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Executive summary 

The problem 

Existing methods for tree species classification using remote sensing often require LiDAR, 
multispectral or hyperspectral data. These data can be prohibitively expensive and complex for large-
scale species mapping exercises such as those required for biosecurity responses. Traditional 
methods often rely on the derivation of variables (metrics) that attempt to capture the unique spectral 
or textural features that make the species distinct. Development of methods using this approach can 
also be complex, subjective and time-consuming – delaying the usefulness of this approach for rapid 
biosecurity responses. 

The advent of deep convolutional neural networks has revolutionised machine capabilities in object 
recognition and classification. These models do not rely on spectral or other traits captured through 
hand-picked variables. Instead, with enough data, they can learn the hard-to-quantify features and 
appearance that make objects visually distinctive in low-cost imagery, achieving state-of-the-art 
accuracies across a range of domains. Application of these methods to classify species from high-
resolution aerial imagery remains largely unexplored despite many species being visually distinct and 
relatively easy for trained observers to identify in this type of imagery. 

This project 

The objectives of this study were to trial rapid, accurate tree species classification from low-cost aerial 
imagery using deep convolutional neural networks. These deep learning models were compared to 
traditional approaches relying on textural and spectral indices input to XGBoost classification 
algorithms. 

We demonstrate a novel approach to train these two state-of-the-art classifiers to detect myrtle rust 
host species in the Metrosideros genus (Metrosideros excelsa in particular) across Tauranga. We 
combined the strong phenology of this species (extensive flowering in the summer) with inspection 
records collected during the myrtle rust response to develop an extensive dataset to address three key 
objectives: 

1. To test the classifiers on aerial imagery (10 cm resolution, three-band RGB) utilising the strong 
phenology of the target species (distinctive and extensive flowering in summer). 

2. To test the classifiers on historical imagery of the same type and over the same area but without 
the assistance of strong phenology (little to no flowering observed). 

3. To test the classifiers on a combined dataset containing imagery from different years showing a 
mixture of flowering and nonflowering trees to simulate conditions that might be encountered in 
a real-world mapping exercise where phenology and available data sources will vary. 

Key results 

The classifiers trained to recognise Metrosideros spp. using the strong and distinctive flowering both 
performed well. The XGBoost model using the spectral and textural traits achieved an accuracy of 
88.1% driven by the strong red flowers present on many canopies. In the absence of strong 
phenology, the performance fell to 80.0% and the models relied instead on the blueish hue and texture 
of the canopies in relation to other species. The accuracy for the combined dataset was 84.9% and 
leveraged a combination of features important in the previously described models.  

The deep learning model produced a near-perfect classification when using the strong phenology 
(99.7% accuracy) even though the level of flowering varied substantially. In the absence of phenology, 
the deep learning model accuracy remained high at 95.3% accuracy despite significant variation in the 
appearance of the Metrosideros spp. and degraded imagery quality. The performance of the combined 
model was similarly high at 98.1% accuracy. This suggests the potential to generalise well to real-
world, large-scale biosecurity mapping applications where phenology and available data sources will 
vary. 

Implications and future work 

Deep learning models show substantial potential for rapid, large-scale tree species classification using 
low-cost aerial imagery. Species phenology can be leveraged to help develop the substantial datasets 
required to train these models. The demonstrated approach should be expanded to test classification 



of multiple additional species. As a general rule, species that can be positively identified in aerial 
imagery by experienced analysts may be good candidates. Alternative deep learning frameworks that 
have the ability to simultaneously find and classify multiple targets (canopies) within large images 
should be explored. 
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1  Project background 
 
To better understand myrtle rust and limit its impact in New Zealand, the Ministry for Primary 
Industries commissioned a comprehensive research programme in 2017 with more than 20 projects 
valued at over $3.7 million. Projects in this programme were completed by June 2019.  
 
The projects covered research in the following themes: 
 

• Theme 1 - Understanding the pathogen, hosts, and environmental influence. 

• Theme 2 – Building engagement and social licence: Improved understanding of public 
perceptions and behaviours to allow better decisions about investment, improved design of 
pathway control strategies and maintain social license for use of management tools. 

• Theme 3 – Te Ao Māori: Greater understanding of Te Ao Māori implications of myrtle rust in 
order to support more effective investments, and improved use of Mātauranga, specific Māori 
knowledge, and kaupapa Māori approaches in management regimes. 

• Theme 4 – Improving management tools and approaches: Improved diagnostic and 
surveillance speed, accuracy and cost-effectiveness, supporting eradication efforts and 
enabling scaling up of surveillance efforts for a given resource. More effective treatment 
toolkits to avoid emergences of MR resistance to treatments and to enable disease control 
over increasingly large scales that will lead to reduced or avoided impacts. 

• Theme 5 - Evaluating impacts and responses: Improved understanding of environmental, 
economic, social and cultural, impacts to inform risk assessment and management and to 
communicate implications to decision/makers and stakeholders. 

 
This report is part of the MPI commissioned research under contract MPI18607 which addressed 
research questions within Theme 2, 4 and 5. 
 
Text in the report may refer to other research programmes carried out under the respective theme 
titles. 
 
 



 

 

2 Introduction 

Background 

The early stages of a biosecurity response to a newly arrived plant pathogen can have a significant bearing on 
the final outcome and cost (Goldson et al., 2015; Kriticos, Phillips, Suckling, & others, 2005). Once an 
unwanted pathogen has been positively identified, mapping and identification of potential host species 
become essential for managing the incursion (Kalaris et al., 2014). Identification of host plants must be carried 
out by trained personnel and the hosts may be located across a mixture of public and private property or in 
hard to access areas. Hosts may also be concealed by other vegetation or cryptic in appearance. For these 
reasons, carrying out large-scale searches for host plants can be very costly and challenging to resource. 

The level of host detection and surveillance required in the face of an incursion is usually defined by the 
response plan. For example, planning to eradicate the pathogen necessitates exhaustive detection of host 
species to monitor spread and enable destruction of infected plants and, in some cases, potential hosts 
showing no signs of infection to limit future spread. Attempts to manage or monitor the spread of a pathogen 
may require only identification of key indicator species to define the infection front and to monitor the long-
term ecosystem impacts. Finally, long-term management strategies for newly established pathogens may 
require large-scale but inexhaustive host identification to identify resistant individuals within a population for 
breeding programmes or other approaches to biological control (DiTomaso et al., 2017; Mundt, 2014).  

Remote sensing offers one approach to identify host species that is potentially cost-saving and efficient for 
large-scale applications (Asner et al., 2018; Huang & Asner, 2009). Imagery acquired from UAVs, aircraft or 
even space-borne optical sensors can be used to identify both potential hosts as well as the symptoms of 
pathogen infection on susceptible host species (Asner et al., 2018; Y. He, Chen, Potter, & Meentemeyer, 
2019). However, detection and classification of species from remotely sensed data is a complex sub-
discipline. Fassnacht et al. (2016) carried out a comprehensive review of the current state-of-the-art for tree 
species classification using remotely sensed data. The approaches reviewed encompassed a diverse range of 
data sources and methodologies with varying degrees of accuracy reported. however, clear themes were 
evident in the literature. Multispectral and hyperspectral data were highlighted as being the most useful data 
sources for accurate species classification with LiDAR data being highly complementary. Multi/hyperspectral 
data sources observe reflected light outside of the visible light spectrum with the increased chance of 
observing patterns of reflectance related to structural or biochemical traits that may be unique or distinctive to 
species or groups. 

Multispectral data (4-12 bands) is relatively easy to capture and has been widely used in combination with 
machine learning methods such as random forests and support vector machines to perform species 
classification (Dash, Watt, Pearse, & Dungey, 2017; Ferreira, Wagner, Aragão, Shimabukuro, & de Souza 
Filho, 2019). However, accurate classification is often limited to broad groups such as conifer vs. deciduous 
forest types (Ballanti, Blesius, Hines, & Kruse, 2016). Hyperspectral data contains many more (>12) narrow 
spectral bands – enhancing the ability to observe small differences that may be present between the spectra 
of tree species. This approach has been particularly well studied for fine-grained species classification tasks 
(Clark, Roberts, & Clark, 2005; M. Dalponte, H. O. Ørka, T. Gobakken, D. Gianelle, & E. Næsset, 2013). The 
idea of unique spectral ‘signatures’ for species has been present in the literature for several decades; 
however, Fassnacht et al. (2016) conclude that these signatures appear to be rare in practice and, when 
present, require observation of a wide portion of the spectrum using sophisticated sensors (Hesketh & 
Sánchez-Azofeifa, 2012). Regardless of these challenges, hyperspectral data has been successfully used to 
classify as many as 42 species and application of these sophisticated methods has allowed large-scale host 
species identification (Asner et al., 2018; Fassnacht et al., 2016). 

These large-scale applications of hyperspectral-based species classification face challenges related to 
practicality and cost. The increased spectral resolution usually demands very careful acquisition from 
expensive sensors that can only be operated under a narrow set of conditions. The post-processing of these 
data can also be complex and requires careful correction of atmospheric impacts and noise reduction. Finally, 
the substantial volumes of data must often be subjected to dimensionality reduction before analysis can 
proceed (Ballanti et al., 2016; J. M. Bioucas-Dias et al., 2013). 

Spectral-based methods reduce the problem of species identification to discriminating patterns in the reflected 
light. Hence these methods require high-quality data calibrated to reflectance rather than radiance otherwise 
the classifiers developed can translate poorly to new areas or data sources (Bannari, Morin, Bonn, & Huete, 
1995). Other information content such as the structure, shape, texture and other distinctive but hard to 
quantify characteristics are often only partially utilised or completely neglected. Some efforts to characterise 
the texture or the shape of the crown or other attributes have been made but these typically rely on deriving a 
small number of variables (metrics) that attempt to summarise complex properties (Ballanti et al., 2016; 
Ferreira et al., 2019). 
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In contrast, the human visual system allows experienced individuals to distinguish a large number of species 
by visual inspection alone. Some cryptic species remain hard to tell apart visually, but trained experts (and 
even non-experts) can discriminate a surprising number of species (Lacerda & Nimmo, 2010). This has led to 
the development of systems that allow interested members of the public to upload high-resolution imagery 
taken from consumer cameras or smartphones to platforms where experts can review and identify species 
within their areas of expertise such as iNaturalist (Van Horn et al., 2018). 

Recently, the advent of deep convolutional networks has transformed the capability of machines to perform 
fine-grained classification of images, often reaching or exceeding human-level accuracy (De  Fauw et al., 
2018; Krizhevsky, Sutskever, & Hinton, 2012). These advances have been extended to include fine-grained 
species classification from simple imagery acquired from consumer cameras or smartphones (Affouard, 
Goëau, Bonnet, Lombardo, & Joly, 2017; Cui, Song, Sun, Howard, & Belongie, 2018). These ‘deep learning’ 
approaches utilise artificial neural networks consisting of many layers with different functions that operate on 
the input imagery. The architecture of these networks, combined with efficient training algorithms, allows these 
networks to effectively learn the mappings between potentially very large numbers of possible input images 
and output classes (Mallat, 2016). In this approach, the features important for classification are not engineered 
or pre-selected but rather learned by the network from labelled training examples and the method relies 
comparatively little on pre-processing of the imagery. In practice, these approaches have demonstrated a 
remarkable capacity to perform fine-grained classification from images that are largely unsuitable for classical 
remote sensing methods. However, they can demand a substantial number of training examples to enable the 
network to learn effectively. 

Examples of this technology for host species detection remain rare in the literature and rarer still are examples 
using methods for large-scale host species detection from data such as aerial imagery. This data is simple – 
usually consisting of only RGB colour channels - and is typically delivered as uncalibrated radiance values 
rather than being processed to represent the fraction of light reflected from the surface (bottom of atmosphere 
reflectance). The simplicity of the data means that is it practical to regularly capture large areas at high-
resolution (<10 cm) for a relatively low cost. While aerial imagery cannot be used to identify small or occluded 
individuals, it offers advantages in terms of scale and largely bypasses issues such as access and 
permissions facing ground surveillance teams. Applying deep learning to develop methods for large-scale host 
species identification using readily available and low-cost imagery has the potential to support future 
biosecurity eradication and management efforts. 

Research Context 

The fungal plant pathogen Austropuccinia psidii (myrtle rust) affects a broad range of hosts in the Myrtaceae 
family, causing lesions, dieback and, in some cases, mortality (Carnegie et al., 2016; Glen, Alfenas, Zauza, 
Wingfield, & Mohammed, 2007). The pathogen is airborne and has spread rapidly around the globe (Carnegie 
& Cooper, 2011; Coutinho, Wingfield, Alfenas, & Crous, 1998; McTaggart et al., 2016; Roux, Greyling, 
Coutinho, Verleur, & Wingfield, 2013). New Zealand is home to at least 37 native myrtaceous species (Lange 
et al., 2018) and many more exotic members of the family such as Eucalyptus spp. have been introduced for 
amenity and production values. Within this family, 12 species of the Metrosideros genera are present in New 
Zealand. Of these, pōhutukawa (Metrosideros excelsa) is especially highly valued culturally and has been 
widely planted for amenity purposes. This coastal evergreen tree has a sprawling habit of up to 20 m and 
produces dense masses of red flowers over the Christmas period (Allan, 1961) – earning it the name ‘the New 
Zealand Christmas tree’. Observations from pōhutukawa growing in other countries where myrtle rust is 
present indicate that the species is susceptible to myrtle rust (Loope, 2010; Sandhu & Park, 2013). 

In May 2017, myrtle rust was detected on the New Zealand mainland for the first time (Ho et al., 2019). The 
disease has spread rapidly to the majority of at-risk regions and has established on numerous native and 
exotic host species (Beresford et al., 2018). The arrival of the disease triggered a major biosecurity response 
involving a broad range of public and private institutions. In the early stages of the response, an intensive 
effort was made to identify and inspect host species around the sites of infection. Host identification continued 
as the pathogen spread to new regions and has been ongoing as the management plan transitioned from 
eradication to long-term management. These efforts produced a substantial volume of surveillance data 
including GPS locations and positive identification of Metrosideros spp. by trained inspectors. 

This report presents the results of a study carried out to test novel methods suitable for large-scale 
identification and mapping of key host species (Metrosideros spp.) of myrtle rust. To achieve this, we focused 
on three key objectives: 

• Objective 1: Test two state-of-the-art classification methods (XGBoost and deep convolutional neural 
networks) applied to 3-band aerial imagery by leveraging the strong phenology of the target species 
(distinctive and extensive flowering in summer). 
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• Objective 2: Test classification of the identical trees using the same type of imagery but without the 
assistance of phenology. 

• Objective 3: Test the practicality and generalisability of these techniques in real-world conditions by 
creating a combined dataset from Objectives 1 & 2 that contained imagery from different years and 
sources and a mixture of flowering and non-flowering trees. 
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3 Materials and methods  
 

3.1 Ground truth data 

New Zealand maintains an extensive biosecurity surveillance system including regularly monitored sites 
across the country and an established incursion response protocol. In the first months after the incursion of 
myrtle rust, the response was centred on positively identified cases at the monitored surveillance sites and 
locations reported through a domestic biosecurity network (e.g. plant producers). Once a site was confirmed 
infected, intensive ground surveillance efforts were carried out to identify and inspect all potential host species 
within a fixed radius from the infected site. New, confirmed infections triggered additional searches around the 
new site and, in some cases, at-risk areas would be intensively surveyed. As the response continued, the 
surveillance efforts expanded in order to monitor the spread of the disease within regions and across the 
country. 

The surveillance response, including collation and management of the GIS data and inspection records, was 
coordinated by AsureQuality New Zealand on behalf of the Ministry for Primary Industries. A mobile app was 
used to log each inspection and to embed the GPS coordinates of the observer. Trained observers recorded 
the confirmed genus, location, infection status and other key information for every inspection carried out. By 
May 2019, surveillance inspections had been carried out on Metrosideros spp. across the country, with most 
of the effort concentrated in the higher-risk North Island regions. The database included several thousand 
inspections carried out in urban areas such as Tauranga. Inspection of the ground records quickly revealed 
that many the records for Metrosideros spp. were pōhutukawa. Large numbers of these trees are present 
within Tauranga and many were located and inspected between 2017-2019 (Figure 1). 

 
Figure 1. The extent of aerial imagery datasets and location of sample trees around Tauranga in the Bay of 
Plenty, New Zealand. 
 
The ground surveillance records from Tauranga were used to seed the creation of a substantial dataset 
capable of addressing the study objectives. First, we focused on developing a dataset to test classification 
leveraging the phenology of the species. The extensive, distinctive red flowers that are easily identifiable from 
above made pōhutukawa good candidates for aerial mapping during the summer. For much of the year, either 
the buds, flowers, or seed capsules are present and visible. However, the multi-leader crown shape is also 
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somewhat distinctive as is the texture and blueish hue of the large waxy and elliptical leaves that are present 
all year round (Figure 2). 

Figure 2: Images of pōhutukawa trees illustrating the distinctive features such as multi-stem form, leaf colour 
and texture and extensive buds and flowers usually present in summer. The bottom row shows aerial views 
from very high-resolution UAV imagery. Image credits: Julia Soewarto and Scion Research. 
 
Aerial imagery captured over Tauranga during the 2018-2019 Christmas period (Table 1) was overlaid with 
the ground surveillance locations from the same region. Inspection locations were collected using consumer 
grade GPS units and could only be considered approximate. For each inspection record, a trained analyst 
examined the GPS point and imagery and identified the corresponding tree. If the tree was positively identified 
and showed at least some evidence of flowering, then the imagery was annotated by delineating a tight 
bounding box around the canopy extent. The distinctive features of the canopy and strong flowering observed 
in the imagery greatly assisted identification and annotation; however, inspection records were only at the 
genus level and other species with similar phenological traits such as rātā (Metrosideros robusta) may also be 
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found within this region. In addition, some cultivated ‘yellow’ pōhutukawa (Metrosideros excelsa 'Aurea') 
appeared to be present within the dataset but these were removed due to the small number of samples 
available. For fine-grained classification, these similar species would have posed a challenge; however, for 
the purposes of this study, the similar species noted above are also host species for myrtle rust – making 
misclassification less of an issue. Nonetheless, we attempted to assess the purity of the training dataset by 
inspecting a large subset of trees using publicly available, street-level imagery followed by physical on-site 
inspections and other referencing other records (e.g. iNaturalist) for a smaller subset of trees. The results 
showed that the vast majority of the study trees identified by combining the aerial imagery and surveillance 
records were unambiguously pōhutukawa. This process was laborious but ensured the purity of the dataset 
for model development and confirmed that the phenology and other visual traits of the species could reliably 
be used by a human analyst to identify new examples from aerial imagery. After this stage, we considered that 
the assembled training dataset consisted of only pōhutukawa and any misclassifications would have been 
small in number. Nonetheless, because every individual could not be verified we refer to these as 
Metrosideros spp. throughout the report. 

 
Table 1: Imagery datasets. 

Imagery Dataset Phenology Resolution, Colour channels 

Tauranga – summer 2018-2019 Wide-spread flowering 10 cm/pixel, 3-band RGB 
Tauranga – March 2017 Few flowering 10 cm/pixel, 3-band RGB 

 
Development of the classifiers also required negative examples. The candidate negative examples were any 
tree other than Metrosideros spp. We once again leveraged the ground inspection efforts to develop this 
dataset. The intensity of the initial surveillance efforts meant that within inspected areas such as streets or 
parks the locations for nearly every Metrosideros spp. were recorded. We used these areas to select negative 
examples and cross-referenced a substantial portion of the dataset against other imagery and some field 
inspection. This approach reduced the chances of accidentally including Metrosideros spp. or biasing the 
training set by excluding visually similar non-Metrosideros species due to uncertainty. In addition, this 
provided a realistic set of non-target tree canopies which the classifier might encounter in the areas surveyed 
for the biosecurity response. Tight bounding boxes around the canopies were defined against the aerial 
imagery and annotation proceeded until the dataset was balanced. Examples of typical and atypical 
pōhutukawa and other tree species canopies as seen in the imagery are shown in Figure 3. 

3.2 Imagery datasets 

The aerial imagery datasets described in Table 1 were tiled together into separate orthomosaics. Aside from 
some minor issues, the orthomosaics were of high quality as they were captured, and quality checked for 
operational use by local authorities. The imagery from 2017 showed slightly lower levels of detail (likely 
because of poorer image matching) resulting in the trees appearing blurrier with less visible detail (Figure 3). 
The spatial coordinates of the bounding boxes were used to extract sub-images from the larger orthomosaics 
and each image ‘chip’ was labelled with the dataset year and class (Metrosideros spp. or other spp.). All 
images were visually checked and only those images where the same trees were present in both 2017 and 
2019 were included in the dataset. Very small trees (canopy radius < ~ 1.5m) had to be excluded as these 
canopies were represented by too few pixels in the 10 cm resolution aerial images. The final datasets included 
2278 images of tree canopies evenly split between Metrosideros spp. and other spp. with images available for 
both 2017 and 2019. 

Generalisability is the goal of any species classification model. This is especially true for biosecurity 
applications where accurate detection is required for effective incursion management. To validate the models, 
the datasets were randomly split into training (75%) and validation (25%) sets. Model training was carried out 
using only the images in the training sets and the validation sets were completely isolated from model 
development, only being used at test time to evaluate final model performance. This approach was extended 
by forming a combined dataset that included imagery from both the 2019 (with phenology) and 2017 (without 
phenology) datasets (Table 2). The combined dataset can be thought of as an attempt to test the technique in 
real-world conditions. Expression of phenological traits such as flowering is inherently variable and irregular in 
nature. Pōhutukawa can switch from flowering to vegetative growth only, making flowering alone an unreliable 
characteristic. In addition, large-scale mapping for biosecurity responses or other purposes may require the 
use of aerial imagery datasets from different sources or seasons. 
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Figure 3: Examples of canopy images used to train classification models. Metrosideros spp. canopies from 
the 2019 imagery are shown in panel a). The same canopies from the 2017 imagery are shown in panel b). 
Examples of non-Metrosideros spp. including some harder examples are shown in panel c) while the same 
canopies from the 2017 imagery are shown alongside in panel d). 
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Table 2: Summary of datasets used to train and validate classification models. 
Dataset Description Number of Trees 

(Metrosideros spp./ 
Other spp.) 

Training / Validation 

Tauranga 2019 Test classification using phenology 2278 (1139/1139) 1709/569 (75/25%) 
Tauranga 2017 Test classification without phenology 2278 (1139/1139) 1709/569 (75/25%) 
Tauranga 2017 & 2019 
combined 

Test combined classification with and 
without phenology 

4556 (2278/2278) 3417/1139 (75/25%) 

 

3.3 Deep learning models 

Various candidate deep learning architectures were evaluated for the classification tasks. A 50-layer residual 
neural network was identified as offering the best compromise between training time and accuracy. Residual 
networks are a biologically inspired enhancement to deep neural network architectures that allow a much 
greater number of network layers to be utilised, ultimately producing substantial gains in accuracy on many 
image classification tasks (K. He, Zhang, Ren, & Sun, 2015, 2016; Veit, Wilber, & Belongie, 2016). 

Learning rate is a crucial hyperparameter in deep learning model development that can dramatically impact 
model performance. We used an iterative approach to select a learning rate that balanced convergence and 
stability for each model developed against the number of epochs required to descend to the optimum network 
state. Initially, only the final, connected layers of the models were trained on the tree canopy imagery with a 
relatively high learning rate (3x10-3 – 1x10-4) for a smaller number of epochs (iterations) (10 – 15). Thereafter, 
we fine-tuned deeper layers of the network using a reduced learning rate (1x10-5-1x10-6) applied for a greater 
number of epochs (15 – 30). At this point, indicators of performance for the models showed no further 
decrease in model error using the internal data. All deep learning models were implementation using the 
PyTorch 1.0.0 deep learning library (Paszke et al., 2017) and all training was carried out on an Nvidia Tesla 
K100 GPU with 12GB of onboard memory. 

3.4 XGBoost models 

For the deep learning models, the canopy images required no pre-processing or feature generation and could 
be used directly in the model development pipeline. The architecture of the model is left to determine 
important features and characteristics within the imagery. However, for XGBoost or other more traditional 
approaches, the imagery must be used to generate variables (metrics) that capture features or characteristics 
that can be used to discrimination different species (Ballanti et al., 2016; Fassnacht et al., 2016). These 
variables often take the form of vegetation indices computed from specific wavelengths; however, very few 
indices can be computed from RGB imagery and fewer still can be reliably computed without converting the 
imagery from radiance (raw brightness values) to reflectance values representing the fraction of incoming light 
reflected. Reflectance conversion requires calibration and atmospheric data that are usually not available 
during aerial surveys that can span months. We carefully chose a range of variables targeting the distinctive 
properties of the Metrosideros spp. canopies. These included spectral metrics aimed at capturing the blueish 
hue of the leathery, elliptical leaves and the strong and distinctive sprays of flowers and buds present in the 
canopies during summer. The canopies also exhibit distinctive textural properties arising from the multi-stem 
structure and leaf and bud arrangements independent of the presence or absence of flowers (Figures 2 & 3). 
Texture analysis using grey-level co-occurrence matrices (GLCMs) (Haralick & Shanmugam, 1973) was 
carried out to try and capture these characteristics within predictive variables. Computation and extraction of 
the texture images were carried out separately using the ‘glcm’ package (Zvoleff, 2019) in the R statistical 
software environment (R Core Team, 2019). Selection of the GLCM metric classes and parameters was 
carried out using the guidelines and methods proposed by Hall-Beyer (Hall-Beyer, 2017). The raw digital 
numbers (pixel values) within each defined bounding box were used to generate patch-level mean values for 
the predictive metrics detailed in Table 3.  

The values for every labelled tree canopy were then inputted into the XGBoost algorithm and the algorithm 
was trained for a maximum of 400 iterations (rounds), with early stopping parameters set to prevent over-
fitting. Subsampling of variables and observations for individual tree learners was also implemented alongside 
fine-tuning of the gamma hyperparameter to further guard against over-fitting.
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Table 3: Vegetation Indices and metrics computed from 3-band (RGB) aerial imagery of tree canopies 
for use in the XGBoost classification model. All metrics used the raw image digital numbers (DNs) (0-
255) from the input pixels. 

Variable Name Description Definition Source 

Mean_red Mean of red channel DNs 
∑ 𝑅𝑒𝑑

𝑁𝑢𝑚 𝑅𝑒𝑑 
 NA 

Mean_green 
Mean of green channel 
DNs 

∑ 𝐺𝑟𝑒𝑒𝑛

𝑁𝑢𝑚 𝐺𝑟𝑒𝑒𝑛
 NA 

Mean_blue 
Mean of blue channel 
DNs 

∑ 𝐵𝑙𝑢𝑒

𝑁𝑢𝑚 𝐵𝑙𝑢𝑒
 NA 

Sd_red 
Standard deviation of red 
channel DNs 

√
∑(𝑅𝑒𝑑 − 𝑀𝑒𝑎𝑛 𝑅𝑒𝑑)2

𝑁𝑢𝑚 𝑅𝑒𝑑 − 1
 NA 

Sd_green 
Standard deviation of 
green channel DNs 

√
∑(𝐺𝑟𝑒𝑒𝑛 − 𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛)2

𝑁𝑢𝑚 𝐺𝑟𝑒𝑒𝑛 − 1
 NA 

Sd_blue 
Standard deviation of blue 
channel DNs 

√
∑(𝐵𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒)2

𝑁𝑢𝑚 𝐵𝑙𝑢𝑒 − 1
 NA 

Rg_ratio Red Green Ratio Index 
𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 Gamon & Surfus (1999) 

Normdiff_rg 
Normalised difference 
red/green ratio 

𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 +  𝐺𝑟𝑒𝑒𝑛
 NA 

Scaled_red Scaled red ratio 
𝑅𝑒𝑑

(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒)
 NA 

Scaled_green Scaled green ratio 
𝐺𝑟𝑒𝑒𝑛

(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒)
 NA 

Scaled_blue Scaled blue ratio 
𝐵𝑙𝑢𝑒

(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒)
 NA 

Sd_gi 
Std. deviation of the 
scaled green index 

√
∑(𝑆𝐺𝑟𝑒𝑒𝑛 − 𝑀𝑒𝑎𝑛 𝑆𝐺𝑟𝑒𝑒𝑛)2

𝑁𝑢𝑚 𝑆𝐺𝑟𝑒𝑒𝑛 − 1
 NA 

glcm_correlation 
Textural metric computed 
on RGB channels 

Grey-level co-occurrence 
correlation 

Haralick & Shanmugam 
(1973) 

glcm_homogeneity 
Textural metric computed 
on RGB channels 

Grey-level co-occurrence 
homogeneity 

Haralick & Shanmugam 
(1973) 

glcm_mean 
Textural metric computed 
on RGB channels 

Grey-level co-occurrence 
mean 

Haralick & Shanmugam 
(1973) 

glcm_entropy 
Textural metric computed 
on RGB channels 

Grey-level co-occurrence 
entropy 

Haralick & Shanmugam 
(1973) 

 
 

3.5 Performance metrics 

The predictions made by the two modelling approaches on the withheld portion of the 3 different 
datasets were used to compute the number of true positives (correct classifications) and false 
positives (incorrect classifications) for the two classes (Metrosideros spp. and other spp.). These 
values were then used to compute the classification performance metrics shown in Table 4. 
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Table 4: Performance metrics used to assess classification models. TP=true positive, FP = false 
positive, TN = true negative, FN = false negative. 

Metric Description Definition 

Accuracy A measure of how often the classifier's 
predictions were correct. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Error A measure of how often the classifier’s 
predictions were wrong. 

1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

Cohen’s kappa A measure of a classifier’s prediction 
accuracy that accounts for chance 
agreement. 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 − 𝑐ℎ𝑎𝑛𝑐𝑒𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑒𝑛𝑡

1 − 𝑐ℎ𝑎𝑛𝑔𝑒𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
 

Precision (Positive 
predictive value) 

A measure of the proportion of positive 
predictions that were correct. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Sensitivity (Recall) 
 

The proportion of actual positives 
(Metrosideros) that were correctly 
identified by the classifier. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity The proportion of actual negatives 
(not-Metrosideros) that were correctly 
identified by the classifier. 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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4 Results and discussion 
 
The results from the XGBoost and deep learning models applied to the withheld portions of the 
datasets used to test classification with phenology (2019 imagery), without phenology (2017 imagery) 
and classification of the combined datasets are shown in Table 5. 
 
Table 5: Classification results obtained by applying the trained models to the withheld portion of each 
dataset. 

 Classification with 
phenology 

Classification without 
using phenology 

Classification of combined 
datasets with and without 
phenology 

XGBoost 

Accuracy 88.1% 80.0% 84.9% 
Error 11.9% 20.0% 15.1% 
kappa 0.762 0.600 0.698 
Precision (PPV) 0.944 0.818 0.862 
Sensitivity 0.814 0.779 0.832 
Specificity 0.950 0.822 0.866 

Deep Learning 

Accuracy 99.7% 95.3% 98.1% 
Error 0.3% 4.7% 1.9% 
kappa 0.993 0.905 0.961 
Precision 0.997 0.939 0.974 
Sensitivity 0.997 0.969 0.988 
Specificity 0.996 0.936 0.974 

 
 

The XGBoost classifiers showed high levels of accuracy for all three datasets. The strong 
phenological traits of the Metrosideros species (nearly all pōhutukawa in this study) in summer greatly 
improved the classification accuracy, with the model improving to 88.1% compared to the dataset 
without phenology (80.0%). Examination of the variable importance scores extracted from the models 
showed that the rg_ratio metric capturing the ratio of red to green pixels had the highest importance in 
the model utilising phenology (Figure 4). This metric, and the scaled green and blue metrics, likely 
responded to the extensive showers of red flowers present on many of the trees at this time. 
Examining the misclassified canopies from this model showed that many of the misclassified 
Metrosideros spp. canopies showed limited flowering or were small with more background visible 
(Figure 5, a) while the canopies of other spp. incorrectly classified as Metrosideros spp. were often 
reddish or dark in colour (Figure 5, b). This suggests that variables capturing the strong flowering 
patterns drove the high performance of this model but provided poor ability to separate other species 
with reddish or darker canopies. 

In the absence of the most distinctive phenological traits, the XGBoost model performance decreased 
and the model relied heavily on the scaled red values (scaled_red) and textural metrics computed 
from the blue channel (Figure 4). In the 2017 data, there were several hundred non-Metrosideros tree 
canopies with reddish hues while many of the remaining canopies were somewhat greener than the 
blueish-green appearance of the Metrosideros species. The combination of these metrics appeared to 
allow the model to separate out the Metrosideros spp. with a relatively high level of accuracy. The 
misclassified canopies varied considerably, making it harder to understand the causes of these 
failures. Several misclassified Metrosideros spp. appeared to show buds or seed capsules, altering 
their appearance from the other examples (Figure 5, c). Examples of other species misclassified as 
Metrosideros spp. included a range of different canopy types, but some examples appeared to have 
darker green canopies, similar to many of the Metrosideros spp. canopies (Figure 5, d). 
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Figure 4: Plots of scaled variable importance metrics from the XGBoost classification models. Higher 
scores indicated features important to the accuracy of the respective models. 
 
For the combined datasets that included both flowering and non-flowering Metrosideros spp, the 
model accuracy increased modestly to 84.9%. This suggests that the model gained little additional 
advantage from the doubling of the available training data as the performance was roughly the 
average of the two separate models. The combined model had a greater number of variables with high 
importance and the variables selected were largely a combination of the variables highlighted in the 
separate models (Figure 4). Examining the misclassified canopies from the combined XGBoost model, 
it was clear that 2017 imagery without phenology caused the greatest number of misclassifications. 
Over two-thirds of the misclassified canopies were from 2017 and some of the false negatives were 
due to shadows but others were reasonably easy to identify visually (Figure 5,e). Some of the false 
positives were distinctive from Metrosideros spp. but shared a reddish hue (Figure 5, f). 
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Figure 5: a) Examples of Metrosideros spp. canopies incorrectly classified as other species (false 
negatives) by the XGBoost classifier using the 2019 imagery (with phenology). b) Examples of other 
spp. canopies incorrectly classified as Metrosideros spp. (false positives) by the XGBoost classifier 
using the 2019 imagery. c) False negatives from the 2017 imagery (without phenology). d) False 
positives from the 2017 imagery. False positives e) and false negatives f) from the combined XGBoost 
classifier. The bottom row shows the false negative g) and false positive h) from the 2019 deep 
learning classifier alongside the false negatives i) and false positives j) from the 2017 imagery. 
 
 
The deep learning models performed substantially better than the XGBoost models on all three 
datasets. The classifier developed using the dataset with phenology made only 2 mistakes out of 569 
test canopies (Table 5) achieving an accuracy of 99.7%. The ‘loss’ values associated with each 
canopy image allow them to be ranked according to how difficult the model considered classification 
with a high loss associated with misclassified or difficult (lower probability score) canopies. The single 
false negative was of a Metrosideros spp. canopy with few flowers (Figure 5 g) while the single false-
positive image was of a unique canopy not present in the training dataset (Figure 5, h). The feature 
discovery process for deep learning is intrinsic to the model but the classification performance 
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indicated that the model was highly effective at discriminating flowering trees from other species with 
reddish canopies or other flowering species present in the data. Without using the strong flowering, 
the classifier’s performance dropped marginally to 95.3% (Table 5). The false positives often displayed 
similar colour and canopy shape to the Metrosideros spp. canopies. The classifier also appeared to 
struggle more with the canopies affected by the lower quality of the imagery – small, blurry canopies 
without the characteristic appearance visible in other images frequently appeared in the misclassified 
images (Figure 5, i). The model trained on the combined dataset (with and without phenology) showed 
high accuracy (98.1%). All of the misclassified canopies were from the 2017 dataset and once again 
these images showed blurry and indistinct features relative to other correctly classified examples. 

 
 

5 Discussion 

This study demonstrated that deep learning algorithms could detect Metrosideros spp. (nearly all 
pōhutukawa) in the study area with a very high level of accuracy using only 3-band (RGB) aerial 
imagery – with or without the use of phenology to enhance detection. Existing approaches to tree 
species classification from remotely sensed data rely extensively on the use of calibrated multi or 
hyperspectral data that can be expensive and complex to capture over larger areas (Ballanti et al., 
2016; Fassnacht et al., 2016; J. M. Bioucas-Dias et al., 2013). In contrast, simple 3-band aerial 
imagery is routinely captured over large areas, with many areas in New Zealand currently covered by 
this class of data (LINZ, 2019). Our results suggest that these data may be suitable inputs to a large-
scale mapping campaign of this important genus which is threatened by myrtle rust. 

The phenology of tree species has been widely used to enhance remote sensing classification in 
previous research (Dymond, Mladenoff, & Radeloff, 2002; Wolter, Mladenoff, Host, & Crow, 1995). 
However, it is still rare in the literature to attempt classification using only 3-band imagery – with or 
without phenology (Fassnacht et al., 2016). This is primarily because this type of imagery lacks the 
spectral bandwidth required by traditional methods to discriminate species and the few indices that 
can be derived are not widely generalisable as the imagery represents sensor radiance (recorded as 
digital numbers) rather than being standardised to the fraction of incident light reflected from the 
canopy surface (surface reflectance). To overcome this limitation, we derived features such as textural 
metrics and simple band ratios aimed at capturing the bright-red, extensive flowering of these species 
and the characteristic blueish hue and textural properties of the canopies. This appeared successful 
when examining the results from the XGBoost classifier as the model leveraging phenology performed 
well on the validation set. These features were less useful in the absence of extensive flowering and 
the XGBoost model did not perform as well. The performance was still high relative to other examples 
in the literature. For example, Pham et al. (2016) et al. achieved 68.3% classification accuracy of 
pōhutukawa using multispectral satellite data from the Coromandel region and similar machine 
learning methods. The addition of LiDAR-derived features improved this result to 81.7% but 
pōhutukawa were noted to be more difficult to detect than several other species targeted in that study. 
It is likely that having multispectral and LiDAR data would have further improved the XGBoost results 
in our study, but this would come with higher costs for data acquisition, storage and processing. 

Using the distinctive phenology of the target Metrosideros spp. enhanced the classification accuracy 
for both the XGBoost and deep learning models. However, relying on phenology leaves a narrow 
window for data collection and the possibility of missing trees that flower earlier, later or not at all. The 
approach demonstrated in this study used the strong and distinctive flowering characteristics of the 
species alongside ground truth data to identify sample trees in multitemporal imagery. In this way, the 
model was able to be trained to recognise Metrosideros spp. from a much broader range of 
phenological traits and characteristics present at different times of the year. The performance of the 
combined model suggested that the deep learning approach could be used to accurately classify 
Metrosideros spp. under a broad range of conditions. 

The deep learning approach differed in fundamental ways to traditional remote sensing methods. By 
showing these models a substantial number of Metrosideros and other spp. the models effectively 
learn a function mapping the input RGB imagery to a binary outcome. While the models will certainly 
utilise the colour properties of the images, as demonstrated by the near-perfect classification of 
flowering canopies, the learning approach is also capable of capturing harder-to-quantify features. For 
example, the characteristic appearance of the multi-stem canopy, distinctive canopy texture and 
extensive budding are relatively easy for knowledgeable analysts to identify and the deep learning 
models can effectively learn that these or similar attributes are important and distinctive without human 
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input. This makes the models harder to interpret but extremely powerful for complex classification 
tasks. 

In this study, we focused on a binary classification problem (Metrosideros spp. vs. all other species); 
however, deep learning frameworks have been widely and successfully developed to handle 
classification of thousands of different categories (Cui et al., 2018). It is likely that with higher-
resolution imagery capturing finer detail and additional training data the demonstrated approach could 
be expanded to a broader range of species. For example, the omitted white pōhutukawa or other 
species of interest could be included with the addition of sufficient training data. The performance of 
this approach on other species is likely to be determined by two main factors. Firstly, how visually 
distinctive the species in question are and at what resolution these features can be resolved will be 
important. This is especially important for fine-grained classification. For example, separating rata from 
pōhutukawa may require imagery of a resolution that is impractical to achieve from aerial platforms. 
Secondly, the availability of sufficient training data to develop the models is also a crucial factor. While 
the number of samples (1139) in this study was very large in comparison to many other tree 
classification studies (Fassnacht et al., 2016; Pham et al., 2016), this number is quite low by the 
standards of deep learning model development. A corollary of this is that additional samples from a 
broader range of conditions (e.g. from natural reserves or other regions) would enhance the chances 
that the model will generalise well. 

It is important to acknowledge the limitations of the methodology used in this study. One key 
methodological limitation was the need to manually delineate individual tree canopies before training 
and inference could be carried out. This requirement is present in many traditional remote sensing 
approaches to species classification. A common workflow is to use a combination of LiDAR-derived 
elevation or intensity values and multispectral data (especially the NIR band) to identify threshold 
values or object-based rulesets to separate tree canopies from other features in the imagery (M. 
Dalponte et al., 2013; MacFaden, O’Neil-Dunne, Royar, Lu, & Rundle, 2012). Figure 6 shows an 
example of a similar approach applied to a small area containing several trees from this study. While 
effective, this method introduces the need for costly LiDAR data and substantial input from analysts to 
perform the canopy extraction. More complex deep learning frameworks may offer an alternative 
option to overcome this requirement. Object detection and localisation architectures such as RCNN 
(Girshick, Donahue, Darrell, & Malik, 2014) and SSD (Liu et al., 2016) allow networks to be trained to 
simultaneously identify the location of features of interest such as all tree canopies within the image 
and then perform classification to predict the canopy species. Some early research has demonstrated 
success in segmenting tree canopies in urban, semi-urban and rural environments from satellite 
imagery (Iglovikov, Mushinskiy, & Osin, 2017). Segmentation of individual canopies in complex forests 
is likely to be a more challenging task and may force a trade-off between the objective e.g. minimising 
false negatives for a biosecurity response but accept lower segmentation accuracy. Nonetheless, 
deep learning-based segmentation is now the benchmark method in domains where the task is 
similarly challenging, such as medical image segmentation (Litjens et al., 2017; Ronneberger, Fischer, 
& Brox, 2015). 

The high classification accuracies observed in this study must be interpreted with some caveats. 
Although model development followed best-practice by withholding a relatively large validation dataset 
(25% of available data), the models were exposed to the unique characteristics and properties of both 
aerial imagery datasets from which the validation set images were drawn. Deep learning approaches 
differ from traditional remote sensing in that they do not expect or require calibrated or corrected 
imagery and many successful applications use imagery from a wide variety of sources such as UAVs 
or mobile phones. Internally, the models transformed and scaled the input imagery to minimise 
differences in appearance, but this does not guarantee transferability to new, unseen aerial datasets. 
The level of flowering seen in the 2019 dataset varied widely and many trees showed only limited 
flowering. However, the imagery was also sharp and many of the other characteristic features of 
Metrosideros spp. were easily visible in the imagery (e.g. buds, canopy form and hue – Figures 2 & 3). 
This provided additional features for the deep learning models and likely contributed to the high 
accuracy above and beyond the flowering. The 2017 imagery had the same nominal resolution (10 
cm) but had markedly lower quality and detail (Figures 2 & 3). The Metrosideros spp. all exhibited a 
blueish hue in this imagery and some of the textural attributes were still discernible – both of which are 
likely to have contributed to the performance of the deep learning model. For predictions to work in 
new areas, the features learned from these datasets would need to be discernible in the new imagery. 
A brief test conducted by reducing the resolution of some of the imagery (bilinear resampling) showed 
that the accuracy of the combined classifier declined rapidly as the distinctive features were lost, with 
simulated 15 cm imagery showing only a 70% accuracy rate.  
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Figure 6: Example of a canopy height model (CHM) derived from aerial LiDAR in Tauranga to 
segregate individual tree canopies using thresholds applied to the canopy height model compared to a 
threshold of the red-green ratio (R/G) derived from aerial imagery. 
 
 
The resolution of the imagery also placed a limit on the size of the trees that could be classified. Many 
canopies fell between 30-60 pixels in size. This made many of the characteristic traits difficult for a 
human observer to discern and the models would also have had limited information to learn on. While 
this was less of a problem when phenology could be utilised to enhance detection, the 
misclassification seemed to be biased towards smaller canopies. It is very likely that higher-resolution 
imagery would have improved the classification accuracy still further and may enhance the 
transferability of the models. This behaviour is expected as deep learning models generally perform 
well in situations where a trained observer could also be expected to perform well. Outside of this 
domain, for example, where only moderate to low resolution imagery is available, traditional 
multispectral or hyperspectral methods are more appropriate as they attempt to recover and utilise the 
spectral attributes of the canopy that can persist at coarser resolutions. 
 

 

6 Recommendations and conclusions 
In this study, we combined distinctive phenological traits and biosecurity surveillance records to 
develop a high-quality dataset to train and test novel algorithms to detect Metrosideros spp. from 
simple 3-band (RGB) aerial imagery. Both modelling approaches performed well when the dataset 
included distinctive phenological traits (extensive, bright red flowers). However, the deep learning 
algorithm was able to achieve very high accuracies even in the absence of some key traits such as the 
distinctive flowers. The results of this study suggest that deep learning-based approaches could be 
used to rapidly and accurately map certain species over large areas using only 3-band (RGB) aerial 
imagery. Candidate species include those where classification is achievable by an experienced 
analyst using the same input data. The deep learning approach did appear sensitive to image 
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resolution and quality and higher resolution imagery would likely expand the range of species suitable 
for classification using this method. 

Future work should focus on enabling large-scale (regional or even national) mapping of Metrosideros 
spp. to assist stakeholders to identify and map these important species. This would enable monitoring 
and management strategies to understand the long-term impacts of myrtle rust as well as enabling 
other activities such as identifying resistant populations for breeding programmes. To achieve this, the 
following research questions should be addressed: 

• The potential for training and applying object localisation and detection models should be 
explored in a range of settings (e.g. urban and dense forest) to enable canopies to be identified, 
segmented and classified using only RGB imagery. 

• A follow-on study should look to define the limits of generalisability by testing classification using 
a wider variety of data sources and by expanding the training data to include the large number 
of Metrosideros spp. inspected in other areas of New Zealand. 

• The demonstrated approach should be expanded to test the feasibility of performing multi-
species classification possibly using higher-resolution imagery sources (<10 cm). 
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