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1 Executive Summary

In this study, Campylobacter notifications from 2001 to 2008 across three

regions of New Zealand were analysed, and spatial and temporal trends were

identified. Risk factors associated with these trends were investigated, and

several relationships were observed. In urban areas, the Social Deprivation

Index was a risk factor for notifications, with areas of high deprivation hav-

ing low notification rates. In contrast, the SDI had no clear association with

notifications in rural areas, where areas of high ruminant (sheep and dairy)

density were more closely aligned with notification rates. Differences were

shown in notification rates across age groups, with children under 5 years

of age having significantly higher notification rates than other age groups,

with the majority of these notifications coming from rural populations. The

MultiLocus Sequence Typing of isolates from the Manawatu indicate a clear

difference in the spatial distribution of sequence types associated with poul-

try compared to those associated with ruminants, with poultry associated

isolates more prevalent in urban areas. Several meterological variables were

also investigated, and were shown to be associated with the temporal varia-

tion in notification rates, though peaks in the weather variables lagged behind

corresponding peaks in date of notification by several weeks.

A mathematical model was developed to account for the average spatial

and temporal trends of notification risk, allowing any unusual deviations

at particular spatial locations in particular time periods to be detected in

the residuals. Epidemic indicator variables were introduced to model these

anomalous events, and two separate priors were considered for these variables.

The independent indicators method was found to be more discriminatory at

identifying outbreaks of campylobacteriosis.

Finally, the model was adapted to be useful as a surveillance tool, and a

simple user interface was developed to facilitate the running of the model.

The tool is designed to be run weekly as notification data are accumulated,

allowing automated early detection of possible outbreaks, which may then
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be followed up by health professionals. A retrospective application of the

surveillance tool to four of the larger outbreaks from 2005 and 2006 in the

Manawatu region showed that it could reliably detect such outbreaks in the

first week of data availability.

2 Introduction

New Zealand has one of the highest per-capita incidence rates of campylobac-

teriosis in the world (Baker et al., 2006). In order to reduce the incidence, we

must have a thorough understanding of the epidemiology of infection, and

thus need to understand the spatial and temporal determinants of raised

notifications.

There are several risk factors known to be associated with Campylobacter no-

tifications, and many of these are spatially and temporally structured. Social

deprivation is a risk factor for many infectious diseases, however, a UK study

has indicated that campylobacteriosis notifications are higher among those

with higher socioeconomic status (Gillespie et al., 2008), suggesting that so-

cial deprivation may be a protective effect. Gender is also considered a risk

factor for campylobacteriosis, with males in general notifying higher than

females (Sneyd and Baker, 2003; Baker et al., 2007). Based on data from

2001-2004, Baker et al. also showed that significantly higher rates of notifi-

cation and hospitalisation were seen among urban populations in comparison

to rural populations. However, when children and adults were treated sepa-

rately, children under the age of 15 years in rural areas notified significantly

higher than their urban counterparts. This difference between children and

adults is also seen in a comparison of notification rates of different age groups.

Children aged 1-4 years old had the highest notification rates, followed by

20-29 year olds and infants, with other age groups being at least 25% lower.

Campylobacteriosis case rates are highly seasonal, although there is large

variation between years in the timing, duration and extent of peak inci-
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dence. Baker et al. (2007) examined notification and hospitalisation rates

from 2001-2003, and found the highest rates occurred during the summer

months. However, there have also been increased notifications during early

winter (Williman et al., 2008), an example of which occurred in winter 2006,

where a nationwide increase was observed (McTavish et al., 2008). The

majority of cases in New Zealand are considered sporadic (Wilson, 2005),

however there are also brief localised outbreaks in which cases share a com-

mon exposure. Identifying these short periods of increased incidence through

close proximity of the cases in space and time is of particular interest to pu-

bic health professionals, who can use this information to follow cases up and

determine the exposure, and perhaps prevent future cases from occurring in

the same way.

The high degree of unpredictability in case rates presents unique statistical

challenges when analysing background temporal and spatial trends, which

must be well understood before anomalous outbreaks can be identified. Many

existing methods, such as SaTScanTM1, rely on using data from a period

containing no known outbreaks to identify the baseline case rates. For a

disease such as campylobacteriosis, however, such periods do not exist. A

method that can determine the baseline case rates in the presence of sporadic

cases, therefore, is required.

The goal of this project is to analyse campylobacteriosis notification data

spanning the years 2001 to 2008 for three regions of New Zealand: Auckland,

Canterbury and the Manawatu. The aims are four fold:

1. Develop a model for the background spatial and temporal trends in the

data.

2. Identify potential risk factors that might be associated with these trends.

3. Develop a method of identifying anomalous outbreaks over and above

1SaTScanTMis a trademark of Martin Kulldorff. The SaTScanTMsoftware was devel-
oped under the joint auspices of Martin Kulldorff, the National Cancer Institute and
Farzad Mostashari at the New York City Department of Health and Mental Hygiene.
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these trends.

4. Produce a tool suitable for use in the surveillance of campylobacteriosis

in New Zealand.

An overview of the data is given in the following section. The mathematical

model is then described in Section 4 and investigation of risk factors to the

underlying spatial and temporal trends is given in Section 5. The model is

then extended to include outbreak indicators in the spatio-temporal term in

Section 6 and we describe the use of the model as a potential surveillance tool

in Section 7. Implementation details for the model are given in Appendix A.

3 Data overview

The data consist principally of a list of cases with a notification date and

an approximate spatial location. The data span the years 2001-2006 in the

Auckland and Canterbury regions, with data available from 2001-2008 in the

Manawatu region. The spatial information associated with each notification

is the census meshblock, which are small areas of New Zealand that normally

contain between 0 and 200 people in their usually resident population. Mesh-

blocks therefore vary in size, with those in urban areas giving a more precise

spatial location than those in rural areas. In addition, we have epidemiolog-

ical data from the EpiSURV database for each case in the Manawatu region,

including the sequence type (ST) of the Campylobacter strain obtained by

MultiLocus Sequence Typing (MLST) as well as the age and gender of the

case.

The data for potential risk factors include the Social Deprivation Index (SDI),

age and gender, weather information, poultry sales information, and prox-

imity to large poultry farms and livestock densities. The SDI was calculated

at the meshblock level from the 2006 census data, and has proved a key risk

factor in urban areas. In rural areas, proximity to high livestock densities

such as dairy cattle is also a risk factor. Data on farm locations and size was
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Year Auckland Canterbury Manawatu
2001 2.232 2.269 2.049
2002 3.312 3.105 2.109
2003 3.114 3.834 2.651
2004 3.032 2.685 1.845
2005 2.976 4.111 2.453
2006 4.093 3.879 2.598
2007 3.363 3.943 2.003
2008 1.778 1.486 1.183

Table 1: Number of notifications per 1,000 people per year in each region.

taken from the AgribaseTM2 database from January 2006. Weather data from

weather stations throughout each region was obtained from NIWA, such as

sunshine hours, maximum and minimum temperature, rainfall and storm wa-

ter run-off. There were 16 weather stations used throughout the Manawatu,

46 in Auckland, and 33 in Canterbury, though not all of these had readings

available for all variables considered. In addition, combined weather infor-

mation, such as patterns of weather that were suitable for barbecues were

also investigated. Finally, retail sales information of fresh poultry from all

four major poultry companies was provided by the poultry industry. All

spatial and temporal data was interpolated or aggregated to the meshblock

and week level to facilitate comparison with the notification data.

Table 1 summarises the notification data across each region. Of interest is

the marked drop off in notification rates across all regions in 2008.

4 Mathematical model of spatial and tempo-

ral trends

A Bayesian statistical model is developed based on a collection of models

discussed by Diggle et al. (2002).

2AgribaseTMis a product of AsureQuality.
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Assume that the number of notifications Yi,t in meshblock i in week t has

a Poisson distribution with mean niλi,t, where ni is the number of people

resident in meshblock i, and λi,t is the probability an individual residing in

meshblock i presents with campylobacteriosis in week t. Next, assume that

the log of the risk may be split into separate components, so that

log(λi,t) = Rt + Ui +Wi,t, (1)

where Rt is a purely temporal component, Ui is a purely spatial component,

and Wi,t is a spatio-temporal interaction.

We provide structure on these components by specifying prior distributions

on Rt and Ui so that they represent the underlying temporal and spatial

trends in the data. For the temporal trend parameters, we first specify R1

and R2 using improper flat priors, and then describe the trend using a second

order Gaussian random walk. Thus, given Rt−1 and Rt, we assume Rt+1 has

a normal distribution,

Rt+1|Rt, Rt−1, κR ∼ Rt + (Rt −Rt−1) +N(0, κ−1
R ).

The assumption here is that the risk in week t + 1 is equal to the risk in

week t plus the most recent change in risk, with some uncertainty governed

by κR. This is equivalent to interpolating Rt+1 using a linear trend through

Rt and Rt−1, and then adding uncertainty from a normal distribution with

variance κ−1
R . This allows a linear trend to fit the data where the data suggest

it, whilst allowing changes in that trend to emerge at a later point in the

time series. The hyperparameter κR is assumed to have a non-informative

conjugate Gamma prior. Notice that, given data up to week T , this model

allows the number of cases in week T +1 to be predicted – it is just the usual

linear trend through the previous two time points.

For the underlying spatial trend parameters, an intrinsic Gaussian Markov

random field prior is used (Besag et al., 1991). This means that Ui is depen-
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dent only on the risk in neighbouring meshblocks n(i), and thus

Ui|{Uj : j ∈ n(i)}, κU ∼
1

|n(i)|
∑

j∈n(i)

Uj +N

(
0,

1

κU |n(i)|

)
.

The prior here ensures that meshblock i takes the average value of the sur-

rounding meshblocks, with some additional uncertainty. The |n(i)| divisor

in the variance ensures that those meshblocks with fewer neighbours (such

as those on the edge of regions) have the same relative variance as those

meshblocks in the interior. Once again, a conjugate Gamma prior is used for

κU .

The purely temporal and spatial terms act to absorb the underlying temporal

and spatial trends in the data, leaving the last term Wi,t to include changes

over and above this trend, which allow the fitting of epidemic indicators as

in Section 6.

In addition, to assess hypotheses regarding spatial risk factors for notifica-

tions in rural areas, a multiple Poisson regression model with log link function

is used in Section 5.2.

5 Identifying potential risk factors for increased

notifications

The purpose of this section is to examine the underlying temporal and spatial

trends in the data, in order to generate hypotheses about likely risk factors.

To do this, we begin by setting Wi,t ≡ 0 in equation 1, leaving only the

Rt and Ui terms. Figure 1 shows the weekly case rates per 1,000 people

estimated by the model. The summer peaks can be seen to be irregular in

height, duration and timing. Canterbury has the most seasonal variation

with several severe but short epidemics in the summer. Auckland has longer

summer seasons and shorter winters, with the notifications appearing to come

in short bursts during the summer. The Manawatu has a significantly lower
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Figure 1: The expected number of cases per 1000 people per week people
for the Manawatu, Canterbury and Auckland regions. The grey background
highlights the 2006 winter epidemic.

number of cases per person than the other two regions, and the notification

rates appear smoother through time.

Figure 1 also shows an increase in the number of winter cases across all

regions, culminating in the winter epidemic of 2006. The differences across

the regions may be due to differing climates. The larger variation between

summer and winter notification rates for Canterbury, for instance, may be

attributable to the larger difference in temperatures between summer and

winter compared to the Manawatu and Auckland.

The spatial trends can be seen in Figures 2-4. The highlighted spot around

Foxton in the Manawatu (Figure 2) may be due to occupationally acquired in-

fections from workers at the poultry processing plant located there, although
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Figure 2: The estimated relative risk surface for the Manawatu region.

most of these cases occur in 2001-2003. The Canterbury region shows the

most variation in risk, with some meshblocks registering more than 40 times

the per-person risk than others. The large green region in South Auckland

is a lower socio-economic area.

Based on the observed trends above, and other trends highlighted in the

literature, we have identified the following potential risk factors for Campy-

lobacter notifications in the above regions.

1. Social Deprivation Index (SDI).

2. Distance from areas of high livestock (ruminant) densities or large poul-

try farms.

3. Sequence type.

4. Age and gender.

5. Variation in weather (rainfall, sunshine hours, temperature and storm

water run-off).
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6. Poultry retail sales.

We address each of these in turn.

5.1 Social Deprivation Index

Figures 2-4 indicate that notifications are in general higher in the more afflu-

ent areas of the three regions, particularly within the urban centres. In order

to investigate this further, the SDI and the urban/rural classification of each

meshblock was computed from the 2006 census. Figure 5 shows the deciled

relative risk from the model, side by side with the SDI for Auckland. There is

a clear similarity, with the SDI appearing highly negatively associated with

risk – the more affluent areas having higher notification rates. This pattern,

however, is not repeated in rural areas.

We confirmed this relationship by replacing the spatial term Ui in equation

1 with a set of fixed effects – one for each of the 10 levels of deprivation. The

linear predictor thus becomes log(λi,t) ∼ Rt +VD(i), where D(i) is the SDI of
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Figure 5: Deciles of the estimated relative risk for central Auckland (left)
compared with the Social Deprivation Index (right).

meshblock i. The fixed effects V1, V2, . . . , V10 are given a first order Gaussian

random walk prior, i.e. given V1, . . . , Vj,

Vj+1 ∼ N
(
Vj,

1

κV

)
.

This is equivalent to assuming that each level of deprivation will have a

similar level of risk as adjacent levels. The hyperparameter κV is presumed

to have a conjugate Gamma distribution.

The results are given in Figure 6, where we see a clear drop in risk in deprived

areas, particularly for indices greater than 7. The largest trend is observed

in the Auckland region, possibly due to having a larger urban area, and thus

comparatively more urban meshblocks free from rural influences.

There is one exception to this strong SDI relationship in central Christchurch,

where, in the area marked by the white circle on Figure 3, a large number

of cases occur in an apparently small population. This part of Christchurch
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Figure 6: Social Deprivation Index (SDI) against notification risk with 95%
credibility envelopes for urban meshblocks.

contains low-cost, long-stay accommodation, and thus the usually resident

population recorded in the census may not accurately reflect the number

of individuals who might nominate this area as an address should they get

campylobacteriosis, hence artifically increasing the relative risk per person

in this area.

5.2 Livestock density

In rural areas, the relationship between notifications and the Social Depri-

vation Index appears less strong, suggesting that the risk factors for rural

areas may differ from urban areas. Furthermore, a χ2 test in the Canter-

bury and Auckland regions shows urban areas notify at a significantly higher
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rate than rural areas (p = 0.006 for Canterbury, and p < 0.0001 for Auck-

land.) Given these differences, the association between animal density, SDI

and campylobacteriosis notifications in rural meshlocks was investigated as

an alternative explanation for the spatial pattern.

Using AgribaseTM3, the number of dairy cattle, beef cattle and sheep in

each meshblock was estimated by overlaying farm information on meshblocks,

based on data from January 2006. Since the majority of poultry were confined

to large poultry farms (greater than 1000 birds), crude estimates for the

proximity of a meshblock to a large poultry farm were found by counting the

number of meshblocks that must be passed through to get from the meshblock

to the poultry farm. For instance, meshblocks containing large poultry farms

were given distance zero, and their neighbours were given distance one and

so on. We preferred this measure of distance over Euclidean distance to the

meshblock centroid because some meshblocks are very large in rural areas,

and thus a part of the meshblock could be quite close to a poultry farm, yet

the distance to its centroid would be large. Figures 7 and 8 show the spatial

distribution of dairy, beef and sheep densities, as well as proximity to a large

poultry farm for the Canterbury and Manawatu regions respectively.

A multiple Poisson regression model with log link function was fitted using

the generalised linear model function in R (glm). The response variable was

the number of cases in each rural meshblock, with the population of the

meshblock used as an offset, and the variables SDI, poultry farm distance

and each of the animal density variables used as predictors. A backward

stepwise regression procedure was used to eliminate variables that had p-

value greater than 0.15. Note that rural meshblocks only were used for this

analysis.

The results are given in Table 2 where the regression coefficients and p-

values for each variable that was not eliminated from the regression model

in each of the three regions are given. The beef cattle density was elimi-

nated from all three models, and in Auckland the remainder of the livestock

3AgribaseTMis a product of AsureQuality.
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Figure 7: Densities of sheep, beef, and cattle, as well as proximity to a large
poultry farm, for the Canterbury region in 2006.
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Figure 8: Densities of sheep, beef, and cattle, as well as proximity to a large
poultry farm, for the Manawatu region in 2006.
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Variable Manawatu Canterbury Auckland
SDI - - -0.046 (0.0039)
Poultry farm distance -0.049 (0.0236) 0.0242 (0.0203) -
Sheep density - 0.376 (0.006) -
Dairy cattle density 1.51 (0.0508) 0.652 (0.0198) -

Table 2: Regression coefficients and p-values (in brackets) for each of the
predictor variables from the final multiple Poisson regression model for rural
notifications after the stepwise elimination of non-informative variables. Beef
cattle density was eliminated from all models.

density variables were also eliminated, leaving only the SDI as predictor.

In the Manawatu and Canterbury regions, however, SDI was eliminated as

a predictor in favour of the poultry farm distance and dairy cattle density.

Poultry farm distance was negatively correlated with notification rates in the

Manawatu, while being positively correlated in Canterbury. Cattle density

was positively correlated with notification rates in both regions, with sheep

density also being positively correlated in the Canterbury region.

5.3 Age and gender

For the Manawatu, we have additional data for each case from the EpiSurv

database, including gender and age group. Denominator information for

these variables was obtained from the 2006 census. The cases were divided

into subgroups by each of these variables, allowing analysis of the spatial dis-

tribution of each group separately using the model in section 4. Where there

were very few notifications in a particular age group, the data were sparse,

and hence there were some problems with the convergence of the MCMC

algorithm. In these cases, a more informative prior for the hyperparameter

κU was used (κU ∼ Gamma(1.5, 0.15)). In addition, some of the age groups

were also pooled, and chains were run longer in order to obtain convergence.

Table 3 shows the yearly case rates per 1,000 people in the Manawatu. The

rates for 0-4 year olds is twice as high as almost all other age groups, and
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Group Notification rate
0-4 years 4.75
5-9 years 1.61
10-14 years 1.58
15-19 years 1.95
20-29 years 2.80
30-39 years 2.39
40-49 years 2.06
50-59 years 2.24
60 and older 2.01
Male 2.73
Female 2.11

Table 3: Notification rates per 1,000 people subdivided by age and gender
for the Manawatu.

there appears a slight increase in the 20-29 age group. There is a significant

difference in notification rates between males and females (P < 0.0001 from

a χ2 test), with males more likely to notify than females.

The estimated spatial distributions of cases in the two youngest age groups

(0-4 and 5-9 year olds) is given in Figure 9. We see that cases in 0-4 year olds

are much more likely to occur in rural areas, whereas this trend is reversed

in the 5-9 year olds, with most cases occurring in urban Palmerston North.

The spatial distributions for gender (not shown) are similar, but the male risk

appears slightly more rural with a cluster of increased risk around Foxton.

5.4 Sequence type

With the recent sequence typing of many of the isolates from cases in the

Manawatu, we have been able to explore the epidemiology of Campylobactor

strains with different host associations (Marshall and French, 2009). Fig-

ures 10-12 show the estimated relative risk surfaces for ST 474 (a strain

associated with one particular poultry company), all other poultry related

STs, and ruminant associated STs. The ruminant associated strains have
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Figure 9: Relative risk for 0 to 4 year-olds (top) and 5 to 14 year-olds (bot-
tom).
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increased prevalance in rural areas, and poultry associated strains appear

more frequently in urban areas.

5.5 Weather

The relationships between meteorological variables and campylobacteriosis

notifications have been assessed in various studies across various locations,

particularly with reference to the underlying causes of seasonality (Hearnden

et al., 2003; Bi et al., 2008). It is clear from the literature that location

affects the way in which weather relates to notifications, possibly due to dif-

ferent epidemiological pathways being more prominent in different locations,

with each pathway being affected by the weather differently. Temperature in

particular is often suggested to affect notifications. A less sophisticated but

more direct approach is taken here, by jointly plotting the case series and

weather data to explore potential connections.

The weather data analysed consists of daily maximum temperature, min-

imum temperature, rainfall, storm water run-off, and hours of sunshine.

These data were taken from as many weather stations as possible spread

throughout, and just outside, each of the three regions. Daily observations

were then averaged to provide a weekly mean. The datasets were centred and

normalised by subtracting the mean and dividing through by the standard

deviation to allow comparisons to be made. We also applied some simple

smoothing by replacing the observation at time t with the mean of any ob-

servations between t− 3 and t+ 3.

Figures 13 to 15 show the time series of campylobacteriosis notifications,

mean maximum temperature and mean hours of sunshine. The peaks in

notifications appear to occur earlier than the peaks in sunshine hours and

temperature. Note that the notification data is likely to be delayed by several

days from the actual infection date.

To explore this further, maximum temperature, minimum temperature, rain-
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1.61 - 1.75
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Figure 10: Relative risk maps of the Manawatu region for ST 474 (associated
with one particular poultry company).
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Figure 11: Relative risk maps of the Manawatu region for poultry associated
sequence types other than ST 474.
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Figure 12: Relative risk maps of the Manawatu region for ruminant associ-
ated sequence types.
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Figure 13: Centred, normalised and smoothed time series of notifications,
mean maximum temperature and mean hours of sunshine for the Manawatu
region.
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Figure 14: Centred, normalised and smoothed time series of notifications,
mean maximum temperature and mean hours of sunshine for the Canterbury
region.
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Figure 15: Centred, normalised and smoothed time series of notifications,
mean maximum temperature and mean hours of sunshine for the Auckland
region.
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fall, storm water run-off, and hours of sunshine were interpolated spatially

across meshblocks and added as covariates to the model with time lags of

zero, one or two weeks. This was accomplished by setting the Wi,t term in

Equation 1 to

Wi,t = ZL(i,t) + ZL(i,t−1) + ZL(i,t−2),

where L(i, t) is the level of weather in meshblock i at time t and the Zk are

fixed effects. The priors on the Zk are first order Guassian walks as was done

for the fixed effects for SDI,

Zk+1|Z1, . . . , Zk, κZ ∼ N
(
Zk,

1

κZ

)
,

where κZ is again given a Gaussian conjugate prior. However, no consistent

relationship with campylobacteriosis notification risk was found for any of

these four variables.

Another suggested explanation for the increase in campylobacteriosis notifi-

cations during the summer months is barbecue use, where unfamiliar catering

practises may increase the risk of cross contamination or under-cooking. Un-

fortunately, barbecue-use data is difficult to obtain or estimate. As a proxy,

the number of days of warm, dry weather each week was calculated, with

weekends and public holidays having a higher weight. This variable could

also approximate other things, such as exposure to environmental Campy-

lobacter through swimming in rivers. Although the relationship is far from

straightforward, the risk of getting campylobacteriosis does appear to in-

crease one week after the presence of warm, dry weather in Auckland and

the Manawatu, as seen in Figure 16. This trend is not observed in Canter-

bury, however, suggesting different sources of infection in this region.

The main problem when attempting to predict notifications using weather

data is that the data are usually available via various summary statistics, such

as weekly average rainfall or daily maximum and minimum temperatures.

These statistics may fail to capture the diverse and rapidly changing range of

weather conditions that effect both bacteria and, perhaps more importantly,
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Figure 16: Relative risks for different amounts of weather suitable for barbe-
cues.

human behaviour. This difficulty is highlighted in the literature, in which

evidence can be found for the opposing hypotheses that warmer temperatures

can both increase or decrease notifications (Bi et al., 2008).

A further complication arises from the inherent delay and variable smoothing

present in the notification data itself. The length of time between infection

and notification is not well understood, but is likely to vary between one

and three weeks for the majority of reported cases. This may flatten any

sharp peaks in notifications, and thus obscure any causal relationships. Any

temporal trends with a longer time frame, such as seasonal patterns, however,

would not be hidden in this way, and thus we should expect these to be easier

to identify. While there is a relationship to be seen, as in Figures 13-15, this

relationship is not conducive to predictive modelling.

The EpiSurv database allows for the date of onset to be recorded. Although

still after the date of infection, the onset of symptoms may give a more

accurate picture of when infection has occured, and thus allow associations

to be identified more precisely. Unfortunately, for the dataset used in this

project, the onset date has not been recorded in the majority of cases, and

the missing data appears non-uniformly within the dataset. The completion

dates in Auckland and Canterbury in particular are very low, so there is a

spatial pattern to onset date completion.
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Such biases make it difficult to identify any associations between onset date

and weather events across all regions, as the onset date completion trends

predominate. However, within the Manawatu data, in particular in the last 3

years, we have reasonable completion of onset date available. This subset of

the data was analysed to determine the correlation between weather variables

and notification rates at different time offsets.

With onset date information there is no need to group at the weekly level,

as there is less likely to be a day of week effect than with the notification

date, which occur only Monday to Friday. Thus, for each possible lag (from

50 days to -50 days) between weather and notifications, we offset the daily

weather data, and then smoothed both weather and notification data with a

6 week moving average. We centered and normalised each time series, and

then computed the correlation. The smallest lag with the highest correlation

occurred when the sunshine hours data lagged behind the notification data

by 17 days (ρ = 0.52). This suggests that, in addition to these meterolog-

ical variables, there may be other drivers of the seasonal trend in human

notifications.

5.6 Poultry retail sales

Recently, it has been shown that the majority of campylobacteriosis cases in

New Zealand (Mullner et al., 2009), Scotland (Sheppard et al., 2009) and the

United Kingdom (D.J et al., 2008) are poultry associated strains.

Poultry retail sales data was made available by the Poultry Industry Associa-

tion of New Zealand from March 2005 through to October 2008. Retail sales

information from all four major poultry companies (Companies A through

D) was available at differing temporal and spatial resolutions. The data from

company D was excluded due to having summary data only at the year and

region level. The data from company C was also excluded due to retail sale

information being on an as yet undetermined scale. Company A sells the

majority (70%) of their fresh poultry to two large abattoirs (one in Auck-
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land and one Christchurch), which are likely then to distribute to the major

supermarkets throughout the country. The absense of spatial resolution for

these data meant that it has also been excluded. Thus, the remaining data

represents approximately 30% of the retail data from company A, and full

retail data from company B, and therefore may not represent the true spatial

or temporal distribution of retail poultry sales throughout the three regions.

Given that the data may not be representative, modelling notifications using

this data is unwise, and we instead elected to do some straightforward com-

parative analysis against notifications. The data were interpolated spatially

and temporally to the meshblock/week level, allowing direct comparison to

the notification data. Figures 17 and 18 show the spatial distribution of

poultry sales in the Manawatu and Canterbury regions respectively for the

two poultry companies. There does not appear to be any significant corre-

lation with the relative risk of Figures 2 and 3, and we see that the large

urban areas of Palmerston North and Christchurch have very little sales data

recorded.

The temporal distribution of the Manawatu sales data is given in Figure 19.

Of interest here is the apparent peak in retail sales from company A which

corresponds to the winter epidemic of 2006 (McTavish et al., 2008).

6 Identifying anomalous events

In order to model temporary periods of increased risk, Knorr-Held and

Richardson (2003) propose using indicator variables Xi,t that switch from

zero to one during epidemic periods. The advantage of using such indica-

tors in the Bayesian setting is that the posterior distribution consists of the

probability that meshblock i is experiencing an epidemic in week t for each

i and t. This allows simple interpretation of these spatio-temporal indica-

tors, allowing the indicators with high posterior probability to trigger further

investigation into the cases at that time and location.
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Poultry Company A
68 - 83
83 - 103
104 - 119
120 - 135
136 - 147
148 - 157
158 - 171
172 - 188
189 - 211
212 - 231

Poultry Company B
38 - 41
42 - 48
49 - 57
58 - 66
67 - 72
73 - 76
77 - 82
83 - 91
92 - 100
110

Figure 17: Average monthly poultry retail sales (kg) for two companies in
the Manawatu.
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Poultry Company A
46 - 110
110 - 180
180 - 230
230 - 290
290 - 340
340 - 380
380 - 390
390 - 430
430 - 520
520 - 590

Poultry Company B
23 - 24
24 - 26
27 - 30
30 - 33
34 - 36
36 - 38
38 - 41
41 - 44
44 - 50
51 - 55

Figure 18: Average monthly poultry retail sales (kg) for two companies in
the Canterbury.
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Figure 19: Centred, normalised and smoothed time series of all notifications
(top) and poultry related notifications (bottom) compared with fresh retail
poultry sales from the Manawatu region.
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Figure 20: Maps showing the area unit regions (left) and the water supply
regions (right) used for detecting localised outbreaks in the Manawatu.

Due to the large number of meshblocks and time periods (over 9000 mesh-

blocks in Auckland, over 300 time periods), it is necessary to combine several

meshblocks into ‘regions’ in which outbreaks are to be detected, thus reduc-

ing the number of outbreak indicators, in order to improve the performance

of the estimation. We have used two separate schemes for this. The first

scheme uses the census area units to group meshblocks into regions, and the

second is based on water supply, so that meshblocks that share the same

water supply are in the same region. As an example, the two regions for the

Manawatu are shown in Figure 20.

There are two models proposed: the Knorr-Held and Richardson model,

which uses temporally correlated priors, and the independent indicators model.

Both models use the same basic structure to estimate the underlying spatial

and temporal components, differing only in the priors. Given equation 1 we

set

Wi,t = βr(i)Xr(i),t,

where r(i) is the index of the region containing meshblock i, Xr,t is the

37



indicator for the presence or absence of an outbreak, and βr reflects the

size of the increase in risk for outbreaks in region r. For the outbreak size

parameters, we assume that βr ∼ Exp(1) to assist with convergence.

The Knorr-Held and Richardson model uses priors on the Xr,t that take the

form of a Markov chain with transition probabilities p[a, b], where a and b

are 0 or 1. p[a, b] then, represents the probability that the indicator variable

goes from Xr,t−1 = a to Xr,t = b. Hence,

Xr,t ∼ Bernoulli(p[Xr,t−1, 1]).

The priors for the transistion probabilities are p[0, 0], p[1, 1] ∼ U(0, 1), which

then define the other two parameters as p[0, 1] = 1 − p[0, 0] and p[1, 0] =

1− p[1, 1].

The independent indicators model, on the other hand, has a simpler prior

structure that removes the temporal dependence. We set

Xr,t ∼ Bernoulli(p),

where p is given the prior p ∼ Beta(1, 51). This prior suggests that we expect

on average one outbreak a year in each region.

The lack of temporal correlation in the independent indicators model should

allow new outbreaks to be detected in their first observable week. In contrast,

the temporal correlation in the Knorr-Held and Richardson model could

prevent outbreaks being detected in this first week. The Knorr-Held and

Richardson model was initially applied to meningococcal disease incidence

data, which involves person to person transmission. As there is no trans-

mission between people with campylobacteriosis, the temporal correlation is

not as applicable. The independent indicators method, therefore, is likely to

be more suited to applications in which real-time monitoring of outbreaks is

required.

Figures 21 and 22 show the output from the Knorr-Held and Richardson and
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Figure 21: The posterior probability of an outbreak with all regions overlayed
(top) and the estimated number of cases each week (bottom) for the Knorr-
Held and Richardson method. Both graphs use the water supply regions for
the Manawatu data.
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Figure 22: The posterior probability of an outbreak with all regions over-
layed (top) and the estimated number of cases each week (bottom) for the
independent indicators method. Both graphs use the water supply regions
for the Manawatu data.
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independent indicators models respectively for the Manawatu region. The

coarser grid of the water supply regions has been used, and these appear to be

more useful than the area units at detecting outbreaks. This may be due to

their larger size, which may increase the chance at detecting outbreaks where

the geographical location of cases are not as important, such as an outbreak

caused by contaminated food at a restaurant. The two models agree for the

most part, with the independent indicators model appearing to be slightly

more discriminatory. Note that the number of outbreaks detected is not over-

whelmingly large, so that any further investigation of epidemiological factors

associated outbreaks is minimized. Also, note that, in the bottom figures,

some of the spikes in the case series (in green) are explained as outbreaks

(estimated number of cases in red). Not all the spikes are explained, however

– some of them may just be random variation, or possibly outbreaks spread

over too large a region to be detected by the model.

The independent indicators model output for the Canterbury and Auckland

regions are shown in Figures 23 and 24.
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Figure 23: The posterior probability of an outbreak with all regions over-
layed (top) and the estimated number of cases each week (bottom) for the
independent indicators method. Both graphs use the water supply regions
for the Canterbury data.
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Figure 24: The posterior probability of an outbreak with all regions over-
layed (top) and the estimated number of cases each week (bottom) for the
independent indicators method. Both graphs use the water supply regions
for the Auckland data.
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7 A potential surveillance tool

A tool has been developed to provide an easy to use interface for running

the model. The tool provides a traditional Windows dialog box interface

that allows the input datasets to be described, and the basic parameters

for the model to be specified. The tool then allows the model to be run in

the background and provides feedback to the user during processing. Once

finished, the output data files are provided along with graphs similar to

those in Figures 22-24, and analysis can then be done in order to investigate

possible outbreaks. Details on the convergence of the model are also output.

A screenshot of the user interface is shown in Figure 25. The required input

data files consist of

1. A meshblock file, specifying the meshblock numbers and the population

within each meshblock.

2. A neighbours file, linking each meshblock with its neighbours n(i).

3. A regions file, specifying the map r(i) from meshblock to region.

4. A cases file, specifying the date of the case, the meshblock, and option-

ally the accuracy of the meshblock assignment.

The first three files may be setup once for each region and then reused with

each model run. These are plain text files that are reasonably easy to generate

using census and GIS data. The last file, the cases file, is the only file that

is expected to change between runs of the model, and thus the requirements

for this file are less stringent. It is a comma separated file with headers

included. When the user selects the file, each of the drop down boxes for

selecting which field should be interpreted as the meshblock or date fields

are populated, allowing simple selection by the user. A third, optional field

giving the accuracy of the assignment of the case to a meshblock may be

specified, and a set of allowed values chosen. This allows those cases that have

inaccurate spatial information (e.g. they have been assigned to a meshblock
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Figure 25: Selecting the field for meshblocks in the surveillance tool.

based on territorial authority information, rather than true address details)

to be ignored by the model.

Once the input files are selected, and the appropriate fields are chosen, the

model parameters can be defined, which includes the number of iterations

to run, how many of these should be treated as the burn-in period, and

the thinning rate used for sampling from the posterior distributions. Once

specified, the user selects the “Go” button, and the model starts running.

Feedback is provided via the number of iterations complete and a progress

bar as shown in Figure 26. Once complete, an analysis phase runs, generat-

ing a set of plain text files, specifying potential outbreaks and relative risk

values for each meshblock, and pdf graphs of the temporal model. A poten-

tial outbreak is noted if the posterior probability Xr,t exceeds a predefined

threshold (p̂ = 0.1) and there are more than one cases in region r at time t.

These files and others allowing further analysis are placed in a folder selected

by the user.

In order to assess the use of the tool in a surveillance scenario, we selected
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Figure 26: The surveillance tool during a model run.

Outbreak Region(s) Affected Number of Cases
11 January 2005 1 8
25 May 2005 6 7
15 November 2006 2, 6 8
21 November 2006 4, 6, 11, 22 23

Table 4: Outbreaks used for epidemic detection with the surveillance tool.

four outbreaks previously identified by the MidCentral District Health Board

and ran the model on the case data surrounding each outbreak. We ran

the independent priors model on the water supply regions using case data

spanning two years up to and including the week in which the outbreak was

identified. We also ran the model including two weeks of data after the

outbreak was identified. Details of the outbreaks used are given in Table 4.

The model was run using 22000 iterations with 2000 iterations burnin, sam-

pling from the posterior distributions every 10th iteration. Such runs take

approximately 12 hours on a standard 2GHz desktop computer.
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Outbreak Region Probability Number of Cases
11 January 2005 1 1.0000 10

25 May 2005 6 0.4785 8

6 0.948 9
15 November 2006 2 0.620 6

1∗ 0.104 2

6 1.000 26
21 November 2006 11 0.999 6

22 0.303 2
1∗ 0.121 4

Table 5: Likely outbreaks from the surveillance tool for four epidemics in the
Manawatu region. Starred regions are those which are unlikely to be part of
an outbreak, due to their probabilities being low.

Output from the model runs is shown in Table 5. As can be seen, the tool

correctly detects all four outbreaks in the week in which they occurred. The

probabilities given are from the model runs with data up to and including

the week in which the outbreak occurred. With the addition of an extra two

weeks data after the event, some of the posterior probabilites are increased

(e.g. the likelihood of the 25 May 2005 outbreak increases to 0.7825). A

comparison with Table 4 shows that the tool reliably picks up the regions

present in each of the outbreaks, other than those regions in which only one

case was observed (such as region 4 in the 21 November 2006 outbreak).

Although these results are encouraging, care must be taken in ensuring that

the threshold for detection p̂ is of a sufficient level so as to eliminate false

positives, while still allowing detection of actual outbreaks. The value used

in this modelling of p̂ = 0.1, for instance, would not be applicable to the

Canterbury or Auckland datasets, where a level of p̂ = 0.25 may be more

appropriate (see Figures 23 and 24.)
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8 Discussion

The purpose of this study was four fold: Firstly to develop a model for the

background spatial and temporal trends in the data, secondly to identify

potential risk factors that may be associated with those trends, thirdly to

develop a method of identifying anomalous outbreaks over and above these

trends, and finally to produce a tool suitable for use in the surveillance of

campylobacteriosis in New Zealand.

8.1 Spatial and temporal trends and risk factors

The temporal and spatial components of the model in Section 4 effectively

yield the background spatial and temporal trends in the data. By specifying

prior information for each time period and spatial location in terms of the

neighbouring points, we smooth the data, bringing the long term trends to

the forefront.

There is a clear difference in spatial risk factors between urban and rural

areas. In urban areas, the Social Deprivation Index is highly associated with

notifications, with deprived areas reporting fewer notifications. This relation-

ship may be caused by underreporting due to differing access to health care,

as the main route of notification in New Zealand is via General Practitioners,

and there is a cost associated with visiting a GP. A study of utilisation of

GP services (Scott et al., 2003) suggested that, while government subsidies

targeted at low-income families reduce the barrier posed by doctors fees, they

does not fully compensate these costs. Furthermore, there may be other bar-

riers preventing low-income people from consulting GPs, such as a lack of

transport or communication difficulties (Lake et al., 2009). There may also

be differences in food consumption patterns between high and low income

groups. For example, people in lower socioeconomic groups may consume

less fresh poultry, instead favouring less expensive frozen poultry that has is

associated with a lower risk of Campylobacter infection.
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In rural areas, on the other hand, animal densities and proximity to poultry

farms play a larger role, with increased notifications occurring in areas with

a high dairy cattle density in the Manawatu and in areas with high dairy

or sheep densities in Canterbury. The MLST results support this, with a

clear increase in ruminant strains in rural areas. This suggests that rural

infections may originate through increased exposure to faecal material in the

environment, rather than through food sources. Occupational exposures in

rural areas, such as the handling and treatment of animals on farm, as well as

the exposure of meat workers to faecal matter during slaughter (Gilpin et al.,

2008) support this hypothesis, as does the noticeably higher risk among 0-4

year olds in rural areas.

The temporal trend in Campylobacter notifications is associated with vari-

ation in weather. There is more variation in notification rates in areas in

which the climate allows larger variation in temperature through the year,

such as in Canterbury. The number of sunshine hours and temperature ap-

pear associated with notification rates, with the correlation strongest when

the weather data lags onset date data by 17 days. Though these associations

are present, the weather variables prove less useful as predictors in the model.

However there appears to be a slight increase in notifications in the week fol-

lowing a period of warm, dry weather in the Manawatu and Auckland. Such

periods may be associated with increases in activities in which the exposure

to Campylobacter may be higher, such as swimming in rivers or barbecuing.

8.2 Identifying anomalous events and surveillance

With the spatial and temporal components of the model accounting for the

background trends in the notification data, the residual information then

contains any peaks over and above the average. Modelling these peaks in

terms of epidemic indicator variables allows the probability of an epidemic

occurring at a particular time in a particular region to be estimated.

Two prior proposals for the epidemic indicators were compared, both per-
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forming similarly, with the independent indicator model appearing to be

slightly more discriminatory. Two separate region layouts were also com-

pared, with the larger water regions giving more useful output, particularly

in the Manawatu and Canterbury regions. It is important to note that, while

the method detects a number of possible outbreaks, and thus accounts for

some of the spikes in cases through time, it does not explain all such spikes

– some may be due to outbreaks spread out across too large a region.

Given the potential use of the model as a surveillance tool, a graphical front-

end was developed to assist and automate the repeated running of the model

on a weekly basis. The tool produces summary output intended to be use-

ful in triggering additional investigation of possible outbreaks immediately

following the week in which they occur. Retrospective model runs on the

Manawatu data have shown that it can reliably detect larger outbreaks, and

with the output including the probability of an epidemic, a threshold can

be set to reduce the chance of false positives. Allowing outbreaks to be

flagged at an early stage may assist health professionals in enacting followup

investigations in a timely manner.

9 Recommendations

The surveillance tool is a useful addition to New Zealand’s current surveil-

lance system (EARS4). Once the spatial information is defined for a particular

region, the model is straightforward to setup and use and, on completion of

a model run, provides a summary output file detailing cases that may be

linked. If run regularly, such output may allow outbreaks to be identified as

little as a week after they occur, allowing for timely follow-up investigation

by health professionals.

We have found the water regions appear more useful than the area unit re-

gions at identifying outbreaks, particularly where rural regions are included.

4EARS is a product of the Centers for Disease Control and Prevention, USA.
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Other groupings of meshblocks may be preferred in predominantly urban

areas such as Auckland.

Further work investigating the efficacy of the model’s outbreak identification

would be useful across additional regions, in order to identify appropriate

groupings of meshblocks, and appropriate thresholds for detection, in each

region. In addition, investigation into running the model on a national scale

would be useful. While the model could be run in parallel across individual

District Health Boards (DHBs), there may be interest in applying a single

run of the model at a national level, under a suitable transformation of the

spatial units. One could replace the current meshblock level information with

area units, for example, and replace the water regions with DHB boundaries.

This would allow the flagging of anomalous events across a particular region,

and thus suggest further follow-up investigation within that region, in a sim-

ilar vein to what EARS currently provides. Additionally, the probability

associated with the anomalous event may allow a graduated response to be

adopted.
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A Implementation details

The model is implemented in R using a custom Monte Carlo Markov Chain

(MCMC) procedure. The spatial components Ui are updated using a mixture

of Metropolis-Hastings proposals and single site conditional prior proposals

(Knorr-Held, 1999). The temporal components Rt, however, are highly cor-

related, and thus single site updating with Metropolis-Hastings proposals

alone performs poorly. Instead, block updates with conditional prior propos-

als with blocks of length 4, 5, 9 and 11 are used, which improves mixing.

The hyperparameters κU and κR are updated using Gibb’s sampling. The

results in Section 6 were obtained with multiple chains run from randomly

generated starting values for 40,000 iterations, sampling every 20 iterations,

after a burn-in period of 2000 iterations.

The surveillance tool interface in Section 7 was implemented using a combi-

nation of C++ for setting up the model, and Managed C++ for the Windows

user interface. The tool takes user supplied data, creates the text files needed

by the R based model, copies this to a writable folder and executes R with

a predefined script that starts the model running. The model in R then

writes its progress to a file which is monitored periodically by the Windows

user interface, thus communicating the progress to the user. Once the model

has completed, an analysis stage is run which generates output, including

graphs of the temporal variation, text files describing the spatial relative

risk for mapping, and descriptive text files identifying any potential sporadic

outbreaks.

The source code for the model is available from the authors.
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