was a good physical reason to do differently (e.g., arbitrarily force more sediment from the adjacent subcatchment out of Parua Bay), or data indicated a change was justified (e.g., retain more sediment from the Hatea River in the upper harbour based on CSSI source-tracking data). Hence, the budget has ultimately been fitted to data, but it still rests on a "process" foundation.

Finally, referring to Figure 5-1, which is the isopleth map of percentage mud (by weight) in the surficial sediments of Whangarei Harbour produced by Millar (1980), we note that the upper harbour bed sediments contain a considerable proportion of "mud". Seabed texture results from in situ vertical mixing as well as deposition of sediments from sources external to the location in question. Although catchment sediments may be deposited on the surface of the seabed during events, they subsequently are mixed down into the "pre-existing" sediments after the original deposition event by physical forces (waves and currents) and the actions of bioturbating organisms. In this way, the preexisting bed sediment can also be thought of as a source of sediment, in that it is brought up, postdeposition, into the new surface layer. Consider, for instance, the deposition of a layer of silt from the catchment on a bed of marine sand. Ultimately, after some period of vertical mixing, the surface layer will be slightly muddier than the pre-existing marine sand, and slightly sandier than the deposited silt from the catchment. In this way the texture of the seabed evolves. The sediment budget that we have developed herein does not account for these kinds of processes, and therefore cannot explain the seabed texture. Conversely, observations of seabed texture cannot necessarily be used to identify flaws in the harbour sediment budget. The harbour sediment budget could be expanded to address the seabed texture by including information on vertical mixing processes and pre-existing seabed sediments; however, this is beyond the scope of this project.

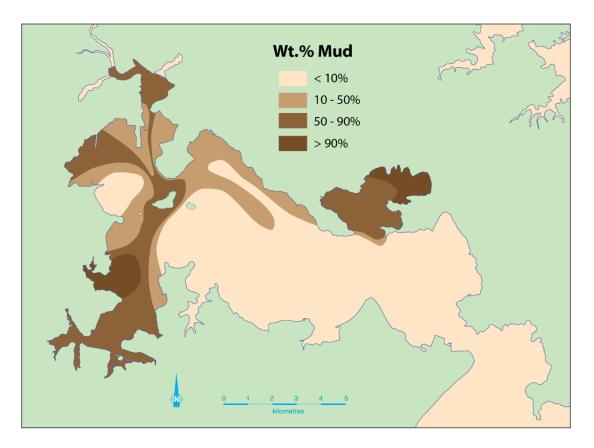


Figure 5-1:Isopleth map of the percentage mud (by weight) in the surficial sediments of WhangareiHarbour (1978).Reproduced from Swales et al. (2013), who in turn reproduced it from Millar (1980) withpermission from the Earth and Ocean Sciences Department, University of Waikato.

6 References

- Ballinger, J., Nicholson, C., Perquin, J.-C., Simpson, E. (2014) *River water quality and ecology in Northland. State and trends*, 2007–2011: 133. http://www.nrc.govt.nz/Resource-Library-Summary/Research-and-reports/Rivers-and-streams/River-Water-Quality-and-Ecology-in-Northland---States-and-Trends-2007–2011/
- Green, M.O., Dymond, J., Matthaei, C., Elliott, A.H. (2015) *Northland Sediment Study. Sediment and E. coli Attributes.* NIWA Client Report HAM2015–13, prepared for Ministry of Primary Industries: 30 pp.
- Millar, A.S. (1980) *Hydrology and Surficial Sediments of Whangarei Harbour*. Master of Science thesis, Department of Earth Sciences, University of Waikato, New Zealand: 212 pp.
- Swales, A., Gibbs, M., Pritchard, M., Budd, R., Olsen, G., Ovenden, R., Costley, K.,
 Hermanspahn, N., Griffiths, R. (2013) Whangarei Harbour Sedimentation: Sediment
 Accumulation Rates and Present-Day Sediment Sources. NIWA Client Report HAM2013–
 14, prepared for Northland Regional Council: 103 pp.