

CAMPYLOBACTER SPP.

THE ORGANISM/TOXIN

- *Campylobacter* spp. are Gram-negative, mostly motile, spiral-to-curved rods (1).
- *Campylobacter* spp. live as commensal organisms in the gastrointestinal tract of many domestic mammals and wild birds (2).
- The genus *Campylobacter* consists of 26 species and 9 subspecies (as of 2014) (2).
- *Campylobacter* spp. are a major cause of gastroenteritis worldwide and the most commonly-reported gastrointestinal disease within New Zealand (2, 3, 4, 5).
- Campylobacter jejuni (C. jejuni) and C. coli are responsible for over 90% of human campylobacteriosis cases (4). C. concisus, C. upsaliensis, and C. lari, have also been associated with human gastrointestinal infections (2).
- *Campylobacter* spp. produce several different cytotoxins but none are produced in foods (4).

GROWTH AND ITS CONTROL

Unless otherwise stated, the information below was derived from the following references $_{(6, 7)}$.

Growth:

	Minimum	Optimum	Maximum	
	30.5°C 42°C		45°C	
Temperature*	Slow growth			
	(generation time approximately 1 hour)			
Water activity	0.987	0.997		
рН	4.9	4.9 6.5 - 7.5		
	3-5% oxygen and 2-10% carbon dioxide.			
	• Some species require at least 3% hydrogen.			
Atmosphere	 Correlation between strain differences in 			
	oxygen tolerance and resistance to the			
	antibiotic metronidazole (8).			

*for C. jejuni and C. coli (4).

Temperature	 Better survival in food under refrigeration than at room temperature (up to 15 times as long at 2°C compared with 20°C). 1 log₁₀ CFU reduction at normal freezing temperatures then slow decline (9). 	
Atmosphere	 Survives well in modified atmosphere and vacuum packaging. Survives poorly at atmospheric oxygen concentrations. 	
Biofilm production	 Can form biofilms and survive for long periods of time in drinking water distribution networks (10). 	
VBNC	 Transition to the Viable but Non-Culturable (VBNC) state under stress conditions (pH stress, nutrient starvation and low temperatures) (11). 	

Inactivation:

mactivation.	
Temperature	 Rapidly inactivated by temperatures ≥ 55°C. Insufficient data to derive <i>D</i> values for <i>C. coli</i> and <i>C. jejuni</i> in meat (12). <i>Campylobacter</i> is more sensitive to heat than <i>Salmonella</i> spp., <i>L. monocytogenes</i> and <i>E. coli</i>. Therefore, heat inactivation processes for these pathogens will provide at least the same log₁₀ reduction for <i>C. jejuni</i> or <i>C. coli</i> (12) (refer to other individual data sheets).
Drying	 Very sensitive to drying, particularly at ambient temperatures.
рН	 Rapid death in foods at pH <4.0 particularly at non-refrigeration temperatures.
Sanitisers /disinfectants	 > 6 log₁₀ reduction in 1 minute with a large range of commercial formulations (13).
Radiation	 Killed by ionising radiation. Rate of killing is dependent on the temperature and type of food being irradiated (14). <i>Campylobacter</i> spp. reduced by Ultraviolet (UV) light, high intensity light pulses (HILP) and high intensity near ultraviolet/visible (NUV-vis) on raw chicken and other meats (15).
Preservatives	 Natural antimicrobials, including plant-based derivatives such as essential oils and stilbenes (16, 17). Bacteriocins, bacteriophages and probiotics for reducing intestinal colonisation (of broiler chickens in particular) (2).

THE ILLNESS

Incubation: 1 to 10 days (average between 2 and 5 days) (18).

Symptoms:

- Muscle pain, headache and fever followed by selflimiting watery or bloody diarrhoea, abdominal pain and nausea (2, 18).
- Symptoms typically last between 3-7 days (2, 18).
- Precursor to more serious illnesses in a minority of individuals (2, 3).
- Infection with strains other than *C. jejuni* or *C. coli* often lead to milder symptoms however, diarrhoea lasts for 14 days or more in 80% of patients infected with *C. concisus* (19).

Condition: Campylobacteriosis.

At Risk Groups:

- Gastrointestinal illness can occur in any age group.
- Highest incidence reported among children (<5 years old), young adults (15-24 years) and people >60 (2, 18).
- Extraintestinal infections are more common in the elderly, immunocompromised patients and pregnant women (18).
- Risk factors include international travel; consumption of contaminated meat, milk or water; environmental exposure and direct contact with farm animals (2).

Prepared for MPI by ESR Ltd.

Updated August 2018

These data sheets contain a summary of information available in the literature. Because of the many variables which impact on the survival of organisms in foods, information in this sheet must be used as a guide only. Specific processes must be checked by the food manufacturer to ensure their product is safe.

1

Long-term effects:

- Gastro-intestinal manifestations including periodontal disease, inflammatory bowel disease (IBD), Barrett's oesophagus and colorectal cancer (2).
- Extragastrointestinal manifestations including bacteraemia, hepatitis, miscarriage, meningitis reactive arthritis (Reiter's syndrome), autoimmune neurological/respiratory disorders (Guillain-Barré Syndrome) (GBS), Miller Fisher syndrome and cardiovascular complications (2, 3).

Dose: For *C. jejuni,* the infective dose can be as low as 350-800 colony forming units (20, 21).

Incidence:

- Most frequently reported foodborne illness in developed countries including New Zealand (5).
- New Zealand incidence rate of 158.9/100,000 (2016) (5). A large decrease in cases was observed during 2006-2008, compared with the preceding decade, after successful intervention strategies from the poultry sector were implemented. Since 2008 the rates have remained relatively stable between 168/100,000 and 135.3/100,000.

Updates can be found on the ESR website: https://surv.esr.cri.nz/surveillance/annual_surveillance.php

- New Zealand incidence rates are higher than the EU ((65.5/100,000) (2015)) (22), USA ((17.1/100,000 from 10 States) (2015)) (23) and Australia ((124.9/100,000) (2014)) (24).
- Globally, case-fatality rates for campylobacteriosis range from <0.01% to 8.8% and are typically confined to young, elderly or immunocompromised patients (25).
- Seasonal trend in notifications, with most cases occurring during the spring and summer months (5, 17).

Treatment:

- Treatment rarely required, supportive therapy may be given (maintenance of hydration and electrolyte balance) (2).
- For severe cases, Fluoroquinolones are the antibiotic of choice however; *Campylobacter* strains are becoming increasingly resistant to this family of antibiotics (2, 17).
- Gentamicin or kanamycin (aminoglycosides) used for severe systemic infections (2, 17).

SOURCES

Human:

- Person-to-person transmission, via stools (2, 3).
- Responsible for 4% of campylobacteriosis cases in New Zealand (26) and similar estimates in the Netherlands (27) and Australia (28).

Animal:

- Wild or domesticated animals, birds and insects are common reservoirs of infection for humans (2, 3, 4, 17, 29).
- Prevalence higher in younger ruminants compared with older animals (2).
- Biosecurity failures may contribute to higher rates in the farm environment (17, 30).

Food:

- Consumption of contaminated raw meats (poultry and red meat), unpasteurised milk, inadequately cooked meats (especially poultry), contaminated raw fruit and vegetables or cross-contaminated ready-to-eat foods (2, 3, 17).
- Poultry is recognised as a primary source of foodrelated *Campylobacter* transmission to humans (2, 31).
- Previous very high rates of campylobacteriosis in New Zealand (>300/100,000) have been attributed to high carriage rate within broiler chickens (26, 31, 32).

Environment/Water:

Worldwide:

- Consumption of contaminated water responsible for a number of outbreaks globally (2, 17).
- Contamination of water from sewage outflow systems, waste runoff from grazed pasture and excreta from wild birds (33).

New Zealand:

- Contamination of 55-85% of river water samples in the South Canterbury region (26).
- Exposure to contaminated recreational water responsible for 3-10% of infections (26, 33).

Transmission Routes: Consumption of contaminated food and water, environmental exposure, direct contact with domesticated animals, person-to-person transmission (17).

OUTBREAKS AND INCIDENTS

Outbreaks:

Most campylobacteriosis cases are sporadic and outbreaks are rarely reported (17).

New Zealand

- Between 2007 and 2016 (excluding 2014), the number of reported foodborne outbreaks of campylobacteriosis ranged from between 7 and 16 each year with between 28 and 77 annual outbreak-associated cases. The increased number of cases in 2014 was due to three outbreaks with high numbers of associated cases (34).
- In 2016, 8 (53%) of the outbreaks caused by *Campylobacter* spp. and 28 of the associated cases (2.8%) were reported as foodborne with only a minority of foodborne outbreaks having a source identified. Implicated foods included raw milk and chicken liver pate (34).
- In 2016 Campylobacter was the primary infectious agent responsible for a large outbreak of gastroenteritis in Havelock North associated with contamination of local drinking water supplies (35).

Prepared for MPI by ESR Ltd.

<u>New Zealand</u> Notable foodborne/water outbreaks in recent years are included below*.

Year	Foodborne outbreaks (cases)	Suspected foods (outbreaks) percentage	
2006	32 (137)	No identifiable source	
2007	12 (35)	Poultry (5) 42%	
2008	8 (36)	Poultry (2) 25% Dairy (1) 12.5% Eggs (1) 12.5% Meat (1) 12.5% Fresh produce 12.5%	
2009	7 (39)	Poultry (4) 57% Dairy (2) 29% Pork (1) 14% Beef (1) 14% Lamb (2) 28% Root vegetables (1) 14%	
2010	14 (62)	Poultry (6) 43%, Shellfish (1) 7% Dairy (3) 21% Rice (1) 7% Grains/Beans (1) 7% Oils/Sugars (1) 7% Lamb (1) 7%	
2011	11 (53)	Poultry (2) 18%, Dairy (2) 18% Lamb (2) 18%	
2012	11 (51)	Poultry (2) 18%, Dairy (3) 27%	
2013	16 (77)	Poultry (4) 25% Dairy (3) 19% Oils/sugar (1) 6% Beef (1) 6% Root vegetables (1) 6%	
2014	18 (158)	Poultry (7) 39% Dairy (5) 28% Lamb (1) 5.5%	
2015	11 (46)	Poultry (2) 18% Dairy (2) 18% Leafy vegetables (1) 9%	
2016	8 (28)	Chicken liver pate (3) 37.5% Raw milk (4) 50%	
2016	1333/5500	Contaminated drinking water supply (Havelock North) (35)	

*More than one source may be implicated in some outbreaks

<u>Worldwide</u>

Notable foodborne/water outbreaks in recent years are included below.

Year	Cases confirmed/individuals affected	Suspected foods	Country	Control measure failure
2007	105/1500	Drinking water	Norway	Multiple faults including pressure fall, significant leakage problems and outdated materials used for piping (36)
2007	16	Raw milk	The Netherlands	Poor hygienic practices on farm (37)
2011	57	Duck liver parfait	Australia	Inadequate cooking of duck livers (38)
2012	148	148 Raw milk		Poor hygienic practices and on-farm biosecurity failures (39)
2014	59/99	Raw milk/Mexican- style soft cheese	Utah	Poor hygienic practices on farm (40)

LIST OF AVAILABLE RISK PROFILES

Matrix	Date	Link
Offals (mammalian and poultry)	January 2007	Campylobacter jejuni/coli in mammalian and poultry offals
Red meat	January 2007	Campylobacter jejuni/coli in red meat
	March 2007	Campylobacter jejuni/coli in poultry (whole and pieces)
Poultry	August 2013	Campylobacter jejuni/coli in poultry (whole and pieces) (update)
	January 2016	The emergence of <i>Campylobacter jejuni</i> ST 6964 in poultry in New Zealand and its associated antimicrobial resistance
Broiler chickens	June 2007	Campylobacter species in broiler (young) chickens
Raw milk	May 2014	Campylobacter jejuni/coli in raw milk

These data sheets contain a summary of information available in the literature. Because of the many variables which impact on the survival of organisms in foods, information in this sheet must be used as a guide only. Specific processes must be checked by the food manufacturer to ensure their product is safe.

REFERENCES

- 1- Nachamkin, I. (2007). Foodborne viral Pathogens. In Food Microbiology, Fundamentals and Frontiers, *Campylobacter jejuni*. 3rd Edition. Edited by M.P. Doyle and L.R. Beuchat. ASM Press, Washington DC. pgs 237-248.
- 2- Kaakoush, N.O., Castano-Rodriguez, N., Mitchell, H. M. and Man, S.M. (2015). Global epidemiology of *Campylobacter infection*. Clinical Microbiology Reviews. **28:** 687-720.
- Facciola, A., Riso, R., Avventuroso, E., Visalli, G, Delai, S.A. and Lagana, P. (2017). *Campylobacter*. from microbiology to prevention. Journal of Preventative Medicine and Hygiene 58: E79-E92.
- 4- Bolton, D.J. (2015). Campylobacter virulence and survival factors. Food Microbiology. 48: 99-108
- 5- ESR (2016) Notifiable diseases in New Zealand. Annual Report 2015. ESR, Porirua. https://surv.esr.cri.nz/PDF_surveillance/AnnualRpt/AnnualSurv/2016/2016AnnualNDReportFinal.pdf (accessed November 2017).
- 6- Wallace, R.B. (2003). *Campylobacter* pp 311-332 In: Foodborne microorganisms of public health importance, 6th Edition. AIFST (NSW Branch), Sydney, Australia.
- 7- International Commission on Microbiological Specifications for Foods (1996) Campylobacter. In Micro-organisms in Foods 5 Microbiological Specifications of Food Pathogens, pp 45-65. Blackie Academic and Professional, London.
- 8- Kaakoush, N.O., Miller, W.G., De Reuse, H. and Mendz, G.L. (2007). Oxygen requirement and tolerance of *Campylobacter jejuni*. Research in Microbiology. **158**: 644-650.
- 9- Lee, A., Smith, S.C. and Coloe, P.J. (1998). Survival and growth of *Campylobacter jejuni* after artificial inoculation onto chicken skin as a function of temperature and packaging conditions. Journal of Food Protection. **61(12):** 1609-1614.
- 10- Wingender, J. and Flemming, H. (2011). Biofilms in drinking water and their role as reservoir for pathogens. International Journal of Hygiene and Environmental Health. **214(6):** 417-423.
- 11- Chaisowwong, W., Kusumoto, A., Hashimoto, M., Harada, T., Maklon, K. and Kawamoto, K. (2012). Physiological characterization of *Campylobacter jejuni* under cold stresses conditions: its potential for public threat. Journal of Veterinary Medical Science **74(1):** 43-50.
- 12- Horn, B. (2015). *D* and z values for the heat inactivation of pathogens in raw meat. Prepared for the Ministry for Primary Industries under project MFS/14/4. Client report number: FW15001.
- Gutierrez-Martin, C.B., Yubero, S., Martinez, S., Frandoloso, R., and Rodriguez-Ferri, E.F. (2011). Evaluation of efficacy of several disinfectants against *Campylobacter jejuni* strains by a suspension test. Research in Veterinary Science. 91: e44-e47.
- 14- Radomyski, T., Murano, E.A., Olson, D.G. and Murano, P.S. (1994). Elimination of pathogens of significance in foods by low-dose irradiation: a review. Journal of Food Protection. **57:** 73-86.
- 15- Haughton, P.N., Gomez-Grau, E., Lyng, J., Cronin, D., Fanning, S. and Whyte, P. (2012). Susceptibility of *Campylobacter* to high intensity near ultraviolet/visible 395U + 5 nm light and its effectiveness for the decontamination of raw chicken and contact surfaces. International Journal of Food Microbiology. **159:** 267-273.
- 16- Samant, S.S., Crandall, P.G., O'Bryan, C., Lingbeck, J.M., Martin, E.M., and Seo, H. (2015). Sensory impact of chemical and natural antimicrobials on poultry products: a review. Poultry Science. 94: 1699-1710.
- 17- Silva, F., Leite, D., Fernandes, M., Mena, C., Gibbs, P.A. and Teixeira, P. (2011). *Campylobacter* spp. as a foodborne pathogen: a review. Frontiers in microbiology. **2**: 200.
- 18- Fitzgerald, C. (2015). *Campylobacter*. Clinical Laboratory Medicine **35**: 289-298.
- Nielsen, H.L., Ejlertsen, T., Bucker, R., and Nielsen, H. (2012). Short-term and medium-term clinical outcomes of *Campylobacter concisus* infection. Clinical Microbiology and Infection. 18: E459-E465.
- 20- Hara-Kudo, Y. and Takatori, K. (2011). Contamination level and ingestion dose of foodborne pathogens associated with infections. Epidemiology and Infection. **139:**1505-1510.
- 21- Black, R.E., Levine, M.M, Clements, M.L., Hughes, T.P. and Blaaser, M.J. (1988). Experimental *Campylobacter jejuni* infection in humans. Journal of Infectious Diseases. **157:**472-479.
- 22- European Centre for Diseases Prevention and Control. The European Union Summary Report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA, Parma, Italy and ECDC, Stockholm, Sweden. *https://www.efsa.europa.eu/en/efsajournal/pub/4634* (accessed November 2017).

Prepared for MPI by ESR Ltd.

- 23- Centers for Disease Control and Prevention. Summary of Notifiable Infectious Diseases and Conditions United States, 2015.
- https://www.cdc.gov/mmwr/volumes/64/wr/mm6453a1.htm?s_cid=mm6453a1_w (accessed November 2017).
 24- Annual Report of the National Notifiable Diseases Surveillance System. Australia's Notifiable Disease Status (2014): NNDS Annual Report Working Group.
 http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi4001-pdf-cnt.htm/\$FILE/cdi4001e.pdf (accessed)
- November 2017).
 25- World Health Organisation report of an expert consultation (2012). The global view of campylobacteriosis. Utrecht, Netherlands. ISBN 978 92 41564601
- 26- Gilpin, B.J., Walsh, G., On, S.L., Smith, D., Marshall, J.C., and French, N.P. (2013). Application of molecular epidemiology to understanding campylobacteriosis in the Canterbury region of New Zealand. Epidemiology and Infection. **141**: 1253-1266.
- Mughini-Gras, L., Smid, J.H., Wagenaar, J.A., De Boer, A., Havelaar, A.H., Friesema, I.H., French, N.P., Graziani, C., Busani, I. and Van Pelt, W. (2014). Campylobacteriosis in returning travellers and potential secondary transmission of exotic strains. Epidemiology and Infection. 142: 1277-1288.
- 28- Vally, H., Glass, K., Ford, L., Hall, G, Kirk, M.D, Shadbolt, C., Veitch, M., Fullerton, K.E., Musto, J. and Becker, N. (2014). Proportion of illness acquired by foodborne transmission for nine enteric pathogens in Australia: an expert elicitation. Foodborne Pathogens and Disease. **11**: 727-733.
- 29- Devane, M.L., Nicol, C., Ball, A., Klena, J.D., Scholes, P., Hudson, J.A., Baker, M.G., Gilpin, B.J., Garrett, N., and Savill, M.G. (2005). The occurrence of *Campylobacter* subtypes in environmental reservoirs and potential transmission routes. Journal of Applied Microbiology **98**: 980-990.
- 30- Jonnson, M.E., Chriel, M., Norstrom, M. and Hofshagen, M. (2012). Effect of climate and farm environment on *Campylobacter* spp. colonisation in Norwegian broiler flocks. Previews of Veterinary Medicine. **107**: 95-104.
- 31- French, N.F. (2008). Enhancing surveillance of potentially foodborne enteric diseases in New Zealand: Human campylobacteriosis in the Manawatu. Final report FDI/236/2005.
- 32- Mullner, P., Spencer, E.F., Wilson, D.J., Jones, G., Noble, A.D., Midwinter, A.C., Collins-Emerson, J.M., Carter, P., Hathaway, S. and French, N.P. (2009). Assigning the source of human campylobacteriosis in New Zealand: A comparative genetic and epidemiological approach. Infection, Genetics and Evolution. **9**: 1311-1319.
- 33- Carter, P.E., McTavish, S.M., Brooks, H.J.L., Campbell, D., Collins-Emerson, J.M., Midwinter, A.C. and French, N.P. (2009). Novel clonal complexes with an unknown animal reservoir dominate *Campylobacter jejuni* isolates from river water in New Zealand. Applied and Environmental Microbiology **75**: 6038-6046.
- 34- ESR (2016). Annual Report Concerning Foodborne Disease in New Zealand 2016. Prepared for Ministry for Primary Industries under Project MRP/16/02. ESR, Porirua.file:///C:/Users/Home/AppData/Local/Packages/Microsoft.MicrosoftEdge_8wekyb3d8bbwe/TempState/Downloa ds/Annual-Foodborne-Disease-in-NZ-2016.pdf (accessed November 2017).
- 35- Department of Internal Affairs: Government inquiry into Havelock North drinking water (2017). https://www.dia.govt.nz/Government-Inquiry-into-Havelock-North-Drinking-Water#Report-1 (accessed November 2017).
- 36- Jakopanec, I., Borgen, K., Vold, L., Lund, H., Forseth, T., Hannula, R. and Nygard, K. (2008). A large waterborne outbreak of campylobacteriosis in Norway: the need to focus on distribution system safety. BMC Infectious diseases. 8(1):128.
- 37- Heuvelink, A.E., van Heerwaarden, C., Zwartkruis-Nahuis, A., Tilburg, J.J.H.C., Bos, M.H., Heilmann, F.G.C., Hofhuis, A., Hoekstra, T. and de Boer, E. (2009). Two outbreaks of campylobacteriosis associated with the consumption of raw cows' milk. International Journal of Food Microbiology. **134**: 70-74.
- 38- Parry, A., Fearnley, E. and Denehy, E. (2012). "Surprise" Outbreak of *Campylobacter* infection associated with chicken liver pate at a surprise birthday party, Adelaide, Australia, 2012. Western Pacific Surveillance Journal. **3(4):** 16-19.
- 39- Longenberger, A.H., Palumbo, A.J., Chu, A.K., Moll, M.E., Weltman, A. and Ostroff, S.M. (2013). *Campylobacter jejuni* infections associated with unpasteurised milk-Multiple States, 2012. Clinical Infectious diseases. 57:263-266.

Prepared for MPI by ESR Ltd.

Updated August 2018

These data sheets contain a summary of information available in the literature. Because of the many variables which impact on the survival of organisms in foods, information in this sheet must be used as a guide only. Specific processes must be checked by the food manufacturer to ensure their product is safe.

40- Centers for Disease Control and Prevention (CDC. (2016). *Campylobacter jejuni* infections associated with raw milk consumption - Utah, 2014. MMWR. Morbidity and mortality weekly report, **65(12)**: 301-305.

Prepared for MPI by ESR Ltd.

Updated August 2018

These data sheets contain a summary of information available in the literature. Because of the many variables which impact on the survival of organisms in foods, information in this sheet must be used as a guide only. Specific processes must be checked by the food manufacturer to ensure their product is safe.