Fisheries New Zealand

Tini a Tangaroa

Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2017-18 fishing year, with a summary of all available data sets

New Zealand Fisheries Assessment Report 2019/43
P.L. Horn
C. Ó Maolagáin
D. Hulston

ISSN 1179-5352 (online)
ISBN 978-1-99-000829-0 (online)
September 2019

NewZealandGovernment

Requests for further copies should be directed to:
Publications Logistics Officer
Ministry for Primary Industries
PO Box 2526
WELLINGTON 6140
Email: brand@mpi.govt.nz
Telephone: 0800008333
Facsimile: 04-894 0300
This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-and-resources/publications
http://fs.fish.govt.nz go to Document library/Research reports
© Crown Copyright - Fisheries New Zealand
Table of Contents EXECUTIVE SUMMARY 1

1. INTRODUCTION 2
2. METHODS 3
3. RESULTS 5
3.1 Catch sampling 5
3.2 Species proportions 6
3.3 Sex ratios 7
3.4 Catch-at-length 7
3.5 Catch-at-age 9
3.6 Data summaries 12
4. DISCUSSION 18
5. ACKNOWLEDGMENTS 20
6. REFERENCES 20
Appendix A: Proportions-at-age by species and fishing year 22

EXECUTIVE SUMMARY

Horn, P.L.; Ó Maolagáin, C.; Hulston, D. (2019). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2017-18 fishing year, with a summary of all available data sets.

New Zealand Fisheries Assessment Report 2019/43. 28 p.

This report describes the scientific observer sampling programme carried out on trawl landings of jack mackerels (Trachurus novaezelandiae, T. declivis, and T. murphyi) in JMA 7 (central west coast) during the 2017-18 fishing year, and the estimates of species proportions and sex ratios in the landings, catch-at-length, and catch-at-age for these species.

Each tow in the observer data set included estimated total jack mackerel catch and weights by species sampled from the tow. The sampled weights were scaled to give estimated total catch weights by species for the tow. Stratification of the data was required because the observer coverage and catch composition varied with both month and statistical area. About 88% of the 2017-18 landed catch was sampled, and sampling was found to be representative of the landings both temporally and spatially.

For all three species, the scaled length distributions from 2017-18 were similar to those from the eleven previous years. The age-frequency distributions for all species in 2017-18 had mean weighted CVs of 25% or less, which more than met the target of 30%. There was clear variation in catch-at-age between years for all species probably because of the progression of year classes with different relative strengths.

Estimated species proportions showed a dominance by T. declivis at $61-71 \%$ (64% in $2017-18$) in the JMA 7 TCEPR catch for all statistical areas and the twelve years of sampling, while T. novaezelandiae was $24-33 \%$ (30% in 2017-18) and T. murphyi was $3-8 \% ~(6 \%$ in 2017-18).

1. INTRODUCTION

Commercial catches of jack mackerels are recorded as an aggregate of the three species (Trachurus declivis, T. murphyi, and T. novaezelandiae) under the general code JMA, so separate species catch information is not available from Ministry databases for the jack mackerel fishstock areas (Figure 1). Estimates of proportions of the three Trachurus species in the catch are essential for assessment of the individual stocks. Reliable estimates of species proportions can be used to apportion the aggregated catch histories to provide individual catch histories for each species at least back to when observer sampling began, which can in turn be used to scale age samples from the various fisheries. Since the mid-2000s the JMA 7 fishery has been primarily a trawl fishery with a small proportion of catches made using purse seine or set net. Before then, larger proportions of the catch came from purse seine fishing (Taylor \& Julian 2008).

Figure 1: Jack mackerel administrative Fishstock areas.

This report provides estimates of relative proportions and catch-at-age for the three Trachurus species in the commercial JMA 7 catch for 2017-18 using observer data. Similar data were presented by Taylor et al. (2011) for 2006-07, 2007-08 and 2008-09, Horn et al. (2012a) for 2009-10, Horn et al. (2012b) for 2010-11, Horn et al. (2013) for 2011-12, Horn et al. (2014b) for 2012-13, Horn et al. (2015) for 2013-14, Horn et al. (2017) for 2014-15, Horn et al. (2018) for 2015-16, and Horn \& Ó Maolagáin (2018) for 2016-17. Summaries of the time series of catch-at-age estimates, sex ratios and species proportions for the JMA 7 catch are also presented. This document fulfils the reporting requirements for jack mackerels in objective 1 of Project MID201803 "Routine age determination of hoki and middle depth species from commercial fisheries and trawl surveys", funded by Fisheries New Zealand. That objective is "To determine catch-at-age for commercial catches and resource surveys of specified middle depth and deepwater fishstocks".

The JMA 7 age and size structure of the commercial catch was determined annually since 2006-07. A 'one-off' estimation of the age and size structure of the commercial catch of jack mackerels in JMA 3 in the 2012-13 fishing year was reported by Horn et al. (2014a).

Age monitoring of jack mackerels over time was carried out previously for jack mackerel species in New Zealand by Horn (1993) who tracked strong and weak age classes of T. declivis and T. novaezelandiae
through time to provide a qualitative validation for ageing these two species. There was no significant difference in growth between sexes for either species although geographical differences were evident between the Bay of Plenty and the central west coast.

2. METHODS

Catch sampling for length, sex, age, and species composition was carried out by observers primarily working on board large trawl vessels targeting jack mackerels. Sampling was generally carried out according to instructions developed at NIWA and included in the Scientific Observers Manual. Most tows in the observer dataset included estimated total jack mackerel catch and weights by species sampled from the tow. All observer data on jack mackerels sampled from JMA 7 in the 2017-18 fishing year were extracted for the analyses. As in previous analyses, estimated species proportions (by weight) in each sampled tow were assumed to be the same as the proportions in a randomly selected sample from the catch (Taylor et al. 2011). The observer data were examined for spatial and temporal variability, and this was compared with the spatial and temporal distribution of the entire commercial JMA 7 catch.

Commercial catch data extracted from the Fisheries New Zealand catch-effort database "warehou" (Extract \#12239 on 22 February 2019) were used in these analyses. The data comprised estimated catch and associated date, position, depth, and method data from all fishing events that recorded catches of jack mackerel from JMA 7 (i.e., QMAs 7, 8, and 9) in 2017-18.

Stratification of the data was required because the observer coverage varied with both month and statistical area, the fishery was not consistent throughout the year, and the species composition varied across area and depth (Taylor et al. 2011). The stratification used for years 2006-07 to 2013-14 was derived by Taylor et al. (2011) based on data from the first three years of that series (shown in appendix A of Horn et al. (2012b)). The stratification was re-evaluated in 2016 by Horn et al. (2017) and found to be little different to that developed by Taylor et al. (2011). The 2016 stratification (shown in appendix A of Horn et al. (2017)) was adopted, and was used again in the analysis of the 2017-18 data presented here. Consequently, each fishing event from the catch-effort dataset and the observer dataset was allocated to one of the five strata, i.e.,

- 1, west of longitude $173.15^{\circ} \mathrm{E}$ (west coast South Island and deeper west coast North Island waters),
- 2, Statistical Area 041 (north Taranaki Bight) shallower than 120.25 m ,
- 3, Statistical Area 041 (north Taranaki Bight) deeper than 120.25 m ,
- 4, all remaining areas in March and April,
- 5, all remaining areas in October-February and May-September.

Proportions of the catch by species were estimated as follows. For each observed tow, the catch weight of each species was estimated based on the species weight proportions of a random sample. Each observed tow was allocated to one of the five strata. Within each stratum, the estimated landed weights of each species were summed across all observed tows. Percentages of catch by species were then calculated for each stratum. Total jack mackerel catch by stratum was obtained by summing the reported estimated landing weights of all tows (from the catch-effort dataset) in that stratum. The species percentages derived for that stratum were then applied to the total summed catch to estimate catch by species in that stratum. The estimated catch totals were then summed across strata (by species) to produce total estimated catch weight by species for the fishing year, and, consequently, total species proportions by weight.

Ageing was completed for all three Trachurus species caught by trawl in Statistical Areas 033-047 and 801 of JMA 7 (Figure 2) in the 2017-18 fishing year, using data and otoliths collected by observers. For each species, samples of otoliths (for each sex separately) from each 1 cm length class were selected approximately proportionally to their occurrence in the scaled length frequency, with the constraint
that the number of otoliths in each length class (where available) was at least one. In addition, otoliths from fish in the extreme right hand tail of the scaled length frequency distribution (constituting about 2% of that length frequency) were over-sampled. Target sample sizes were about 550 per species. Sets of five otoliths were embedded in blocks of clear epoxy resin and cured at $50^{\circ} \mathrm{C}$. Once hardened, a $380 \mu \mathrm{~m}$ thin transverse section was cut from each block through the primordia using a high-speed saw. The thin section was washed, dried, and embedded under a cover slip on a glass microscopic slide. Thin sections were read with a bright field stereomicroscope at up to $\times 100$ magnification. Zone counts were based on the number of complete opaque zones (i.e., opaque zones with translucent material outside them), which were counted to provide data for age estimates. Otoliths of T. declivis and T. novaezelandiae were read following the validated methods described by Horn (1993) and Lyle et al. (2000). A validated ageing method has not yet been developed for T. murphyi in New Zealand waters (Beentjes et al. 2013). Otoliths from this species were interpreted similarly to those of T. declivis. However, they are notably harder to read, with presumed annual zones often being diffuse, split, or containing considerable microstructure (Taylor et al. 2002).

Figure 2: Statistical Areas referred to in the text.
The age data were used to construct age-length keys (by species and sex) which in turn were used to convert the weighted length composition of the catch to catch-at-age by sex using the NIWA catch-at-age software (Bull \& Dunn 2002). This software also provided estimates of CVs-at-age using a bootstrap procedure. Sex ratios by species were also derived at this stage. The fishery has consistently had two peaks quite widely separated in time (see Results), so the fishing year was split into two equal parts (i.e., a split between March and April) and separate age-length keys were used for each part (to account for the growth of fish, particularly of the younger age classes). For T. novaezelandiae, all age data from fish 28 cm or longer were used in both the October-March and April-September age-length keys (because the annual growth increment is slight or negligible for these larger fish). Age data from T. novaezelandiae shorter than 28 cm were applied only in the age-length key applicable to their sampling date. For T. declivis, a similar analysis process was used, but with the length cut-off at 38 cm or greater. For T. murphyi, a single age-length key was used for the entire year as virtually all the sampled fish were adults that were close to the asymptotic length of their growth curve.

3. RESULTS

3.1 Catch sampling

The landings distribution in 2017-18 shows that there was a fishery from October to January concentrated in Statistical Areas 037 and $040-042$, followed by a secondary fishery centred around June and concentrated off the northwest South Island (Areas 034-036) in May-August, in South Taranaki Bight Area 037 in April and Area 040 in June (Table 1). The presence of two quite widely separated fishery peaks maintained a trend apparent across all analysed years.

In 2017-18, about 88% of the landed weight was sampled by observers (Table 1). Most of the estimated landings were derived from seven Statistical Areas (034-037, 040-042), and these were all well sampled (Figure 3). The percentages of the catch sampled in the seven most productive months were all greater than 73% (Table 1), and no month was under-sampled. Clearly, the sampling of the whole fishery was satisfactory to estimate the overall catch-at-age. The estimated catch weight sampled in some months and areas was slightly greater than the estimated catch. This can occur if observers and skippers record different estimated catch weights for a tow, or if the recorded location of an individual tow differs in the two databases resulting in it being allocated to different statistical areas.

Figure 3: Jack mackerel observed landings and landings that were not observed, by Statistical Area and month, in 2017-18.

Table 1: Distribution of estimated total catch and sampled landings (t, rounded to the nearest tonne) of jack mackerels, by month and Statistical Area (Stat Area), in the 2017-18 fishing year. Values of 0 indicate landings from 1 to 499 kg ; blank cells indicate zero landings or samples. \%, percentage of estimated total catch that was sampled by observers, by month and statistical area.

Estimated Stat Area	atch												Month
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	All
017	0	2	0	2	0	1	0	1	0	1	0	0	8
033	6	4	9	3	1	2	1	2	0	0	1	4	33
034	109	1	1	5	1	2	1	76	451	654	705	5	2011
035	741	25	1		0	0	0	113	699	1471	19	18	3089
036	223	5	1	0		3	126	235	1372	378		0	2344
037	10	103	2898	3444	54	401	2675	384	259	195	1	1	10424
038	1	0	1	0	0	0	1	0	0	0	1	2	6
039	2	0	0	11	50	27	471	0	6	1	0	1	568
040	21	15	1212	1941	21		216		1562	53			5042
041	432	1785	2430	153	0	0	0	0	712	0	0	0	5513
042	1569	111	0	0	0	0		0	20		0		1701
43-44	0	0	0	0	0	0	0	0	0	0	0	0	0
045	714	0	0	1	0	1	0	0		0	0	0	718
46-47	2	1	0	0	2	2	1	0	1	1	2	3	14
801	3			86					397				486
All	3834	2052	6552	5647	128	440	3491	812	5480	2755	729	34	31955

¢	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	All	\%
017		0			0					0	0		0	0
033														0
034	105							24	107	618	834	4	1692	84
035	830	24	1					124	464	1425	26	9	2903	94
036	218	3	0				107	216	1124	369		0	2037	87
037	10	98	2338	2994	32	291	1902	356	240	217			8480	81
038														0
039				10	54	32	375		1				472	83
040	21	55	1080	1662	10	0	170		1224	66			4290	85
041	381	1777	2329	130					827				5444	99
042	1601	103							20				1724	101
43-44														0
045	740												740	103
46-47		0											0	0
801	6			76					346				428	88
All	3913	2060	5749	4873	96	324	2555	720	4353	2696	860	13	28211	88
\%	102	100	88	86	75	74	73	89	79	98	118	38	88	

3.2 Species proportions

An examination of estimated species proportions by fishing year for all of JMA 7 (Table 2) shows that T. declivis (JMD) was the dominant species caught from 2006-07 to 2017-18, with $61-71 \%$ of landed weight in all years. T. novaezelandiae (JMN) was the second most frequently caught species at 24$33 \%$. T. murphyi (JMM) was detected at a much lower and quite variable rate of 3-8\%. The 2017-18 fishing year produced proportions of T. declivis and T. novaezelandiae that were close to the average of all years investigated.

Table 2: Estimated species proportions (by weight) and catch weights by species in JMA 7 since 2006-07. 'Estimated catch' is the sum of all the tow-by-tow estimates of jack mackerel catch.

	Species proportions (\%)			Estimated catch (t)			Landed catch (t)		
Fishing year	JMN	JMD	JMM	JMN	JMD	JMM	JMN	JMD	JMM
2006-07	26.8	69.5	3.7	8188	21248	1128	8583	22273	1183
2007-08	27.0	64.8	8.2	8763	21033	2671	9193	22064	2802
2008-09	25.3	66.4	8.3	6826	17943	2236	7287	19154	2387
2009-10	27.6	65.9	6.5	8155	19487	1933	8590	20526	2036
2010-11	26.9	70.6	2.5	7123	18679	650	7587	19897	692
2011-12	28.1	68.6	3.3	7456	18184	880	7497	19381	938
2012-13	29.7	67.3	3.3	8638	19525	950	9428	21311	1037
2013-14	24.3	70.7	5.0	7961	23144	1626	8555	24872	1748
2014-15	33.0	60.7	6.3	10447	19231	1999	11204	20623	2144
2015-16	28.4	65.0	6.6	7999	18312	1845	8771	20080	2024
2016-17	26.3	69.0	4.7	8051	21106	1440	8649	22671	1547
2017-18	29.8	64.0	6.2	9528	20464	1963	10194	21896	2100

3.3 Sex ratios

Sex ratios by fishing year since 2006-07 are shown in Table 3. Trachurus novaezelandiae had slightly more females than males in all but three years (average 47.7% males across all years), although the two most recent years were slightly biased towards males. Ratios were around 50% for T. declivis (average 50.8% males across all years). The sex ratios for T. murphyi indicate a sampled population quite strongly biased towards males (i.e., $54-62 \%$ from $2006-07$ to $2013-14$ and in 2017-18), although in the three years from 2014-15 to 2016-17 the samples had almost equal proportions.

Table 3: Estimated sex ratios (\%) in the JMA 7 catch by species and fishing year.

Fishing year	JMN		JMD		JMM	
	Males	Females	Males	Females	Males	Females
2006-07	49.9	50.1	56.8	43.2	54.8	45.2
2007-08	43.4	56.6	51.7	48.3	60.7	39.3
2008-09	45.7	54.3	52.5	47.5	56.9	43.1
2009-10	49.1	50.9	51.5	48.5	54.3	45.7
2010-11	43.4	56.6	46.8	53.2	56.9	43.1
2011-12	48.0	52.0	47.7	52.3	61.6	38.4
2012-13	50.0	50.0	50.8	49.2	55.3	44.7
2013-14	45.4	54.6	51.2	48.8	57.6	42.4
2014-15	44.4	55.6	46.2	53.8	50.2	49.8
2015-16	46.2	53.8	50.7	49.3	48.3	51.7
2016-17	51.8	48.2	51.3	48.7	50.4	49.6
2017-18	54.8	45.2	52.8	47.2	56.2	43.8

3.4 Catch-at-length

The estimated catch-at-length distributions, by species, for trawl-caught jack mackerel from JMA 7 in 2017-18 are plotted in Figure 4. For T. novaezelandiae there was a dominant length mode at 2931 cm , with a secondary mode at $25-27 \mathrm{~cm}$ on the shoulder of the main distribution (and most apparent for males). For T. declivis there was a strong length mode at $40-43 \mathrm{~cm}$, a secondary mode at $35-37 \mathrm{~cm}$, and a juvenile mode peaking at 20 cm . The length range of T. murphyi was narrow, with most males being $49-56 \mathrm{~cm}$, and most females being 48-55 cm.

Figure 4: Estimated catch-at-length distributions, by species and sex, from JMA 7 in 2017-18.

3.5 Catch-at-age

The details of the estimated catch-at-age distributions for trawl-caught jack mackerel from JMA 7 in 2017-18 are presented for T. novaezelandiae in Table 4, T. declivis in Table 5, and T. murphyi in Table 6. The mean weighted CVs for T. novaezelandiae (14\%), T. declivis (16%), and T. murphyi (25%) were all well below the target value of 30%. The estimated distributions are plotted in Figure 5. The catch of T. novaezelandiae was dominated by 3-7 year old fish, with very few fish older than 17 years. The catch of T. declivis had abundant fish aged $0-8$ years old, but with a relatively strong dropoff in fish older than 16 years. The catch of T. murphyi was dominated by 18-23 year old fish, with very few fish younger than 15 or older than 25 years.

Table 4: Calculated numbers-at-age, separately by sex, with CVs, for Trachurus novaezelandiae caught during commercial trawl operations in JMA $\mathbf{7}$ during the 2017-18 fishing year. Summary statistics for the sample are also presented. - , no data.

Age (years)	Male	CV	Female	CV	Total	CV
0	4788	1.492	13301	0.723	18089	0.712
1	200216	0.304	91742	0.390	291958	0.273
2	604376	0.365	684013	0.306	1288389	0.247
3	2119787	0.155	1909552	0.163	4029339	0.122
4	2020907	0.170	1418142	0.203	3439049	0.137
5	1712652	0.170	1828592	0.156	3541244	0.114
6	2158514	0.138	1373988	0.168	3532502	0.104
7	1936082	0.130	1384471	0.164	3320553	0.098
8	1019669	0.185	721540	0.235	1741209	0.154
9	389718	0.294	498420	0.234	888137	0.186
10	336674	0.241	622695	0.184	959369	0.146
11	335573	0.274	418462	0.234	754035	0.179
12	406491	0.223	169333	0.364	575823	0.185
13	245811	0.281	150384	0.331	396195	0.213
14	215365	0.291	21109	0.662	236474	0.268
15	123724	0.363	115399	0.473	239123	0.288
16	115186	0.339	124355	0.392	239541	0.261
17	58642	0.555	24253	0.820	82895	0.461
18	5915	0.791	0	-	5915	0.791
19	0	-	0	-	0	-
20	4035	0.978	0	-	4035	0.978
21	0	-	0	-	0	-
22	0	-	0	-	0	-
23	4035	0.941	0	-	4035	0.941
24	0	-	0	-	0	-
25	0	-	6737	1.041	6737	1.041
No. measured		14895		12121		27016
No. aged		278		237		515
No. of tows sampled						273
Mean weighted CV (\%)		18.7		20.3		14.1

Table 5: Calculated numbers-at-age, separately by sex, with CVs, for Trachurus declivis caught during commercial trawl operations in JMA 7 during the 2017-18 fishing year. Summary statistics for the sample are also presented. - , no data.

Age (years)	Male	CV	Female	CV	Total	CV
0	740152	0.375	647038	0.411	1387189	0.375
1	957114	0.238	673553	0.262	1630668	0.218
2	633526	0.242	802248	0.178	1435774	0.157
3	2055920	0.139	1313752	0.181	3369671	0.119
4	2078888	0.128	1859402	0.154	3938290	0.104
5	963556	0.167	1133978	0.166	2097534	0.121
6	1196247	0.151	872742	0.180	2068988	0.113
7	1336644	0.118	1115852	0.137	2452496	0.087
8	775712	0.162	838684	0.155	1614395	0.112
9	368227	0.243	351858	0.264	720085	0.176
10	431545	0.229	277078	0.275	708624	0.177
11	431237	0.220	506582	0.207	937819	0.150
12	290155	0.271	371465	0.239	661620	0.174
13	102135	0.434	263351	0.284	365487	0.242
14	269299	0.298	106203	0.452	375502	0.252
15	177544	0.371	265585	0.289	443129	0.233
16	226655	0.318	268425	0.270	495080	0.209
17	197870	0.340	123855	0.386	321725	0.263
18	44158	0.789	176019	0.369	220177	0.335
19	49415	0.700	89616	0.480	139030	0.388
20	67603	0.503	23941	0.631	91543	0.406
21	70668	0.465	36860	0.758	107528	0.415
22	9263	1.193	9184	0.902	18447	0.769
23	58985	0.510	6897	0.879	65882	0.472
24	78322	0.508	40939	0.720	119261	0.425
No. measured		15789		14371		30160
No. aged		303		268		571
No. of tows sampled					430	
Mean weighted $C V(\%)$	20.1		21.5		15.8	

Table 6: Calculated numbers-at-age, separately by sex, with CVs, for Trachurus murphyi caught during commercial trawl operations in JMA 7 during the 2017-18 fishing year. Summary statistics for the sample are also presented. - , no data.

Age (years)	Male	CV	Female	CV	Total	CV
5	937	1.253	469	3.075	1406	1.649
6	1038	2.024	15516	0.903	16554	0.852
7	28144	0.640	11863	0.880	40007	0.541
8	10622	0.910	0	-	10622	0.910
9	0	-	22941	0.705	22941	0.705
10	16616	0.677	3406	1.025	20022	0.589
11	2491	1.065	7983	1.153	10474	0.945
12	16711	0.856	7983	1.172	24694	0.734
13	7876	1.012	12090	1.000	19966	0.697
14	14757	0.492	18904	0.655	33661	0.429
15	14425	1.009	23854	0.577	38279	0.520
16	33572	0.293	26649	0.342	60220	0.215
17	52876	0.259	15118	0.469	67994	0.210
18	57704	0.213	84450	0.219	142154	0.152
19	103846	0.210	64185	0.222	168031	0.150
20	86917	0.163	65184	0.235	152100	0.139
21	119837	0.146	72302	0.197	192140	0.114
22	100994	0.160	73725	0.217	174719	0.130
23	49465	0.268	38047	0.310	87511	0.202
24	38638	0.326	14601	0.602	53238	0.305
25	17474	0.351	16716	0.531	34190	0.307
26	5068	0.585	4308	0.722	9376	0.439
27	6553	0.623	9133	0.598	15686	0.435
38	0	-	2694	0.970	2694	0.970
No. measured		1157		889		2046
No. aged		315		189		504
No. of tows sampled					183	
Mean weighted $C V(\%)$	29.7		38.8		25.0	

T. novaezelandiae

T. declivis
T. murphyi

Figure 5: Estimated commercial catch-at-age distributions, by species and sex, from JMA 7 in 2017-18.

3.6 Data summaries

Catch-at-length and catch-at-age data from the JMA 7 fishery are available from twelve consecutive years since 2006-07. Mean weighted CVs for the length and age distributions, by sex and year, are listed for each species in Table 7. The CVs for the total age distributions met or exceeded the target of 30% for all species in all years, except for Trachurus murphyi in 2006-07.

Total (i.e., sexes combined) scaled length and age distributions, by species and fishing year are shown in Figures 6-8. The data used to produce these catch-at-age distributions are listed in Appendix A.

Table 7: Mean weighted CVs (mwCV) for catch-at-age and catch-at-length distributions, by species, sex, and fishing year.

Species	Fishing year	Catch-at-age mwCV (\%)			Catch-at-length mwCV (\%)		
		Males	Females	Total	Males	Females	Total
T. novaezelandiae	2006-07	26	25	20	17	16	14
	2007-08	28	27	22	17	12	13
	2008-09	39	40	30	14	11	11
	2009-10	32	27	23	16	15	12
	2010-11	28	24	20	20	16	15
	2011-12	23	21	16	17	16	14
	2012-13	24	25	19	19	17	16
	2013-14	19	19	14	15	13	12
	2014-15	21	19	15	14	11	10
	2015-16	26	25	19	12	11	10
	2016-17	20	21	15	16	14	13
	2017-18	19	20	14	15	14	11
T. declivis	2006-07	31	38	26	12	12	9
	2007-08	26	34	23	13	13	12
	2008-09	35	40	28	11	10	9
	2009-10	25	28	20	13	12	10
	2010-11	25	23	18	12	11	9
	2011-12	21	20	16	15	15	13
	2012-13	22	22	17	17	16	14
	2013-14	20	21	15	16	14	13
	2014-15	21	20	16	17	15	14
	2015-16	27	24	20	19	15	15
	2016-17	19	19	14	15	14	12
	2017-18	20	21	16	15	15	13
T. murphyi	2006-07	39	55	35	37	37	31
	2007-08	34	50	31	17	21	14
	2008-09	36	49	30	20	21	15
	2009-10	35	47	30	27	28	23
	2010-11	31	36	23	28	28	21
	2011-12	26	30	20	20	22	16
	2012-13	26	35	21	30	33	24
	2013-14	27	33	21	26	26	18
	2014-15	24	28	19	19	19	14
	2015-16	25	27	19	22	18	15
	2016-17	28	30	20	33	29	23
	2017-18	30	39	25	28	29	23

Trachurus novaezelandiae

Scaled catch-at-length frequencies by fishing year are shown in Figure 6. They had single strong modes at $28-32 \mathrm{~cm}$ in all distributions except 2009-10, 2012-13, and 2016-17 when there were second modes at 24,20 and 22 cm respectively. Most variation in abundance occurred for fish shorter than 25 cm , presumably related to the relative strengths of juvenile year classes. Scaled catch-at-age frequencies by fishing year, varied between years (Figure 6). However, some possible year class progressions can be postulated. The $1+$ year class was strong in 2007-08, and maintained a relatively high abundance in all subsequent years. Year classes 4, 5, and 6 in 2006-07 also appeared to be relatively strong throughout the series, although there were some inconsistencies e.g., year class 7 in 2009-10 and 10 in 2011-12 were weak. The $2+$ year class in 2011-12 was also relatively strong, and it progressed as a dominant year class in subsequent years but was not particularly strong in 2017-18. The two subsequent year classes (age classes $3+$ and $4+$ in 2014-15) also appeared to be relatively strong in the last four years of sampling.

Trachurus declivis

Scaled catch-at-length frequencies by fishing year are shown in Figure 7 with most of the fish 1650 cm . There was a strong mode at $42-44 \mathrm{~cm}$ in all years except 2016-17 and 2017-18 where the strongest modes were at $39-41 \mathrm{~cm}$ and $41-42 \mathrm{~cm}$ respectively. There were lesser modes for smaller fish in the distributions for some years, e.g., 30 cm in 2012-13 and 2016-17, and 19-20 cm in 201415 and 2017-18. Most variation in abundance occurred with the fish shorter than 37 cm , presumably related to the relative strengths of juvenile year classes. Scaled catch-at-age-frequencies by fishing year, are shown in Figure 7. There was a wide range of ages in the catches, and the distributions varied between years. There was evidence of two relatively strong year classes aged $1+$ and $2+$ years in 2007-08 that maintained a relatively high abundance up to 2011-12, but were relatively weak from 2012-13. The 2011-12 and 2014-15 1+ year classes maintained relatively strong presences through to 2017-18 where they were aged 7 and age 4 respectively.

Trachurus murphyi

Scaled catch-at-length frequencies by fishing year, are shown in Figure 8. All the distributions were unimodal at $49-51 \mathrm{~cm}$ (except for the 2013-14 distribution which had a broad mode from 46-51 cm), and were generally similar with few fish smaller than 45 cm . Scaled catch-at-age frequencies by fishing year (Figure 8) exhibited a wide range of ages although few fish younger than 10 years were recorded in any year. There was evidence of relatively strong year classes at ages 11 and 12 years in 2006-07 that progressed to ages 16 and 17 in 2011-12. Since about 2012-13, the older of these two year classes had lost much of its dominance. Fish aged 18 years old dominated the 2014-15 distribution, and this cohort was still dominant at age 21 in 2017-18. This year class has been relatively strong since $2011-12$ (when it was age 15) and also contributed substantially to the catch throughout the time series (since 2006-07 when it was age 10). The length and age distributions from 2017-18 were, however, notably different to those from all previous years. There was a distinct lefthand tail of relatively small fish (i.e., smaller than 45 cm), which manifests as ages 5 to about 13 years in the age distribution. Fish in that age range occurred rarely in age distributions since 2010-11.

Figure 6: Scaled catch-at-length (left panel) and catch-at-age (right panel, age class in years) proportions for the catch of Trachurus novaezelandiae sampled from the 2006-07 to 2017-18 fishing years.

Figure 7: Scaled catch-at-length (left panel) and catch-at-age (right panel, age in years) proportions for the catch of Trachurus declivis sampled from the 2006-07 to 2017-18 fishing years.

Figure 8: Scaled catch-at-length (left panel) and catch-at-age (right panel, age in years) proportions for the catch of Trachurus murphyi sampled from the 2006-07 to 2017-18 fishing years.

4. DISCUSSION

The 2017-18 jack mackerel trawl fishery was comprehensively sampled (as it was in all years since at least 2006-07). Sampling intensity was high overall, and at least 73% of the catch was sampled in each month that produced substantial landings. Spatially, there was very good coverage of catch in the heavily fished Statistical Areas (034-037, 040-042). Estimates of the 2017-18 catch-at-age for all three jack mackerel species had mean weighted CVs over all age classes of 25% or less, well below the target of 30%.

The distribution of the 2017-18 catch was similar to that in 2016-17, which was slightly different to recent previous years. The proportion of the catch from Statistical Area 034 was much higher, and that from Area 042 was much lower, than in years up to 2015-16. This may be because of a southerly shift in mackerel concentrations, or a change in fishing practice, or a combination of both. Thirty-eight large mackerel catches (i.e., 20-65 t per tow, 1340 t total) from Area 034 were taken by midwater trawl in June-August, with jack mackerel declared to be the target species on 25 of these tows (940 t catch), and barracouta as the target on the rest. Target fishing of this intensity was not recorded before 2016-17 in this area (and large by-catches were also rare), so it appears likely that vessels found and fished on unusual aggregations of mackerel in that area.

Although sampling intensity was high, there was clearly an issue (also apparent in previous years) of some misidentification of the different jack mackerel species. When the raw age data were plotted against length, 4% of the aged T. declivis appeared as outliers that fitted well on the growth curve for T. novaezelandiae, and 9% of aged T. novaezelandiae were outliers that fitted well on the T. declivis growth curve (although 43% of the T. novaezelandiae outliers were from a single trip). Such misidentifications are particularly apparent for the older and larger fish of both these species (for which the growth curves are clearly divergent), but less so for smaller and younger fish because the length-at-age ranges of both species overlapped substantially for fish aged 4 years or less. So the actual misidentification percentages of T. declivis and T. novaezelandiae are likely to be higher than the values noted above. It was also possible that some misidentification occurred between T. declivis and T. murphyi, but because the length-at-age ranges for these species overlapped substantially it was difficult to estimate any percentages.

Estimates of species proportions indicated a consistent predominance of T. declivis at $61-71 \%$ of total catch weight in the twelve fishing years from which data were available. The percentage of T. novaezelandiae was also consistent temporally at $24-33 \%$. The predominance of T. declivis overall is expected given that this species generally occurs deeper and further offshore than T. novaezelandiae and because most of the vessels targeting jack mackerels were restricted to fishing at least 12 n . miles, and often 25 n . miles off the coast. The lowest proportion of T. declivis and highest proportion of T. novaezelandiae in the time series were reported in 2014-15. This probably relates to relatively low catches in the autumn-winter fishery, which was usually strongly dominated by landings of T. declivis off the west coast of South Island.

Most of the T. declivis catch in all years comprised adult fish at least 37 cm long. Differences in the length distributions between years were primarily in the abundance of fish shorter than 37 cm , which was likely to be due to variation in year class strengths. The position of the mode of large T. declivis in JMA 7 (centred on 42-44 cm in most years) differed to the mode in JMA 3 (centred on 48 cm), and Horn et al. (2014a) proposed that this was a consequence of large T. declivis migrating south out of the JMA 7 area. The 2016-17 fishing year was the first in the series where the strongest T. declivis length mode (at $39-41 \mathrm{~cm}$) was outside the $42-44 \mathrm{~cm}$ range, and it appeared that fish in this mode had grown to modal lengths of $41-42 \mathrm{~cm}$ by 2017-18 (see Figure 7). A length of 40 cm is close to the median expected for 5-7 year old fish (age classes abundant in 2016-17), and fish aged 6-8 years (relatively abundant in 2017-18) would be expected to have a modal length of about 41 cm . These relatively strong year classes have progressed through the distributions since 2011-12. It appears likely that these age classes are now collectively more dominant in the population than the combined older adult
age classes (i.e., 10 years and older) that previously made up much of the $42-44 \mathrm{~cm}$ length-frequency mode.

The T. novaezelandiae catch also had a consistent strong adult length mode (at $28-32 \mathrm{~cm}$) in most sampled years, particularly in 2009-10 when the relative abundance of 2-4 year old fish (i.e., lengths of about $20-27 \mathrm{~cm}$) outweighed the adult mode. Fish aged 3-7 years dominated samples taken since 201314. The progression of some relatively strong year classes through the time series is apparent. Taylor (2008) noted that there was a preference in the JMA 7 trawl fishery for larger jack mackerel (i.e., T. declivis). Vessels attempting to maximise their catch of T. declivis may consequently not comprehensively sample the T. novaezelandiae population in the area, which would result in a greater degree of between-year variation in the T. novaezelandiae length and age distributions, but year class progressions are still apparent for T. novaezelandiae under this sampling regime.

The mean age of T. murphyi in the catch generally increased over the twelve sampled years. In 200607 , most fish were 10-15 years old, compared with 15-20 years old in 2010-11 and 2011-12, and 1821 years old in 2015-16. This is indicative of a strong recruitment pulse, comprising several year classes, possibly as a result of immigration from international waters. These year classes are now growing through, with no evidence (up to 2016-17) of any substantial new immigration or recruitment through spawning success. The age distribution in 2017-18 comprised fish mainly 18-23 years old, but the age distribution mode continued its shift to the right supporting the hypothesis of a single migration pulse. This modal shift in the age distributions has occurred despite the 2013-14, 2014-15 and 2015-16 length distributions having relatively more smaller fish (i.e. $45-48 \mathrm{~cm}$) than in other sampled years. It appears likely that some of the older dominant year classes that initially recruited to New Zealand waters are now dying off and becoming much less dominant in the catch (e.g., the relatively abundant 14 year old fish in 2006-07 were only weakly abundant in the 2017-18 catch as 24 year olds). In 2017-18 a relatively large number of small T. murphyi ($40-46 \mathrm{~cm}$) were identified in the catch. It was initially considered possible that these were misidentified T. declivis, but an examination of the data showed that they were derived from 32 tows sampled across 11 trips. Hence, those fish are unlikely to be attributable to species misidentifications by a small number of inexperienced observers. It is hypothesised, therefore, that there was a new episode of migration of multiple year classes of T. murphyi into New Zealand waters. Analyses of data from future years will be needed to confirm or reject this hypothesis.

The data on sex of T. murphyi collected over years 2006-07 to 2013-14 indicated a population consistently biased towards males (i.e., $54-62 \%$ of sampled fish, average 57.3%). The next three years of sampling, however, produced ratios closer to 50:50. The most recent 2017-18 year had a ratio that reverted back to being biased strongly towards males (56% male). T. murphyi can, at times, be quite difficult to sex (author's unpublished data), with deposits of fat in the body cavity often appearing like male gonads when the gonads are in a regressed state. However, in four research surveys conducted on the Stewart-Snares shelf in February each year from 1993 to 1996 males were also dominant, comprising $62-71 \%$ of the sexed fish (Hurst \& Bagley 1997).

Estimates of instantaneous total mortality (Z) for T. novaezelandiae and T. declivis from commercial trawl fishery samples in JMA 7 in 1989-1991 were $0.22-0.23 \mathrm{yr}^{-1}$ for both species (Horn 1993). Reestimates of Z for JMA 7 using data from 2007-2013 (Horn et al. 2014b) produced values slightly higher for T. novaezelandiae (0.3) and lower for T. declivis (0.2). The similarity of Z estimates from the same fishery separated by about 20 years, and the conclusion that Z is close to or slightly higher than the likely value of M (estimated by Horn (1993) to be $0.17-0.20 \mathrm{yr}^{-1}$ for both species, and by Broadhurst et al. (2018) to be $0.17-0.26 \mathrm{yr}^{-1}$ for T. novaezelandiae), suggested that T. novaezelandiae and T. declivis in JMA 7 are not over-exploited. The Z estimates were not updated in the current work.

An examination of the age distributions for T. novaezelandiae shows that the numbers of older fish in have not changed consistently or noticeably over the twelve years of sampling. This further supports the hypothesis that this species is not over-exploited in JMA 7. For T. declivis however, the samples in the last four years appear to have reduced proportions of fish aged at least 10 years old relative to previous
distributions. It is not known whether this is a consequence of some recent strong juvenile recruitment, or fishing down of older ages classes, or to changes in either the distribution of fishing effort or the distribution of T. declivis.

5. ACKNOWLEDGMENTS

We thank the Fisheries New Zealand Observer Programme for achieving good sampling coverage of the TCEPR fleet, Keren Spong for assistance with otolith preparation, and Peter McMillan and Richard O'Driscoll for reviewing the manuscript. This work was funded by Fisheries New Zealand under project MID2018-03.

6. REFERENCES

Beentjes, M.P.; Neil, H.L.; Taylor, P.R.; Marriot, P. (2013). Further studies on age validation of Murphy's mackerel (Trachurus symmetricus murphyi). New Zealand Fisheries Assessment Report 2013/14. 38 p.
Broadhurst, M.K.; Kienzle, M.; Stewart, J. (2018). Natural mortality of Trachurus novaezelandiae and its size selection by purse seines off south-eastern Australia. Fisheries Management and Ecology 2018: 1-7. https://doi.org/10.1111/fme. 12286
Bull, B.; Dunn, A. (2002). Catch-at-age: User manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA library, Wellington.)
Horn, P.L. (1993). Growth, age structure, and productivity of jack mackerels (Trachurus spp.) in New Zealand waters. New Zealand Journal of Marine and Freshwater Research 27: 145-155.
Horn, P.L.; Hulston, D.; Ó Maolagáin, C. (2012b). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2010-11 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2012/42. 21 p.
Horn, P.L.; Hulston, D.; Ó Maolagáin, C. (2013). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2011-12 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2013/43. 23 p.
Horn, P.L.; Hulston, D.; Ó Maolagáin, C. (2014a). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 3 in the 2012-13 fishing year. New Zealand Fisheries Assessment Report 2014/57. 16 p.
Horn, P.L.; Hulston, D.; Ó Maolagáin, C. (2018). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2015-16 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2018/46. 24 p.
Horn, P.L.; Ó Maolagáin, C. (2018). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2016-17 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2018/61. 27 p.
Horn, P.L.; Ó Maolagáin, C.; Hulston, D. (2014b). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2012-13 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2014/58. 24 p.
Horn, P.L.; Ó Maolagáin, C.; Hulston, D. (2015). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2013-14 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2015/43. 23 p.
Horn, P.L.; Ó Maolagáin, C.; Hulston, D.; Ballara, S.L. (2017). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2014-15 fishing year, with a summary of all available data sets. New Zealand Fisheries Assessment Report 2017/39. 29 p.
Horn, P.; Sutton, C.; Hulston, D.; Marriott, P. (2012a). Catch-at-age for jack mackerels (Trachurus spp.) in the 2009-10 fishing year, and barracouta (Thyrsites atun) and silver warehou (Seriolella punctata) in the 2004-05 and 2009-10 fishing years. Final Research Report for Ministry of Fisheries Project MID2010-01A, Objectives 6 \& 8. 19 p. (Unpublished report available from Fisheries New Zealand, Wellington.)

Hurst, R.J.; Bagley, N.W. (1997). Trends in Southland trawl surveys of inshore and middle depth species, 1993-96. New Zealand Fisheries Technical Report 50, 67 p.
Lyle, J.M.; Krusic-Golub, K.; Morison, A.K. (2000). Age and growth of jack mackerel and the age structure of the jack mackerel purse seine catch. FRDC Final Report on Project 1995/034. Tasmanian Aquaculture and Fisheries Institute, Marine Research Laboratories, Taroona, Tasmania 7053, Australia. 49 p.
Taylor, P.R. (2008). Factors affecting fish size and landed volumes in the purse-seine and TCEPR charter-boat fisheries in 2004-05 and 2005-06. New Zealand Fisheries Assessment Report 2008/32. 17 p .
Taylor, P.R.; Julian, K.A. (2008). Species composition and seasonal variability in commercial catches of jack mackerel (Trachurus declivis, T. murphyi, T. novaezelandiae) in JMA 1, 3, and 7 during 2004-05. New Zealand Fisheries Assessment Report 2008/25. 24 p.
Taylor, P.R.; Manning M.J.; Marriott, P.M. (2002). Age and growth estimation of Murphy's mackerel, Trachurus symmetricus murphyi. Final Research Report for Ministry of Fisheries Project JMA2000/02. 62 p. (Unpublished report available from Fisheries New Zealand, Wellington.)
Taylor, P.R.; Smith, M.H.; Horn, P.L.; Ó Maolagáin, C. (2011). Commercial catch sampling for species proportion, sex, length, and age of jack mackerels in JMA 7 in the 2006-07, 2007-08 and 2008-09 fishing years. Final Research Report for Ministry of Fisheries Project JMA2006-01 \& JMA2009-02. 57 p. (Unpublished report available from Fisheries New Zealand, Wellington.)

Appendix A: Proportions-at-age by species and fishing year

This appendix lists the estimated proportions-at-age in the JMA 7 trawl fishery, by species and fishing year. The columns in each table are headed so that, for example, the year 2016 refers to the 2015-16 fishing year. Data are presented with sexes combined, in a format that can easily be converted to a CASAL input file in a single-sex model. In the proportions-at-age tables, " 0 " indicates that there were no fish of that age, " 0.00000 " indicates that there were fish of that age but that they comprised less than $5 \mathrm{e}^{-4} \%$ of the sample.

Note: Values reported previously for T. declivis and T. novaezelandiae for years 2015 and 2016 were in error. Corrected values are presented below.

Table A1a: Proportions-at-age (male, female, and unsexed combined) for T. novaezelandiae, by fishing year.

											Proportion	
Age (Yr)	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
0	0.01321	0.03725	0.00935	0.01267	0.00073	0	0.02842	0.00003	0.02970	0.01028	0	0.00071
1	0.02091	0.11805	0.05117	0.05100	0.10213	0.01682	0.05307	0.00564	0.03966	0.04578	0.00081	0.01141
2	0.03921	0.08945	0.13462	0.21826	0.12161	0.09338	0.13993	0.02163	0.04576	0.02926	0.02648	0.05034
3	0.08228	0.10983	0.12296	0.21079	0.14075	0.05978	0.23802	0.10037	0.14410	0.05014	0.15238	0.15743
4	0.20901	0.09878	0.11173	0.15171	0.13125	0.12095	0.07646	0.18902	0.17775	0.20456	0.08092	0.13437
5	0.19822	0.09602	0.05099	0.10195	0.11373	0.16678	0.08754	0.12679	0.17515	0.20209	0.17871	0.13836
6	0.16968	0.17309	0.12458	0.04429	0.03665	0.08684	0.10115	0.13419	0.06151	0.13981	0.17019	0.13802
7	0.08227	0.09136	0.09923	0.03191	0.06038	0.07120	0.03203	0.13137	0.07492	0.05333	0.13429	0.12974
8	0.03604	0.07130	0.10806	0.06385	0.05033	0.05233	0.03601	0.03885	0.05358	0.08667	0.01838	0.06803
9	0.03356	0.03584	0.05580	0.04261	0.07219	0.07388	0.03698	0.04782	0.05391	0.04283	0.03727	0.03470
10	0.03189	0.01209	0.04857	0.02056	0.06306	0.03340	0.01990	0.04237	0.02826	0.03916	0.05466	0.03748
11	0.04065	0.02205	0.01810	0.01806	0.05858	0.07569	0.03210	0.02426	0.01392	0.01409	0.02936	0.02946
12	0.03277	0.03203	0.01677	0.01151	0.01598	0.06087	0.03787	0.05635	0.02566	0.01230	0.00830	0.02250
13	0.00097	0.00819	0.02686	0.00583	0.01313	0.02769	0.03231	0.03028	0.02395	0.00766	0.02367	0.01548
14	0.00116	0.00058	0.00629	0.00662	0.00707	0.02005	0.02240	0.01895	0.02531	0.02832	0.00545	0.00924
15	0	0.00019	0.00808	0.00463	0.00511	0.01431	0.00531	0.01227	0.01266	0.01120	0.02835	0.00934
16	0.00037	0	0.00026	0.00266	0.00665	0.01266	0.00375	0.00597	0.00809	0.01647	0.01822	0.00936
17	0.00075	0.00120	0.00487	0.00052	0.00058	0.01101	0.00865	0.00145	0.00289	0.00148	0.01623	0.00324
18	0.00058	0.00045	0.00040	0.00005	0.00008	0.00236	0.00622	0.00382	0	0	0.00876	0.00023
19	0.00260	0.00114	0.00024	0.00006	0	0	0.00114	0.00775	0.00088	0.00322	0.00554	0
20	0.00235	0.00063	0	0.00000	0	0	0	0.00083	0.00092	0.00095	0.00077	0.00016
21	0	0.00029	0.00082	0	0	0	0	0	0.00143	0.00013	0.00013	0
22	0	0.00016	0	0	0	0	0	0	0	0.00030	0.00113	0
23	0.00097	0	0	0.00000	0	0	0.00051	0	0	0	0	0.00016
24	0.00056	0	0	0.00012	0	0	0.00022	0	0	0	0	0
25	0	0	0.00026	0.00000	0	0	0	0	0	0	0	0.00026
26	0	0	0	0.00024	0	0	0	0	0	0	0	0

Table A1b: CVs for proportions-at-age (male, female, and unsexed combined) for T. novaezelandiae, by fishing year.

	Age (yr)	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
0	0.488	0.460	0.759	0.913	2.006		0.524	1.709		0.711		0.712
1	0.515	0.305	0.297	0.389	0.378	0.487	0.463	0.516	0.481	0.450	1.064	0.273
2	0.347	0.134	0.184	0.213	0.249	0.209	0.244	0.349	0.355	0.495	0.415	0.247
3	0.218	0.147	0.175	0.186	0.185	0.219	0.151	0.201	0.274	0.263	0.190	0.122
4	0.134	0.182	0.316	0.172	0.114	0.109	0.179	0.117	0.133	0.108	0.170	0.137
5	0.118	0.198	0.397	0.209	0.124	0.097	0.101	0.108	0.084	0.082	0.092	0.114
6	0.130	0.135	0.278	0.281	0.228	0.133	0.089	0.083	0.070	0.105	0.093	0.104
7	0.195	0.210	0.314	0.227	0.193	0.176	0.183	0.093	0.138	0.178	0.092	0.098
8	0.281	0.216	0.272	0.211	0.189	0.187	0.172	0.167	0.123	0.126	0.268	0.154
9	0.335	0.253	0.336	0.204	0.141	0.157	0.159	0.163	0.135	0.210	0.157	0.186
10	0.304	0.451	0.398	0.230	0.160	0.252	0.226	0.174	0.144	0.201	0.153	0.146
11	0.265	0.331	0.432	0.274	0.170	0.145	0.163	0.247	0.208	0.316	0.191	0.179
12	0.288	0.313	0.527	0.252	0.328	0.166	0.144	0.147	0.289	0.317	0.374	0.185
13	1.023	0.320	0.321	0.327	0.316	0.222	0.165	0.163	0.225	0.443	0.206	0.213
14	0.949	1.264	0.480	0.367	0.429	0.272	0.179	0.199	0.187	0.238	0.378	0.268
15			1.348	0.625	0.336	0.392	0.305	0.358	0.232	0.180	0.349	0.184
16	1.059		1.035	0.494	0.451	0.311	0.458	0.275	0.296	0.291	0.238	0.261
17	0.731	1.006	1.042	0.594	1.160	0.374	0.280	0.512	0.325	0.509	0.244	0.461
18	0.818	1.092	1.148	2.105	1.712	0.565	0.317	0.385	0.512	0.000	0.294	0.791
19	0.702	1.023	0.972	1.916			0.769	0.287	0.000	0.611	0.349	
20	0.940		1.253					0.673	0.434	0.645	0.581	0.978
21	0.869	0.832								0.862	1.155	1.016

Table A2a: Proportions-at-age (male, female, and unsexed combined) for T. declivis, by fishing year.

											Proportion	
Age (yr)	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
0	0.00893	0.01782	0.00806	0.00539	0	0	0.00410	0.00023	0.04777	0.00583	0.00119	0.05380
1	0.05147	0.11061	0.06219	0.01797	0.00917	0.08889	0.08129	0.00658	0.07537	0.09972	0.03761	0.06324
2	0.07715	0.21069	0.14881	0.09418	0.03899	0.06589	0.12900	0.04371	0.05627	0.10037	0.07940	0.05568
3	0.13149	0.13626	0.12663	0.13873	0.10908	0.12607	0.11182	0.07295	0.17127	0.07203	0.15979	0.13068
4	0.15853	0.09736	0.04033	0.13272	0.13015	0.08856	0.09327	0.05894	0.10254	0.14848	0.10923	0.15273
5	0.09108	0.07846	0.06792	0.09225	0.09495	0.10043	0.07181	0.10419	0.08304	0.12368	0.14900	0.08134
6	0.07142	0.04928	0.07629	0.06288	0.09627	0.08595	0.03411	0.08160	0.06172	0.05553	0.12449	0.08024
7	0.02851	0.04917	0.04758	0.07667	0.08508	0.07956	0.03508	0.07788	0.06723	0.05806	0.09841	0.09511
8	0.06552	0.07556	0.03432	0.08013	0.08833	0.05749	0.04294	0.06227	0.06664	0.04160	0.03926	0.06261
9	0.05500	0.01309	0.09075	0.07678	0.07007	0.06999	0.05031	0.08451	0.03254	0.06786	0.02900	0.02793
10	0.03159	0.01537	0.02699	0.03447	0.07495	0.05556	0.04689	0.09361	0.03089	0.03389	0.02733	0.02748
11	0.06188	0.04438	0.01596	0.01922	0.03545	0.06416	0.07710	0.07679	0.03161	0.02394	0.03031	0.03637
12	0.09305	0.04229	0.08242	0.05073	0.04577	0.04540	0.06055	0.06892	0.01506	0.03134	0.01706	0.02566
13	0.04966	0.02600	0.08367	0.04349	0.03910	0.02561	0.03305	0.03672	0.02444	0.02229	0.01431	0.01417
14	0.01375	0.01372	0.03512	0.02986	0.04785	0.02543	0.03635	0.03249	0.03146	0.01753	0.02094	0.01456
15	0.00149	0.00241	0.02400	0.02638	0.02556	0.00993	0.03722	0.04085	0.01949	0.01730	0.01321	0.01718
16	0	0.00042	0.02509	0.00566	0.00680	0.00554	0.01925	0.01730	0.02311	0.01852	0.00863	0.01920
17	0.00313	0.00172	0.00225	0.00753	0.00041	0.00505	0.01721	0.01378	0.00682	0.01674	0.00879	0.01248
18	0.00127	0.00417	0.00163	0	0.00203	0.00050	0.00477	0.01154	0.01641	0.01050	0.00913	0.00854
19	0	0.01041	0	0.00234	0	0	0.00942	0.00284	0.01405	0.00711	0.00609	0.00539
20	0.00048	0.00083	0	0	0	0	0.00107	0.00306	0.01535	0.01846	0.00863	0.00355
21	0.00459	0	0	0	0	0	0.00208	0.00722	0.00693	0.00715	0.00820	0.00417
22	0	0	0	0.00234	0	0	0.00131	0	0	0.00170	0	0.00072
23	0	0	0	0	0	0	0	0.00201	0	0.00038	0	0.00255
24	0	0	0	0.00028	0	0	0	0	0	0	0	0.00463
25	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0

Table A2b: CVs for proportions-at-age (male, female, and unsexed combined) for T. declivis, by fishing year.

Age (yr)	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
0	0.465	0.320	0.354	0.428			0.793	1.197	0.337	0.913	0.756	0.375
1	0.230	0.193	0.198	0.326	0.355	0.267	0.238	0.441	0.190	0.488	0.341	0.218
2	0.175	0.138	0.140	0.207	0.191	0.229	0.199	0.409	0.188	0.220	0.157	0.157
3	0.145	0.128	0.145	0.141	0.134	0.162	0.161	0.222	0.104	0.151	0.119	0.119
4	0.121	0.170	0.293	0.130	0.113	0.182	0.161	0.191	0.098	0.107	0.117	0.104
5	0.237	0.195	0.264	0.160	0.143	0.115	0.153	0.129	0.100	0.102	0.083	0.121
6	0.328	0.324	0.340	0.190	0.153	0.114	0.170	0.114	0.120	0.119	0.080	0.113
7	0.452	0.264	0.424	0.168	0.169	0.117	0.149	0.136	0.114	0.125	0.095	0.087
8	0.324	0.344	0.436	0.186	0.175	0.140	0.135	0.123	0.111	0.162	0.161	0.112
9	0.310	0.471	0.268	0.177	0.176	0.124	0.125	0.099	0.167	0.124	0.184	0.176
10	0.497	0.486	0.488	0.300	0.184	0.137	0.140	0.093	0.184	0.182	0.182	0.177
11	0.266	0.286	0.682	0.367	0.230	0.127	0.099	0.108	0.169	0.219	0.173	0.150
12	0.241	0.289	0.307	0.214	0.216	0.158	0.113	0.111	0.258	0.197	0.223	0.174
13	0.360	0.448	0.293	0.236	0.237	0.208	0.149	0.142	0.201	0.208	0.244	0.242
14	0.564	0.466	0.458	0.268	0.209	0.183	0.143	0.146	0.182	0.266	0.200	0.252
15	0.921	0.851	0.386	0.273	0.295	0.339	0.149	0.138	0.218	0.262	0.260	0.233
16		0.747	0.312	0.469	0.545	0.472	0.211	0.221	0.200	0.259	0.328	0.209
17	1.019	1.015	0.636	0.647	1.049	0.438	0.243	0.230	0.358	0.288	0.282	0.263
18	1.056	0.376	0.841		1.091	0.690	0.399	0.254	0.251	0.310	0.324	0.335
19		0.784		1.020			0.292	0.456	0.254	0.365	0.373	0.388
20	1.052	1.018					0.868	0.409	0.277	0.255	0.329	0.406
21	1.006						0.701	0.335	0.369	0.336	0.355	0.415
22				0.963			0.801			0.487		0.769
23								0.624		0.827		0.472
24					1.254							
2												0.425

Table A3a: Proportions-at-age (male, female, and unsexed combined) for T. murphyi, by fishing year.

											Proportion	
Age (yr)	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
4	0	0	0	0.00205	0.00259	0.00176	0	0	0	0.00134	0.00029	0
5	0	0	0	0	0	0.00211	0	0.00393	0	0.00144	0	0.00101
6	0	0	0	0.00209	0.00049	0.01934	0	0.00283	0.00118	0.00162	0.00271	0.01186
7	0.00018	0	0	0	0.00726	0.00436	0	0.00485	0.00759	0.00459	0	0.02866
8	0.01384	0	0	0.00264	0	0.00587	0.02012	0.01073	0.01191	0.00247	0	0.00761
9	0.02858	0.00161	0.00036	0.01051	0.00357	0.01798	0.00865	0.00280	0.00935	0	0	0.01643
10	0.09570	0.00555	0.01443	0.00710	0.00123	0.00300	0.01566	0.01110	0	0.00216	0	0.01434
11	0.12119	0.09376	0.12603	0.03502	0	0.00300	0	0	0.00644	0.00241	0	0.00750
12	0.18510	0.17118	0.07832	0.06924	0	0.00209	0.02195	0.04305	0.01152	0.00484	0.00264	0.01769
13	0.08478	0.17870	0.10889	0.10402	0.02734	0.01276	0.02521	0.04480	0.02497	0.02122	0.00107	0.01430
14	0.11525	0.11388	0.14963	0.15299	0.05670	0.03200	0.07794	0.04321	0.04011	0.01592	0.00500	0.02411
15	0.08987	0.07196	0.06621	0.12274	0.14876	0.16939	0.14660	0.08019	0.05947	0.04176	0.00439	0.02742
16	0.06119	0.05845	0.10982	0.10803	0.18226	0.21936	0.19724	0.14793	0.11335	0.04888	0.01739	0.04314
17	0.05582	0.05184	0.03163	0.09647	0.12240	0.15442	0.20045	0.20283	0.12763	0.08682	0.03250	0.04871
18	0.04196	0.06025	0.11673	0.06577	0.09623	0.10191	0.10438	0.14046	0.16779	0.13884	0.09311	0.10183
19	0.03892	0.08091	0.06023	0.03084	0.12267	0.06330	0.08599	0.07661	0.16213	0.22588	0.15721	0.12037
20	0.01919	0.01560	0.04916	0.04496	0.07841	0.05144	0.04172	0.07686	0.10548	0.15196	0.22960	0.10896
21	0.01118	0.03763	0.01568	0.04920	0.02333	0.03487	0.00552	0.03144	0.05015	0.09355	0.19400	0.13764
22	0	0.01883	0.02495	0.01512	0.02230	0.02878	0.01253	0.03243	0.04128	0.05464	0.09776	0.12516
23	0.01679	0.01674	0.02514	0.05006	0.02552	0.02702	0.00761	0.02328	0.02143	0.05017	0.07021	0.06269
24	0.00038	0	0.00215	0.01035	0.04088	0.00300	0.00340	0.00681	0.01036	0.01056	0.02829	0.03814
25	0.01679	0.00654	0.01377	0.00481	0.00511	0.01772	0.00917	0.00555	0.00401	0.01612	0.02016	0.02449
26	0.00327	0.01014	0.00133	0.00757	0.01335	0.00414	0	0	0.00435	0.00944	0.01927	0.00672
27	0	0.00425	0.00554	0.00460	0.00309	0.00466	0.00244	0.00599	0.00598	0.00481	0.00812	0.01124
28	0	0.00218	0	0.00113	0.00921	0.00066	0.00628	0	0.00196	0	0.00589	0
29	0	0	0	0	0	0.00457	0.00488	0	0	0.00180	0.00312	0
30	0	0	0	0	0.00729	0.00655	0	0.00231	0.00588	0	0	0
31	0	0	0	0.00268	0	0.00394	0.00226	0	0.00569	0.00676	0.00727	0

Table A3b: CVs for the proportions-at-age for T. murphyi, by fishing year.

Age (yr)	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
4				2.236	1.146	1.047				1.313	1.866	
5						0.747		0.766		1.457		1.649
6				1.423	2.163	0.420		1.105	0.848	1.423	1.096	0.852
7	2.343				1.841	1.093		0.741	0.632	0.684		0.541
8	0.605			1.481		0.891	0.710	0.519	0.452	1.021		0.910
9	0.420	1.054	1.736	0.948	0.873	0.596	0.869	0.972	0.577			0.705
10	0.322	0.581	0.663	0.803	1.888	1.225	0.714	0.531		1.479		0.589
11	0.301	0.251	0.227	0.383		1.119			0.593	1.200		0.945
12	0.189	0.178	0.291	0.584		1.043	0.499	0.237	0.445	0.761	1.057	0.734
13	0.266	0.184	0.255	0.178	0.363	0.511	0.432	0.261	0.338	0.346	1.259	0.697
14	0.221	0.225	0.206	0.233	0.235	0.322	0.231	0.252	0.245	0.378	0.722	0.429
15	0.332	0.347	0.333	0.271	0.144	0.119	0.142	0.184	0.188	0.243	0.850	0.520
16	0.344	0.299	0.242	0.192	0.130	0.102	0.111	0.145	0.133	0.219	0.495	0.215
17	0.480	0.337	0.351	0.178	0.174	0.119	0.107	0.113	0.133	0.152	0.350	0.210
18	0.427	0.339	0.233	0.222	0.183	0.165	0.145	0.142	0.110	0.120	0.187	0.152
19	0.665	0.314	0.365	0.304	0.155	0.182	0.164	0.183	0.109	0.095	0.136	0.150
20	0.699	0.543	0.345	0.235	0.228	0.198	0.245	0.192	0.128	0.119	0.098	0.139
21	0.878	0.461	0.781	0.269	0.374	0.231	0.664	0.313	0.201	0.160	0.122	0.114
22		0.767	0.451	0.433	0.392	0.267	0.479	0.312	0.220	0.183	0.180	0.130
23	1.041	0.860	0.495	0.273	0.340	0.298	0.487	0.368	0.301	0.215	0.225	0.202
24	4.020		0.823	0.576	0.295	0.831	0.894	0.643	0.431	0.469	0.332	0.305
25	1.074	1.120	0.898	0.655	0.763	0.336	0.532	0.607	0.720	0.353	0.434	0.307
26		1.083	0.869	0.564	0.543	0.788			0.679	0.498	0.502	0.439
27		1.018	0.654	0.791	1.018	0.673	0.915	0.688	0.644	0.600	0.528	0.435
28		1.070		1.060	0.630	1.301	0.816		1.069		0.700	
29						0.780	0.785			0.988	1.109	
30					0.836	0.645		0.997	0.610			
31				1.014		0.693	1.045		0.539	0.464	0.604	
2												

