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EXECUTIVE SUMMARY  
 
Moore, B.R.; Maclaren, J.; Peat, C.; Anjomrouz, M.; Horn, P.L.; Hoyle, S. (2019). Feasibility of 
automating otolith ageing using CT scanning and machine learning. 
 
New Zealand Fisheries Assessment Report 2019/58. 23 p. 
 
 
Knowledge of the age of fish is an integral part of fisheries science, being a key requirement for 
estimating growth, age at recruitment and sexual maturity, longevity, mortality rates, population age 
structure, and age-dependent fishing gear selectivity, all of which are important components of age-
based stock assessments. The current method for determining ages of most fish species relies on 
manually extracting, preparing (embedding, sectioning), and reading otoliths. This process is expensive, 
time-consuming, and can be subject to biases such as variations in age estimations between readers and 
within readers over time. Recent advances in imaging technologies and machine learning suggest that 
automation of at least some aspects of these processes may be possible. This study examined the 
feasibility of automating otolith ageing using CT scanning and machine learning, through a review of 
published work in these areas and trials on New Zealand fish species. 
 
The utility of CT scanning technologies for imaging otolith annular structure was trialled using the 
MARS Bioimaging Ltd X-ray scanning machine housed at the University of Canterbury. Trials were 
undertaken on three species: snapper (Pagrus auratus); hoki (Macruronus novaezelandiae); and ling 
(Genypterus blacodes). Ages of individuals used in the trial were estimated prior to scanning through 
standard ageing techniques. The MARS CT scanner was able to resolve banding patterns, with best 
results generated from sections taken parallel to the distal surface, similar to the process used when 
otoliths are read whole. Spectral analyses revealed varying concentrations of calcium and other minerals 
across the otoliths. Transverse sections through the otolith core showed banding potentially indicative 
of annual growth bands, but the resulting images generally lacked sufficient resolution and contrast to 
detect outermost bands for most individuals. The first growth band was also often difficult to identify. 
Accordingly, ageing trials using systems capable of achieving higher resolutions are warranted. 
 
To investigate the feasibility of using machine learning to estimate age in New Zealand fish species, we 
adapted a pre-trained convolutional neural network (CNN) designed for object recognition to estimate 
age using otolith images obtained via microscopy for snapper and hoki. For each species, the model 
was trained on a collection of images of fish previously aged by human readers (n = 687 and 882 for 
snapper and hoki, respectively). After training, the model gave the same age as the human reader for 
47% of snapper in a test dataset, with a further 35% of ages estimated within 1 year of the human reader 
estimate of age. For hoki, the model gave the same age as the human reader for 41% of individuals. 
 
Our preliminary examination suggests there is significant potential for imaging of otoliths for ageing 
purposes using a variant of CT scanning technology, for automating age estimation from otolith images, 
and for the potential to combine both of these techniques to form a fully automated ageing system. The 
key future research directions to the development of such a system are: 

1. optimise and further evaluate the CNN-based approach used here to automate age estimation 
of snapper and hoki; 

2. investigate the potential for the CNN-based model to automate age estimation of additional 
species from photographic images of sectioned otoliths; 

3. further identify the potential to use otolith scans from CT scanning technologies and, in 
particular micro-CT systems, for imaging otolith annular structure; and 

4. identify the potential to automate ageing from images generated from micro-CT scanning using 
deep learning approaches.  
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1. INTRODUCTION 
Determining an accurate estimate of age of fish is an integral part of fisheries science. Knowledge of 
the age of fish is used to estimate growth, age at recruitment and sexual maturity, longevity, mortality 
rates, population age structure, and age-dependent fishing gear selectivity, all of which are important 
components of age-based stock assessments (Walsh et al. 2014a). For most bony fishes, age is 
determined by enumerating periodically-accreted growth marks in calcified structures, including scales, 
bones, fin rays, and otoliths (Welch et al. 1993, Campana & Thorrold 2001, Zhu et al. 2015). Of these, 
otoliths have received most focus in ageing studies, particularly in recent years. Otoliths are structures 
located in the inner ear cavities of all teleost (bony) fishes that assist in sound detection and are used 
for balance and orientation (Campana & Neilson 1985). Otoliths are composed mainly of calcium 
carbonate (CaCO3), mostly in the form of aragonite. Teleosts possess three pairs of otoliths (sagittae, 
lapilli, and asterisci), with the sagittae generally the largest and the focus of most ageing studies. 
Throughout this report, the use of ‘otolith’ will be synonymous with sagitta, unless otherwise specified. 
 
Ageing fish on the basis of periodically-accreted growth marks (laid daily, seasonally, or annually) is 
achieved using two successive processes: preparation and reading. In the preparation phase of annual 
ageing, otoliths are prepared so that annual bands can be accurately counted. The simplest approach is 
to immerse the whole otolith in a clear liquid, such as water or alcohol solution, illuminate it from 
above, and view it against a dark background, routinely performed using a stereo microscope. This 
method is suitable only if the otoliths are relatively thin and all annual bands can be seen. In many 
species, however, as the growth rate of the fish slows down, the outer growth bands become increasingly 
compressed and difficult to read in the whole otolith. To correctly determine the number of annual 
bands in these cases, alternative approaches, including transverse sectioning, or the ‘break and burn’ 
and ‘burn and embed’ methods currently utilised in New Zealand for snapper, Pagrus auratus (Walsh 
et al. 2014a), are required. Although several laboratory-specific nuances to sectioning exist, the general 
premise is that one or multiple thin (typically 200–400 μm) cross sections are taken encompassing the 
primordium (core) of the otolith. Sections are then fixed onto a microscope slide, covered with a 
coverslip, and then read using a microscope. Reading is then performed by one or multiple readers, and 
images are often taken for documentation, preservation, and quality assurance purposes. 
 
Preparing and reading otoliths can be an expensive and time-consuming task. Recent estimates suggest 
New Zealand processes between 30 000–40 000 otoliths annually, at a cost of over $1,000,000 per year 
on preparation and reading. Moreover, otolith-based age interpretation is inherently subjective and 
uncertain. Individual readers may interpret the same otolith differently, and readers can also change 
their interpretations through time. Otolith collections often cover multi-decadal time periods, and 
differences between and within readers can result in long-term changes in interpretation, which can 
introduce bias into stock assessments. Improving the consistency of ageing through automated age 
determination would increase the replicability of age determination and the reliability of management 
advice. 
 
Recent developments in imaging technology and machine learning may make it possible to improve the 
efficiency of many aspects of ageing, with potential to reduce both biases and long-term costs. For 
example, a range of alternative approaches to hard part (i.e., otoliths in fish, vertebrae in elasmobranchs) 
imaging have recently been undertaken to age commercially-exploited fishes and elasmobranchs, 
including X-ray imaging (Liu et al. 1999) and micro-computed topography (micro-CT) (Parsons et al. 
2018). CT scanning technologies potentially offer a powerful approach to otolith imaging for ageing 
purposes. CT scanning uses X-ray technology to produce image slices through objects, which can be 
reconstructed into virtual, three-dimensional (3D) images that can be rotated and viewed in any 
orientation (Geraghty et al. 2012).  
 
Automated image analysis using machine learning has the potential to provide more reliable, consistent, 
and rapid age estimates. Such methods have been explored for many years (e.g., Robertson & Morison 
1999, Takashima et al. 2000, Fablet & Le Josse 2005, Fablet 2006); however, they have generally been 
found to be less precise than those obtained from experienced otolith readers (e.g., Robertson & 
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Morison 1999, Fablet & Le Josse 2005). In the last 2–3 years, there has been considerable progress in 
machine learning due to improved algorithms, greater computing power, and wider availability of 
labelled, digital training data. Many new applications have become possible, including automating 
otolith age estimation (e.g., Moen et al. 2018).  
 
The current project aimed to explore the feasibility of using CT scanning and machine learning 
technologies to automate aspects of otolith ageing. The objectives of this project were as follows: 

1. identify the potential to use otolith scans from CT-scanning technologies, such as the MARS 
CT scanner, for imaging otolith annular structure; 

2. identify the potential for machine learning techniques to automatically age fish using available 
photographic images; and 

3. develop a proposal that fully scopes and costs the further development of these methods. 
 
For Objectives 1 and 2, we begin by presenting a review of the published literature on each technique, 
to assess whether such approaches have been conducted elsewhere, and, if so, whether lessons can be 
learned from those studies. We then follow this review with trials on New Zealand fish species. 
 

2. REVIEW OF PREVIOUS STUDIES 
2.1 Use of CT technology to examine the skeletal or non-skeletal properties of fishes 
A number of studies have used CT technology to examine the skeletal or non-skeletal (e.g., soft tissue) 
properties of fishes, with direct implications for the utility of imaging otoliths. Metscher (2009) 
demonstrates the broad applicability of contrast stains for imaging various animal tissues using X-ray 
micro-CT approaches. Although the focus was on soft tissues, otoliths are clearly visible in scanned 
images of paddlefish (Polyodon spathula) and pike (Esox lucius) hatchlings (figures 2 & 5 in Metscher 
2009). Otoliths in situ are also visible in the recent, high-resolution X-ray, CT-based re-description of 
the tuvirão, Gymnotus inaequilabiatus (Maxime & Albert 2014), and in a range of other studies 
employing CT imagery (e.g., Bignami et al. 2013, Edds-Walton et al. 2015, Felix et al. 2016, Fisher & 
Hunter 2018, Schulz-Mirbach et al. 2018). Although no attempt was made to age otoliths in any of these 
studies, these results demonstrate that in situ observation of otoliths using CT scans is possible.  
 
Long & Snow (2018) used CT scanning in conjunction with oxytetracycline marking to examine the 
formation of otoliths in spotted gar, Lepisosteus oculatus. The three-dimensional rendered images 
generated were of sufficient resolution to reveal that otoliths (sagittae and lapilli) were not formed at 
hatching, but rather formed as loose collections of otoconia at 1-day post-hatch (dph), fusing and 
hardening into single crystals by 4 dph (Long & Snow 2018).  
 
To our knowledge, there have been no published studies on the utility of imaging fish otoliths for annual 
age estimation using CT scanning technology. However, some work has been done on elasmobranchs. 
In one of the first applications, Geraghty et al. (2012) assessed the use of micro-CT as a valid and 
repeatable alternative approach for age determination in spinner shark, Carcharhinus brevipinna. They 
found that the quality and resolution of micro-CT outputs were sufficiently high such that growth bands 
were visible for each of four image types (whole vertebrae, radiograph, half vertebrae, and sagittal 
section), with comparable clarity in growth bands between methods. Moreover, reads from micro-CT-
generated sections provided comparable and repeatable age counts relative to those from manually- 
produced sections across a wide age range (2–19 years), with no systematic bias in age counts between 
methods (Geraghty et al. 2012).  
 
High-resolution X-ray CT was used by Parsons et al. (2018) to provide images of vertebrae to estimate 
age in spiny butterfly ray, Gymnura altavela, from the north Atlantic. Although annuli counts from 
reconstructed images were not tested against those from sectioned vertebrae, CT images revealed 
interpretable growth bands that were read with high precision between and within readers.  
 
Francis et al. (2018a, 2018b) trialled the use of micro-CT scanning technology for imaging vertebrae to 
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estimate age in common electric ray (Tetronarce nobiliana), blind electric ray (Typhlonarke aysoni), 
carpet shark (Cephaloscyllium isabellum), and four species of deepwater shark, namely seal shark 
(Dalatias licha), Owston’s dogfish (Centroscymnus owstonii), longnose velvet dogfish (Centroselachus 
crepidater), and Plunket’s shark (Scymnodon plunketi). Growth bands were not visible in most 
specimens of deepwater shark, although some seal shark specimens exhibited lines in the corpus 
calcareum that may represent growth bands, as well as wavy lines of unknown significance in the 
intermedialia, and indistinct bands were sometimes visible on the central cone of Plunket’s sharks 
(Francis et al. 2018b). Based on the observation that growth bands were evident in most specimens of 
carpet shark, common electric ray, and blind electric ray, these authors concluded that micro-CT 
imaging has utility in revealing the structure of hard parts and the growth bands, particularly as a 
comparative tool and aid for band interpretation (Francis et al. 2018a). 
 
 
2.2 Machine-learning approaches to estimating fish age from otolith images 
Machine-learning approaches to estimate fish age from otolith images have been trialled since the mid-
1990s, beginning with the development of artificial neural networks (ANN). A neural network consists 
of layers of simple computational units (neurons), arranged so that the output of the units in one layer 
feeds into the inputs of the next layer’s units. Each unit calculates a weighted sum of its inputs and 
applies a function that introduces non-linearity into the system (Malde et al. 2019). The weights of the 
inputs of each unit constitute the parameters to be learned. In artificial neural networks this is usually 
achieved using back propagation (Rumelhart et al. 1986) to calculate the gradient for a cost function, 
which is then minimised iteratively using some variant of gradient descent (Malde et al. 2019).  
 
In one of the first applications of artificial neural networks to estimate fish age, Robertson & Morison 
(1999) tested ANN models as a means of objectively replicating the age estimates of an experienced 
human reader in three species of fish, including two species of sparid (black bream, Acathopagrus 
butcheri, and snapper) and one merlucciid (hoki, Macruronus novaezelandiae). Age estimates 
generated from the ANN structure correctly classified the age of fish for black bream and snapper at an 
accuracy level approaching that of an experienced reader, although there was evidence of 
underestimation of ages of the oldest fish, and their results were potentially biased by a lack of old fish 
(maximum ages examined were 9 years and 12 years for black bream and snapper, respectively). In 
contrast, error rates for hoki were high, with the model failing to classify more than 5% of fish correctly 
(Robertson & Morison 1999). Later, Robertson & Morison (2001) found that precision of age 
predictions of otoliths using neural networks from geometric features could be improved by using 
biological features, but the results obtained were still less precise than those obtained from experienced 
readers.  
 
Multiple statistical learning techniques, including both neural networks and support vector machines, 
were used by Fablet & Le Josse (2005) to automate age estimation of plaice, Pleuronectes platessa). 
They observed correct classification rates that compared favourably with inter-reader agreement rates, 
although it should be noted that only 5 age classes (1 to +5) were used in their study. 
 
Work on neural networks in the 1980s and 1990s was limited by low computational power, lack of large 
data sets for training, and limitations in machine-learning algorithms (Malde et al. 2019). In recent 
years, increased parallel processing abilities (e.g., by using GPUs), lowered costs of computing 
hardware, distributed computing, and advances in machine-learning algorithms have led to the 
construction of much larger and deeper neural networks than before, resulting in the emergence of deep 
learning approaches, where deep neural networks learn high-level abstractions in data by utilising 
hierarchical architectures (Schmidhuber 2015, Guo et al. 2016). Deep neural networks have been shown 
to outperform more conventional methods across a range of problems (Krizhevsky et al. 2012), 
increasing their applicability to complex tasks.  
 
Recent studies using deep learning approaches have demonstrated significant utility for automating fish 
image analysis (e.g., Allken et al. 2019), including otolith images for age estimation. To our knowledge, 
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Moen et al. (2019) present the only study published to date to use deep learning of otolith images to 
estimate fish age in their exploration of the potential for a CNN to reliably estimate age from images of 
whole otoliths of Greenland halibut, Reinhardtius hippoglossoides. They observed precision in age 
estimations comparable with that obtained by human experts, with the age of 29% of otoliths estimated 
correctly, and another 38% estimated within one year of the read age. There was, however, a general 
tendency for the model to underestimate the age of old (more than 15 years) fish (Moen et al. 2019), 
potentially resulting from the relatively low abundances of these individuals in the sampled population, 
and thus the training dataset. 
 

3. METHODS 
3.1 Otolith imaging via CT scanning 
The utility of CT scanning technologies for imaging otolith annular structure was performed using the 
MARS Bioimaging Ltd X-ray scanning machine housed at the University of Canterbury (see 
www.marsbioimaging.com). The system uses a photon-counting detector (Medipix3RX) to produce 
spectral image slices through objects, which can be reconstructed into three-dimensional images that 
can be rotated and viewed in any orientation.  
 
Trials were undertaken on three species: snapper, hoki, and ling (Genypterus blacodes). Ages of all 
individuals used in the trial were estimated prior to scanning through standard ageing techniques (e.g., 
Walsh et al. 2014a, Horn & Sutton 2017).  
 
Otoliths were adhered to the sample holder using a temporary adhesive to ensure they did not move 
during data acquisition (Figure 1). The scan protocol was optimised by varying the magnification, 
filtration, and the energy set-up. The final runs used a 120 kVp spectrum and a 1.96 mm aluminium 
filter to minimise beam hardening, while allowing the detector to capture the low energy photons. Four 
energy thresholds operating in the same mode along with the arbitration counter were set across the 
spectrum to ensure there are sufficient counts at each energy bin. This is particularly important in the 
first energy bin where the capture of low energy photons aids identification of calcium-like material, 
facilitating identification of areas of fast and slow growth (and therefore, potentially, growth bands). 
The scan protocol was calibrated using a set of calcium solutions, water, and lipid to capture a true 
signal in the calcium channel for each otolith sample. All optimisation tests were conducted using the 
otoliths from young (estimated 2–3 year-old) snapper. 
 
The scanning time for each sample varied from approximately 40 mins to around one hour depending 
on the length of sample examined, with the first 8–10 minutes allocated to warming up the X-ray tube. 
 
 
 
 

http://www.marsbioimaging.com/
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Figure 1: Hoki otolith on a small sample bed in the MARS scanner (credit: MARS Bioimaging Ltd). 

Output data from the MARS system is in DICOM format. This includes the raw data (representing 
photon counts), three-dimensional attenuation maps (linear attenuation cm-1), and coloured, three-
dimensional material maps (density mg/mL). Data files were post-processed with MARS Vision 
software and Image J (Abramoff et al. 2004), using associated plugin routines that provided both serial 
sections and video animations for further analysis. MARS Vision software enables three-dimensional 
and two-dimensional visualisation of the specimen and facilitates extraction of virtual sections at chosen 
orientations through the specimen using digital clipping planes. The images presented herein are mostly 
extracted from the default mode of MARS Vision. 
 

3.2 Age estimation via machine learning 
3.2.1.  Estimating age of snapper and hoki 
We explored the utility of machine learning using CNNs to estimate fish age using two test species: 
snapper and hoki. All snapper and hoki otoliths used were previously aged by expert readers following 
the methods of Walsh et al. (2014a) and Horn & Sutton (2017), respectively (= observed age), and an 
image was taken of each otolith section using a dissecting microscope illuminated with transmitted light 
(Figure 2). The growth increments on the otoliths of these species vary in clarity, from quite clear in 
snapper to moderately difficult in hoki (Walsh et al. 2014a, Horn & Sutton 2017). 
 

 
Figure 2: Examples of snapper and hoki otolith images used in the machine-learning trial. 
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We chose the TensorFlow (https://www.tensorflow.org/) and Keras (https://keras.io/) libraries to 
implement and train our models. TensorFlow is currently the largest and most popular library available 
for deep learning. Keras is a high-level API which runs on top of TensorFlow and simplifies 
implementation of TensorFlow models. We used a transfer-learning technique to develop a CNN for 
otolith age estimation. Transfer learning is the process of repurposing a machine learning model that 
has been pre-trained for another, related, task. Specifically, we started with the Inception V3 model 
from Google, pre-trained on the ImageNet database (http://www.image-net.org/). We removed the final 
classification layer, leaving what is effectively a spatial feature extractor, and attached a new regression 
layer. This design is shown in Figure 3 below. At this point, the neural network is trained to minimise 
the mean squared error (MSE) between predicted ages and human expert age estimates, using the otolith 
images as inputs. Various training metaparameters contribute substantially to final accuracy by using a 
stochastic gradient descent (SGD) optimiser and by leaving all network layers as trainable. 
 
The CNN designed above was trained using 687 snapper otolith images and evaluated. This process 
was then repeated using 882 hoki otolith images. 

 

 
Figure 3: Neural network architecture with the InceptionV3 convolutional layers connected to a neural 
network regressor. 

We applied standard image augmentation approaches to the training dataset. Augmentation is an 
important technique for training deep learning CNNs on limited datasets. This process applies a set of 
random transformations that preserve class, whilst artificially inflating the training data set size. In 
doing so, it is unlikely that the classifier will encounter the exact same input twice and is thus less likely 
to overfit the data. Transformations applied included: 

• rotations in the range -30 to 30 degrees; 
• flipping images vertically and horizontally; and 
• contrast adjustments by randomly scaling the RGB channels (Figure 4). 

 

https://www.tensorflow.org/
https://keras.io/
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Figure 4: Two examples of random image augmentation on an image of a snapper otolith. 

The training of the neural network for snapper otolith age prediction was done over 10 hours using a 
GTX 1080 Ti Nvidia graphics card. This model of graphics card is benchmarked to perform 10 TFLOPS 
on matrix multiplication workloads such as neural network training. In practice, performance is 
approximately 100x greater than a traditional central processing unit (CPU) making a graphics 
processing unit (GPU) a necessary part of training neural networks. A similar approach was undertaken 
for hoki, although due to time constraints the neural network for this species was trained for 
considerably less time (50 iterations, equating to approximately 50 minutes). The CNN was then 
evaluated with test datasets of 77 snapper otolith images and 99 hoki otolith images. Performance of 
the CNN to correctly assign ages was assessed via the mean squared error (MSE), root mean squared 
error (RMSE) and mean absolute error (MAE).  
 
3.2.2. Image feature analysis 
Experiments were performed to investigate which features in the otolith images are important to 
correctly predict the otolith age. In particular, we tested to what degree different aspects of image 
processing affected the resulting age estimation. Features trialled included the following: 

• jpg exportation, to determine whether the artefacts introduced when the image is exported as 
jpg will impact the prediction;  

• greyscale vs. colour, to determine whether colour information had an effect on the prediction; 
• rescaling, to determine whether lower resolution images could be used; and 
• masking, whereby various parts of the image are masked to determine the important parts of 

the image to the network’s age estimation. 
 
For these experiments, a snapper otolith image with a recorded age of 7 years was used. The predicted 
age of the unaltered otolith image was 7.03 years. It should be noted that these feature analysis 
experiments were done using one image and one neural network due to time constraints. Accordingly, 
these experiments are more indicative of potential future research, rather than proven results. 
 

4. RESULTS 
4.1 Otolith imaging via CT scanning  
CT scans of otoliths from snapper, hoki, and ling are shown in Figures 5–11. Slices viewed from the 
distal surface (i.e., sulcus side down) sometimes exhibited growth bands, although the first growth band 
and outermost growth bands were often difficult to identify (Figures 5 & 6). Layers in the calcium 
channel were evident in most otoliths, but their presence was highly variable across different axes of 
the otolith (Figures 7–9) and are unlikely to represent annual growth bands. 
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Figure 5: A slice parallel to the distal surface of a snapper otolith from a 47 cm fork length specimen with 
an estimated age of 7 years. Growth bands (estimated 6–7) evident through the CT scan are indicated by 
yellow arrows. Colours reflect different concentrations of calcium (credit: MARS Bioimaging Ltd).   

 

 
Figure 6: A slice parallel to the distal surface of a ling otolith from a 66 cm total length specimen with an 
estimated age of 5 years. Growth bands (5) evident through the CT scan are indicated by yellow arrows. 
The adhesive is evident in the bottom right-hand corner (credit: MARS Bioimaging Ltd). 
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Figure 7: Image of a hoki otolith from a 93 cm total length specimen (estimated age = 11 years) in advanced 
3D rendering mode showing layers in the calcium channel (credit: MARS Bioimaging Ltd). 

 

 
Figure 8: Image of a hoki otolith from a 93 cm total length specimen (estimated age = 11 years) in magnified 
view in simple rendering mode layers in the calcium channel (credit: MARS Bioimaging Ltd). 

 

 
Figure 9: Image of a snapper otolith from a 44 cm fork length specimen (estimated age = 7 years) displaying 
layers in the calcium channel in simple rendering (left) and advanced rendering (right) modes (credit: 
MARS Bioimaging Ltd). 

Transverse sections through the otolith core showed banding potentially indicative of annual growth 
bands; however, resulting images generally lacked sufficient resolution and contrast to detect outermost 
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bands for most individuals (Figures 10 & 11). Spectral analyses revealed different concentrations of 
calcium within the otoliths, but were generally of insufficient resolution to differentiate fast growth 
areas from slow growth areas (and thus detect annual growth bands), even in very young fish (Figures 
12 & 13). 
 
 

 
Figure 10: Image of a ling otolith from a 74 cm total length specimen (estimated age = 7 years) in different 
views of MARS Vision software. Top left: calcium layers formed through the otolith (yellow arrows). Top 
right and bottom left images show the axial and coronal views (credit: MARS Bioimaging Ltd). 
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Figure 11: Images of a transverse section of a ling otolith from a 74 cm total length specimen (estimated 
age = 7 years) in MARS Vision software (top) and under a dissecting microscope (bottom). The expected 
location of growth bands in the CT-derived image are indicated by pink arrows (credits: a) MARS 
Bioimaging Ltd, b) Peter Horn).  

 

 
Figure 12: A transverse view sliced through the presumed otolith core of a snapper otolith (estimated age 
= 2–3 years old). Colours reflect different concentrations of calcium (credit: MARS Bioimaging Ltd). 
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Figure 13: A transverse view sliced through the presumed otolith core of a hoki otolith from a 93 cm total 
length specimen (estimated age = 11 years). Colours reflect different concentrations of calcium (credit: 
MARS Bioimaging Ltd). 

 
4.2 Age estimation via machine learning 
4.2.1.  Estimating age of snapper and hoki 
The distributions of snapper predicted ages for both the test and training datasets generally 
approximated that of the observed ages (Figure 14, Table 1). In the test dataset, the ages of 
approximately 47% of snapper otoliths were estimated correctly using the CNN, and a further 35% of 
age estimates were within 1 year of the observed age. Age bias plots revealed the CNN tended to over-
estimate the age of young snapper and underestimate the age of older snapper (Figure 14).  
 

 
Figure 14: Histogram of differences in annuli counts (top) and age bias plots (bottom) between annuli 
estimations via machine learning and sectioned image interpretation for training (left) and testing (right) 
datasets for snapper. 
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Table 1: Neural network performance metrics for snapper, where MSE is mean squared error, RMSE is 
root mean squared error, and MAE is mean absolute error. 

Metric Training Dataset Testing Dataset 
MSE 0.197 1.203 
RMSE 0.444 1.097 
MAE 0.329 0.799 
R2 0.994 0.960 
Accuracy 536/687 (78.0%) 36/77 (46.7%) 

 
The training data accuracy for hoki was lower than snapper (40.6% cf 78.0%; see Table 1, Table 2). 
The difference in training data accuracy was likely due to the hoki neural network being trained for 
significantly less time (50 iterations, equating to about 50 minutes), and that growth bands in hoki were 
typically more diffuse than those in snapper training data (Horn & Sutton 2017). However, the accuracy 
of age estimations in the testing data were similar for snapper and hoki, with accuracy slightly less than 
50% (see Tables 1 & 2). This likely results from the smaller sample sizes in the training dataset and the 
wider age range of snapper in both datasets, relative to hoki. 
 
Table 2: Neural network performance metrics for hoki, where MSE is mean squared error, RMSE is root 
mean squared error, and MAE is mean absolute error. 

Metric Training Dataset Testing Dataset 
MSE 0.739 1.310 
RMSE 0.875 1.144 
MAE 0.935 0.850 
R2 0.923 0.84 
Accuracy 358/882 (40.6%) 41/99 (41.4%) 

 
 
4.2.2.  Image feature analysis 
Analysis of various aspects of image processing revealed contrasting results. Jpeg exportation had little 
effect on the predicted age of the single snapper otolith tested (7.02 years; Figure 15a). Changing the 
image from colour to greyscale resulted in an overestimation of age (9.16 years; Figure 15b), likely due 
to the neural network not being exposed to greyscale images during the training process.  
 
Resizing the image revealed that some level of interpretation was possible down to 64x64 (6.33–7.59 
years; Figure 16), breaking down at 32x32 (9.66 years; Figure 16d).  

 
Figure 15: Image of a 7-year old snapper otolith after jpeg compression (a) and conversion to greyscale 
compression (b), with the predicted age from the neural network. 
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Figure 16: Image of a 7-year old snapper otolith after resizing, with the predicted age from the neural 
network. 

 
Masking experiments revealed the model performed best when the image included as much information 
as possible (Figure 17). The critical requirement was for the image to include the axis from the 
primordium to the otolith margin on the ventral rim of the sulcus acusticus (Figures 17a & 17d).  
 

 
Figure 17: Image of a 7-year old snapper otolith after masking out sections, with the predicted age from 
the neural network.  
 

5. DISCUSSION 
5.1 Otolith imaging via CT scanning  
Our trial using snapper, hoki, and ling otoliths revealed that the MARS CT scanner was able to detect 
and image otolith annular structure, although the resolution of the resulting images from this particular 
scanner was generally insufficient for ageing purposes across age classes. Best results were generated 
from sections taken parallel to the distal surface, similar to the process used when otoliths are read 
whole. In older samples, the outer growth bands become increasingly compressed and difficult to 
interpret. For example, successive paired growth bands (i.e., fast and slow growth bands) in snapper, 
considered to be a relatively ‘easy’ species to age because of the occurrence of distinct patterns of fast 
and slow growth bands in otoliths, are typically separated by less than 50 μm in 10+ year old individuals 
and can be as small as 20 μm in older individuals (NIWA, unpublished data). The nominal resolution 
of the MARS system used is 70 μm (M. Anjomrouz, pers. comm.) 
 
Resolution issues may be resolved by using a micro-CT scanner to generate otolith images. Though not 
previously trialled for ageing fish otoliths, micro-CT scanners have shown potential for ageing 
elasmobranchs (Francis et al. 2018a), with comparable estimates of age to those by human readers 
(Geraghty et al. 2012, Parsons et al. 2018). Resolutions of available micro-CT scanners are as high as 
0.35 μm (e.g., Bruker SkyScan 1272 desktop MicroCT held at the Auckland Bioengineering Institute, 
University of Auckland, www.auckland.ac.nz/en/abi.html), compared with medical CT scanners, 
which, at the time of writing, have best resolutions of around 50–70 μm. It should be noted that some 

http://www.auckland.ac.nz/en/abi.html
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medical micro-CT scanners optimised for scanning small live animals are available (du Plessis et al. 
2017).  
 
For CT scanning to augment or replace human otolith preparation, the resulting images must be of 
appropriate resolution and quality to interpret growth bands at an equal or lower cost than current 
preparation techniques. Assuming image resolution issues can be resolved via micro-CT technology or 
further development of the current MARS system, the greatest limitation of this method is cost. In the 
current study, use of the CT scanner cost $1,500 per day (excl. GST), with optimised scan times for an 
individual otolith varying from approximately 40 mins to around one hour depending on the length of 
sample examined. At the time of writing, costs for the University of Auckland micro-CT scanners were 
somewhat lower at $85 per hour for instrument and operator, with image reconstruction and analysis 
additional to this. Further work is required to assess the scan time of micro-CT systems, whether 
efficiencies can be achieved such as processing multiple samples at the same time and/or reduced scan 
times and, if so, the cost-benefit implications.  
 
Assuming comparable age estimates between CT-derived otolith images and human-generated otolith 
images can be obtained, CT scanning has several distinct advantages over manual sectioning and 
reading of otoliths. First, it is a non-destructive technique, allowing for unlimited multiple virtual 
sectioning from unlimited angles and perspectives. Moreover, otoliths are preserved whole and, 
therefore, are available for comparative studies as new methods are developed with advances in 
technology (Parsons et al. 2018) or are available for alternative applications (e.g., paired elemental and 
isotopic studies to discern movements and stock structure) to be conducted using the same 
specimens.  In addition, variables inherent to manual processing, such as the width of sections or the 
location where they are taken, are eliminated because the digital sectioning of the virtual vertebrae can 
be precisely specified at the desired width or location. Finally, the low intrinsic X-ray contrast of non-
mineralised tissues (Metscher 2009) means that otolith samples can be scanned in an uncleaned state, 
and potentially in situ, without affecting the quality or resolution of the output, substantially reducing 
sample processing time for embedding and sectioning. It is important, however, that researchers 
establish a standardised protocol to maintain consistency of angle and perspective for all otoliths when 
ageing individuals of a particular species, as with manual sectioning (Geraghty et al. 2012; Parsons et 
al. 2018). There is also a need to develop methods to optimise the speed and efficiency of CT scanning. 
 
 
5.2 Age estimation via machine learning 
Our preliminary trials on snapper and hoki, despite being limited by small sample sizes of the training 
datasets, revealed strong potential for using deep learning CNN-based approaches to predict ages of 
fish from otolith images. For snapper, and to a lesser extent hoki, the Inception-3 network estimated 
ages with relatively strong precision that were close to human expert age estimations despite minimal 
image or model optimisation, strongly supporting the potential of the method.  
 
This study used fish aged up to 27 years for snapper and 18 years for hoki. Both species can live longer, 
with maximum ages in New Zealand waters estimated to be 67 years for snapper (Walsh 2008) and 25 
years for hoki (Horn & Sutton 2017), although such old fish are rare in catches. The ability of the CNN 
to successfully estimate the age of older fish remains largely untested (and it would likely fail in its 
current form, due to the lack of any such images in the training dataset). The performance of the CNN 
in the test sample for snapper suggests a small but consistent downward bias for the oldest age classes, 
resulting in an underestimation of age. A similar bias was observed by Moen et al. (2019), where a clear 
tendency for their CNN-based model to predict lower ages for older individuals when compared with 
age estimation by human readers was evident. Future studies should ensure sufficient sample sizes of 
older age classes are included in both the training and testing datasets. Alternatively, one way to mitigate 
this is to implement a cost function that weights age classes evenly, i.e., each age class inflicts the same 
cost (Shen et al. 2015; Moen et al. 2019). 
 
Although we did not undertake an analysis of those instances where the CNN failed to correctly predict 
age, a preliminary set of experiments revealed that image inconsistencies could impact the results. For 
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example, image colouration (or rather the removal of colour), scaling, and masking properties all had 
significant effects on the predicted age from the CNN for the single snapper otolith trialled. In this 
preliminary examination, we used available digital photographic images that often varied in their 
quality, lighting, and orientation. For hoki in particular, oversaturation of light (see Figure 2) often 
masked the otolith core, and potentially the innermost growth bands. Although some of these aspects 
(e.g., image orientation) were resolved during augmentation, our results suggest that if the image 
capture process could be standardised (by using consistent equipment, optical range, lighting 
conditions, etc.) then the ability for the model to predict ages could be improved. Increasing the sample 
sizes of the training datasets is also likely to improve the precision of the age estimates. Further 
experiments are warranted to examine these issues. 
 
Recent estimates suggest that reading accounts for approximately half of the costs involved with age 
estimation from extracted otoliths for inshore fish species in New Zealand, with preparation accounting 
for the remaining half (Jeremy McKenzie, NIWA, pers. comm.). The CNN-based machine learning has 
the potential to considerably reduce costs involved with age estimation, even if otoliths need to be 
extracted, processed and imaged. Moreover, training otolith readers and achieving consistency among 
readers can be time-consuming and costly processes; much of the cost could be negated using an 
automated reading approach. Perhaps most significantly, the approach holds considerable promise for 
reducing problems associated with otolith reading by trained human readers, such as when an individual 
reader changes their interpretation over time and differences in interpretation between readers. 
 
CNN-based approaches offer considerable potential for increasing the efficiency of age estimations 
whilst maintaining precision and human control over the ageing process. As the model provides a 
quantified level of confidence (the model output) for each age estimate, outputs can be screened to 
discriminate samples for which this confidence is low. Samples that produce low model outputs could 
then be examined by an expert reader or readers to determine the age class. This would eliminate the 
need for human experts to read ‘easy’ otoliths, whilst maintaining human-based decision control over 
more ‘difficult’ otoliths.  
 
 
5.3 Potential for applying machine learning to otolith CT images 
Advances in the fields of computer tomography and machine learning in recent years indicate that it 
may be possible to automate many aspects of fish ageing, with the potential for significant cost and time 
savings and improved consistency. Greater benefits may be obtained by combining both approaches. 
Future experiments are thus required to assess the performance of CNN-based age estimations (relative 
to human readers) from CT-derived images.    
 
Ultimately, it may be possible to automate the entire process, by scanning a whole fish using CT 
technology (e.g., along a conveyor belt) and subsequently estimating its age using a machine-learning 
approach. Current technologies, however, are insufficient for this purpose. The chamber size for the 
MARS systems used in the current study is 280 mm by 100 mm, whereas the maximum object size for 
the Bruker SkyScan 1272 system is 75 mm by 80 mm. However, considerable development is occurring 
in this area of technology; e.g., MARS Bioimaging Ltd is currently developing an orthopaedic imaging 
system capable of scanning a human arm (albeit with an 80 μm voxel size; 
https://www.marsbioimaging.com/mars/wp-content/uploads/2018/07/MARS_Electronic.pdf). 
 
To understand the required specifications for any imaging system designed for otolith ageing, it will be 
necessary to perform experiments to better understand which features the CNN relies on to perform 
ageing. When automating a process previously performed manually, it is tempting to imitate the same 
steps previously used by humans. In this case, the conventional manual approach is to view and count 
otolith growth bands. So, initially, it may seem reasonable to attempt to automate the imaging of an 
otolith with CT, such that the bands are resolved, and then automate the counting process. However, 
this may forego other, better, approaches which are now enabled by the use of machine learning. For 
example, it may not be necessary to image the otoliths at resolutions sufficient for human viewers to 
resolve, because the CNN may be able to arrive at an age estimate without directly counting bands. 

https://www.marsbioimaging.com/mars/wp-content/uploads/2018/07/MARS_Electronic.pdf
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Knowledge of this could potentially relax the imaging requirements enormously and may even allow 
fish ageing with lower resolution, high speed CT. 
 

6. MANAGEMENT IMPLICATIONS / PROPOSED RESEARCH 
 
Our preliminary examination, based on a review of the scientific literature and trials on New Zealand 
fish species, suggests there is significant potential to use CT scanning technology to image  otoliths,  to 
automate age estimation from otolith images, and to combine these techniques to form a fully automated 
ageing system. Below, in the form of a research proposal, we present the key next steps for improving 
and implementing these processes for ageing of New Zealand’s exploited fish species. 
 
6.1 Short-term research objectives 
 
Objective 1: Optimise and further evaluate the convolutional neural network (CNN)-based model 
developed in the project ‘Feasibility of automating otolith ageing using CT scanning and machine 
learning’ to automate age estimation of snapper and hoki.  

The first requirement of optimising the CNN approach trialled in the current study will be to improve 
the quality of images. For both snapper and hoki, digital images of otoliths (n = 2000–4000 per species) 
will be taken using a standardised protocol, with consistent equipment, lighting conditions, image size, 
and orientation. Care will be taken to ensure the images span a wide range of fish sizes, ages, sexes, 
and collection locations. Once images are optimised, further development of the model will be 
undertaken. In particular, images will be manipulated to determine which features affect ageing, to 
understand how the CNN uses information and to identify ways to improve the process.   
 
The performance of the optimised CNN model to estimate age for both snapper and hoki will be 
evaluated by comparing estimates of age derived from the CNN model with previous age estimates 
achieved via conventional microscopy using current standardised approaches to assess within and 
between reader performance, including age-bias plots, indices of average percent error (IAPE), and the 
coefficient of variation (CV) (e.g., Horn & Sutton 2017). The performance evaluation will investigate 
potential covariates that may affect ageing success: e.g., fish size, otolith size, sex, sample site, reader-
assigned age, reader-determined cohort, assigned readability score. The proposed budget includes staff 
time to generate a library of optimised otolith images for snapper and hoki (n = 4000 per species), 
optimisation of the CNN model, model performance evaluation, data analysis, and reporting. 
 
Indicative cost:  $140,000 NZD (excl. GST). 
 
Note: Costs for these components could be considerably reduced should this work occur following the 
completion of Objective 1 of the proposed project SAM2019-02 ‘Development of imaging analysis 
techniques to determine ages from otoliths’ (assuming snapper and hoki are used in SAM2019-02), 
subject to the availability of the resulting images. 
 
 
Objective 2: Investigate the potential for the CNN-based model to automate age estimation of 
additional species from photographic images of sectioned otoliths. 

Following optimisation of the approach for snapper and hoki using the methods outlined above, trials 
will be conducted on additional fish species. Trials will focus on the key species currently aged as part 
of routine monitoring and assessments, including ling, hake, Antarctic toothfish (Dissostichus 
mawsoni), tarakihi (Nemadactylus macropterus), and southern blue whiting (Micromesistius australis), 
with samples from the Fisheries New Zealand otolith collection, currently stored at NIWA, Wellington. 
For each species, a robust dataset of sectioned otolith images (n = 2000–4000, where available) will be 
generated, with care taken to ensure that a wide range of age classes and any spatial and temporal 
variation present is included, and that digitisation techniques are standardised as best as possible. Each 
image used by the CNN model will be accompanied by a final estimate of age from human reader(s) 
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obtained using standardised protocols. These estimates will then be compared with previous age 
estimates achieved via conventional microscopy (Walsh et al. 2014b, Horn & Sutton 2017) using 
current standardised approaches to assess within and between reader performance (including age-bias 
plots, IAPE, and CV). Because the testing set must be sufficiently large to generate statistically valid 
comparisons, we will use data from previous reader comparisons to determine the required sample sizes. 
Where possible, we will seek to include otolith images from previous reader comparisons in these trials.  
 
Just as an experienced human reader can quickly learn to read a new species, the CNN is expected to 
require progressively fewer images to learn each new species. To optimise performance of the CNN it 
may be advantageous to pool data from all species prior to training the model. This may help mitigate 
the challenge posed by the relatively small training data sets. Alternatively, the model may then be less 
finely tuned to individual species. This pooled approach will be investigated and compared with the 
output where the model is trained separately for each species. As part of this investigation, we hope to 
gain a better understanding of the relationship between the number of training examples and final 
prediction accuracy of the model. The proposed budget includes staff time to generate a library of 
optimised otolith images for five additional species (n = 4000 per species), species-specific optimisation 
of the CNN model, model performance evaluation, data analysis, and reporting. 
 
Indicative cost:  $250,000 NZD (excl. GST). 
 
Note: Costs for these components could be considerably reduced should this work occur following the 
completion of Objective 1 of the proposed project SAM2019-02 ‘Development of imaging analysis 
techniques to determine ages from otoliths’, depending on the species used in this project and subject 
to the availability of the resulting images. 
 
 
Objective 3: Further identify the potential to use otolith scans from CT scanning technologies for 
imaging otolith annular structure. 

Investigations undertaken in the current study revealed that whereas some zonation was evident, 
particularly in younger fish, the resolution of the CT scanner used was insufficient for imaging fine-
scale growth bands of older fish. Accordingly, this component will test the utility of micro-CT scanning 
technologies (e.g., the Bruker SkyScan 1272 desktop MicroCT held at the Auckland Bioengineering 
Institute, University of Auckland) for imaging otolith annular structure. Trials will be conducted on a 
range of fish species with different otolith morphologies: snapper, representing a relatively ‘easy’ 
species to age with relatively clear growth bands (Walsh et al. 2014a); hoki, representing a relatively 
difficult species to age because of the presence of diffuse growth bands (Horn & Sutton 2017); and 
tarakihi, representing a challenging species to age because of its relatively long lifespan (at least 45 
years) and compressed growth bands towards the outer margins, particularly in older fish (i.e., those 10 
years of age or older) (Walsh et al. 2014b). Approaches  used to reduce scanning time, such as scanning 
a narrow band across an otolith or scanning several otoliths at once, will be trialled. Once three-
dimensional reconstructions are generated, transverse slices will be taken through the otolith core using 
digital clipping planes. Growth bands will be counted from the micro-CT sections by two independent 
readers without prior knowledge of previous age estimations or the size of fish. These reads will then 
be compared with previous age estimates achieved via  conventional microscopy (Walsh et al. 2014a, 
Horn & Sutton 2017) using current standardised approaches to assess within and between reader 
performance (including age-bias plots, IAPE, and CV). The proposed budget includes travel to use a 
micro-CT (budgeted on the use of the machine at the University of Auckland), time on the machine, 
data analysis, and reporting. At the time of writing, the daily rate for use of a micro-CT scanner, 
including operator costs, image reconstruction, and analysis, was approximately $1,000 NZD. 
 
Indicative cost:  $70,000 NZD (excl. GST). 
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Objective 4: Identify the potential to automate ageing from images generated from micro-CT 
scanning using deep learning approaches. 

Should trials using micro-CT scanning technologies reveal annual growth bands and comparable age 
estimates to those of human experts be obtained in Objective 3 above, trials exploring the potential for 
estimating age via machine-learning approaches of micro-CT derived images will be conducted. Here, 
large numbers of otoliths (more than 1000) of the three species investigated in Objective 3 will be 
scanned with a micro-CT scanner using optimised approaches developed in Objective 3. Resulting 
images will be analysed using a CNN model. Age estimates from the model will be compared with 
those resulting from human interpretation of the images and previous age estimates achieved via 
conventional microscopy (Walsh et al. 2014, Horn & Sutton 2017) using current standardised 
approaches to assess within and between reader performance (including age-bias plots, IAPE, and CV). 
 
Indicative cost:  Costs for this component will be determined following the trial of Objective 3.  
 
Note: should it be found in Objective 3 that micro-CT scans provide poor resolution of growth bands 
and/or unprecise age estimates, this component of the study will not be conducted. 
 
 
6.2 Medium-term research objectives 
 
The following components are additional objectives that could be investigated in the medium to longer-
term, given their potential to provide substantial benefits and cost-savings. Objective 5 requires a longer 
timeframe to create a library of fish images with associated ages, and Objective 6 requires information 
from the above objectives to determine costs.  
 
Objective 5: Exploring the potential for the CNN-based model to estimate fish age using non-
annular information (including two-dimensional photographic images of whole fish and whole 
otoliths). 

Given recent advances in CNN-based approaches, the potential to apply machine learning technologies 
to non-annular age estimations are worth exploring.  In this objective, the potential for estimating age 
from two-dimensional images of whole fish, and whole otoliths, will be trialled. Trials will be conducted 
on a line-caught species, such as Antarctic toothfish, because these are expected to maintain their regular 
shape following harvest (compared with trawl caught species), and images will be able to be taken 
during routine surveys and biological sampling. During two successive Ross Sea shelf surveys, images 
will be taken of each Antarctic toothfish caught. Images will include the fish number for later reference 
and linkage of the photo to fish age. Fish will be processed as per standard approaches (i.e., each fish 
will be measured, sexed, and assigned its maturity status) and otoliths will be extracted. Otoliths will 
be imaged whole and aged using standard ageing procedures. Whole fish and whole otolith images will 
be added into a CNN-based model for estimating age. The model will be trained by pairing the images 
with their otolith-based ages, and then tested. Age estimates generated from the whole fish and whole 
otolith images will then be compared with previous age estimates achieved via conventional microscopy 
using current standardised approaches to assess within and between reader performance (including age-
bias plots, IAPE, and CV). 
 
 
Objective 6: Identify the potential for estimating age from otoliths in situ.  

Should trials using micro-CT scanning technologies reveal annual growth bands and comparable age 
estimates to those of human experts (in Objective 3 above), further trials exploring the potential for in 
situ imaging of otoliths and subsequent ageing will be conducted. The long-term objective here is not 
laboratory-based CT-scanning, but scanning on industry production lines.   
 
Whole fish, or portions of a fish containing the otoliths, will be placed in a micro-CT scanner with scans 
focussed on the head area to reduce scan time. Scanned otolith images will be constructed using relevant 
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software and aged by an experienced reader. Initial trials will focus on snapper,  because it is locally 
available. Care will be taken to ensure a range of lengths (and thus ages) are included. Once scanned, 
otoliths from each scanned individual will be extracted and aged using standard protocols by an 
experienced reader (Walsh et al. 2014a). Estimated ages from scanned images will be compared with 
those of the experienced reader using age-bias plots, IAPE, and CV. 
 
Note: should it be found in Objective 3 that micro-CT scans provide poor resolution of growth bands, 
this component of the study will not be conducted. 
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