Ministry for Primary Industries

TAR 1, 2 and 3 Fishery Characterisation and CPUE

New Zealand Fisheries Assessment Report 2014/13
P.J. Starr
T.H. Kendrick

ISSN 1179-5352 (online)
ISBN 978-0-478-42374-7 (online)
March 2014

Requests for further copies should be directed to:
Publications Logistics Officer
Ministry for Primary Industries
PO Box 2526
WELLINGTON 6140

Email: brand@mpi.govt.nz
Telephone: 0800008333
Facsimile: 04-894 0300
This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx
http://fs.fish.govt.nz go to Document library/Research reports

TABLE OF CONTENTS

EXECUTIVE SUMMARY 3

1. INTRODUCTION 4
2. INFORMATION ABOUT THE STOCK/FISHERY 5
3. STANDARDISED CPUE ANALYSIS, EAST COASTS NORTH AND SOUTH ISLANDS 31
4. STANDARDISED CPUE ANALYSIS, TAR 1 36
5. ADDITIONAL ANALYSES 38
6. ACKNOWLEDGMENTS 39
7. REFERENCES 39
APPENDIX A. GLOSSARY OF ABBREVIATIONS, CODES, AND DEFINITIONS OF TERMS 41
APPENDIX B. MAP OF MPI STATISTICAL AND MANAGEMENT AREAS 43
APPENDIX C. METHOD USED TO EXCLUDE "OUT-OF-RANGE" LANDINGS 44
APPENDIX D. COMPARISON BY STATISTICAL AREA OF TWO DATA PREPARATION METHODS 47
APPENDIX E. DATA SUMMARIES BY MAJOR AREA AND TOTAL, ALL AREAS: COMBINED TAR 1, TAR 2, AND TAR 3 49
APPENDIX F. MONTHLY SUMMARIES BY MAJOR AREA AND METHOD OF CAPTURE 53
APPENDIX G. SUMMARIES FOR TARGET SPECIES BY MAJOR AREA AND METHOD OF CAPTURE 59
APPENDIX H. EAST COAST NORTH/SOUTH ISLAND TARAKIHI CPUE ANALYSIS65APPENDIX I. DETAILED DIAGNOSTICS FOR TARAKIHI (EAST COAST) CPUESTANDARDISATIONS81
APPENDIX J. CPUE ANALYSES FOR WCNI, EAST NORTHLAND AND BAY OF PLENTY BOTTOM TRAWL FISHERIES 94
APPENDIX K. DETAILED DIAGNOSTICS FOR ADDITIONAL TARAKIHI CPUE STANDARDISATIONS 107
APPENDIX L. INVESTIGATION OF THE EFFECTS OF CHANGING STRATIFICATION OF REPORTING FORM TYPE 130
APPENDIX M. EAST COAST NORTH/SOUTH ISLAND TARAKIHI: SUPPLEMENTARY CPUE ANALYSES 141
APPENDIX N. DETAILED DIAGNOSTICS FOR TARAKIHI (EAST COAST) CPUE STANDARDISATIONS 147

EXECUTIVE SUMMARY

Starr, P.J.; Kendrick, T.H. (2014). TAR 1, 2. and 3 Fishery Characterisation and CPUE Report. New Zealand Fisheries Assessment Report 2014/13. 158 p.

The fisheries taking tarakihi (Nemadactylus macropterus) on the west, north and east coasts of the New Zealand North Island and on the east coast of the South Island are described from 1989-90 to 2010-11, based on compulsory reported commercial catch and effort data held by the Ministry for Primary Industries (MPI, formerly the Ministry of Fisheries). A number of bottom trawl fisheries take tarakihi on these coasts. These include mixed target species bottom trawl fisheries off both the east and west coasts of Northland, a mixed target species bottom trawl fishery in the Bay of Plenty and mixed target species bottom trawl fisheries off the east coasts of the North and South Islands. This report also identifies a developing bottom trawl fishery that captures tarakihi operating at the eastern entrance of Cook Strait. There has also been a long-standing target tarakihi setnet fishery operating in the vicinity of Kaikoura, off the northeast coast of the South Island. These fisheries span three MPI management units (TAR 1, TAR 2 and TAR 3) and some catches from TAR 7 are likely to be included in the eastern Cook Strait fisheries because of reporting ambiguities. Detailed characteristics of the landing data associated with these fisheries, as well as the spatial, temporal, target species and depth distributions relative to the catch of tarakihi in these fisheries are presented for TAR 1, TAR 2 and TAR 3. Annual performance of the TAR 1, TAR 2 and TAR 3 catches and some regulatory information are also presented.

Commercial Catch Per Unit Effort (CPUE) analyses for five bottom trawl fisheries and one setnet fishery, based on the compulsory reported commercial catch and effort data from the major bottom trawl fisheries, were used to estimate changes in abundance for this species in TAR 1, TAR 2 and TAR 3. Indices from three of these fisheries (the mixed target species bottom trawl fisheries off the east coasts of the North and South Islands and the target tarakihi setnet fishery off Kaikoura) were used as input into a trial stock assessment for a tarakihi stock that spanned most of the east coasts of the North and South Islands (Langley \& Starr 2012).

Figure 1. Map of TAR QMAs.

1. INTRODUCTION

This study is part of a larger project to refine the understanding and definitions of tarakihi stock boundaries along the east coasts of the North and South Islands of New Zealand, with the intention of assessing the resulting stocks with respect to their status relative to management targets (Langley \& Starr 2012). The purpose of this document was to assemble and present all relevant data from the fisheries that take this species along these two east coasts, documenting their spatial extent along with other important characteristics. A further component of this study was to extract indices of annual CPUE using catch and effort data taken from the primary fisheries harvesting tarakihi on these two coasts. These indices would become input to models used to assess stock status for this species based on an agreed stock definition, under the assumption that such CPUE indices tracked tarakihi population abundance. Three additional bottom trawl CPUE series (west coast North Island, East Northland and Bay of Plenty) are documented in this report but were not used in the stock assessment analyses.

Tarakihi was brought into the QMS at its inception in 1986, with the main QMAs (TAR 1, TAR 2 and TAR 3 [Figure 1]) contributing between 70 to 80% of the total NZ-EEZ landings. The TACCs for TAR 2 and TAR 3 were increased in 2004-05 under the conditions of the Adaptive Management Programme (AMP) as specified by the Ministry of Fisheries in the "Draft Frameworks for Exploratory, Developing, and Established Fisheries under the Adaptive Management Programme", dated December 1999. A nominal increase of 48 t was granted to TAR 1 for the 2007-08 fishing year. The text table below summarises these changes to the TACCs for these Fishstocks:

		TACC prior to change	AMP or new \% increase TACC	
Fishstock	Year TACC raised	1399	1447	3.4%
TAR 1	$2007-08$	1399		
TAR 2	$2004-05$	1633	1796	10.0%
TAR 3	$2004-05$	1169	1403	20.0%
Total		4201	4646	10.6%

The TAR 2 and TAR 3 AMPs are no longer active, having been discontinued by the Ministry of Fisheries in 2009-10, but the TACCs have remained unchanged.

This report summarises fishery and landings characterisations for TAR 1, TAR 2 and TAR 3, as well as presenting CPUE standardisations derived from trawl data originating from that part of TAR 1 east of North Cape (East Northland and Bay of Plenty), the east coast of the North Island between East Cape and Cook Strait (TAR 2) and from the entire east coast of the South Island (TAR 3), including the eastern sections of Cook Strait. This report also presents a CPUE analysis based on a target tarakihi setnet fishery located in the northern part of the South Island east coast. Abbreviations and definitions of terms used in this report are presented in Appendix A.

2. INFORMATION ABOUT THE STOCKIFISHERY

2.1 Catches

The TACC for tarakihi in TAR 1 was set at 1201 t when this Fishstock was first brought into the QMS in 1986, but increased quickly, reaching 1387 t in 1989-90, probably through the process of quota appeals (Table 1). Catch levels have been generally at or above the TACC for most years since 199192 up to 2005-06 (Figure 2; Table 1). After that year, landings in TAR 1 have tended to be below the TACC, and have remained below 1400 t since 2005-06 (Table 1).

Table 1: \quad Total landings (t) and TACCs (t) for tarakihi in TAR 1, TAR 2 and TAR 3 from 1983-84 to 2010-11. Landings and TACCs from 1985-86 to 2000-01 are from Quota Management Returns (QMR). Landings from 2001-02 to 2010-11 are from Monthly Harvest Returns (MHR); ‘-’: not set

Fishing year	TAR 1		TAR 2		TAR 3	
	Landings	TACC	Landings	TACC	Landings	TACC
83/84	1326	-	1118	-	902	-
84/85	1022	-	1129	-	1283	-
85/86	1038	-	1318	-	1147	-
86/87	912	1210	1382	1501	938	988
87/88	1093	1285	1386	1568	1025	1035
88/89	939	1328	1415	1611	759	1061
89/90	973	1387	1374	1627	1007	1107
90/91	1125	1387	1729	1627	1070	1148
91/92	1373	1387	1697	1627	1132	1148
92/93	1476	1397	1654	1633	813	1169
93/94	1431	1397	1594	1633	735	1169
94/95	1390	1398	1580	1633	849	1169
95/96	1415	1398	1521	1633	1111	1169
96/97	1421	1398	1637	1633	1087	1169
97/98	1515	1398	1672	1633	1024	1169
98/99	1437	1398	1594	1633	1098	1169
99/00	1386	1398	1743	1633	1260	1169
00/01	1403	1398	1658	1633	1218	1169
01/02	1479	1399	1739	1633	1241	1169
02/03	1517	1399	1745	1633	1156	1169
03/04	1541	1399	1638	1633	1009	1169
04/05	1528	1399	1692	1796	905	1403
05/06	1410	1399	1986	1796	1024	1403
06/07	1193	1399	1729	1796	1080	1403
07/08	1286	1447	1716	1796	844	1403
08/09	1398	1447	1901	1796	1017	1403
09/10	1332	1447	1858	1796	757	1403
10/11	1349	1447	1659	1796	1207	1403

Figure 2: Plots of TAR 1, TAR 2, and TAR 3 landings and TACCs from 1983-84 to 2010-11 (see Table 1).

The TACC for tarakihi in TAR 2 was set at 1501 t when this Fishstock was first brought into the QMS in 1986. It gradually increased, reaching 1633 t in 1992-93, through the process of quota appeals (Table 1). Catch levels have stayed near to or above the TACC for most years since 1991-92 (Figure 2; Table 1). Landings have generally gone up since the TAR 2 TACC was raised to 1796 t in 2004-05, exceeding the higher TACC in three of the seven years since the increase (Table 1).

The TACC for tarakihi in TAR 3 was set at 988 t when this Fishstock was first brought into the QMS in 1986. It was raised in the following year to 1035 t , most likely through the process of quota appeals which gradually lifted the TACC to 1169 t by 1993-94 (Table 1). Catch levels declined to below 750 t in 1993-94 (the lowest since TAR 3 entered the QMS), but showed a steady increase to over 1200 t per year from 1999-2000 to 2001-02, catch levels which were above the TACC of 1169 t (Figure 2; Table 1). Landings since the TAR 3 TACC was raised to 1403 t in 2004-05 did not reach the previous TACC until 2010-11, when there was a 60\% increase in landings from 757 t in 2009-10 to 1207 t (Table 1).

2.1.1 Recreational catches

Recreational catches in New Zealand are poorly known, a conclusion which applies to TAR 1, TAR 2 and TAR 3. A series of regional and national surveys, which combined phone interviews with randomly selected diarists, have been conducted since the early 1990s (Tierney et al. 1997, Bradford 1998, Boyd \& Reilly 2005), but the results from these surveys are not considered to be reliable by most of the Fishery Assessment Working Groups. In particular, the Recreational Technical Working Group (RTWG) concluded that the framework used for the telephone interviews for the 1996 and previous surveys contained a methodological error, resulting in biased eligibility figures. Consequently the harvest estimates derived from these surveys are unreliable. This group also
indicated concerns with some of the harvest estimates from the 2000-01 survey. The following summarises that group's views on the telephone /diary estimates:
"The RTWG recommends that the harvest estimates from the diary surveys should be used only with the following qualifications: a) they may be very inaccurate; b) the 1996 and earlier surveys contain a methodological error; and, c) the 2000 and 2001 harvest estimates are implausibly high for many important fisheries." (quoted from the chapter on kahawai, Ministry of Fisheries 2011)
The quality of recreational harvest estimates appears to be improving in recent years. Statistical methods involving counting actively fishing recreational vessels from aircraft and combining these effort estimates with catch information have led to more reliable estimates of total recreational harvest for a number of species, mostly in northern New Zealand. For instance, a harvest of 89.5 t (CV 18.5\%) of tarakihi was estimated for all of QMA 1 in 2004-05 (B. Hartill [NIWA Auckland] pers.comm.). A large scale diary/interview survey is presently being conducted over the period July 2011-June 2012, with results expected to be available in 2013.

2.2 Regulations Affecting the Fishery

There have been no significant changes to the management regulations affecting tarakihi in recent years. While there have been significant curtailments of setnet fishing in Pegasus Bay and Canterbury Bight, designed to protect Hector's dolphins, these changes have had relatively little impact on setnet fishing for tarakihi because the latter fishery occurs mostly offshore from Kaikoura where these dolphins are relatively rare. As well, there have been no important changes to the trawl fishery for this species. Most tarakihi are landed unprocessed (green), so there are no problems with changing conversion factors when interpreting the landing information (see Section 2.3.2).

2.3 Analysis of TAR 1, TAR 2 and TAR 3 catch and effort data

2.3.1 Methods used for 2012 analysis of MPI catch and effort data

Data extracts were obtained from the Ministry of Fisheries (now Ministry for Primary Industries) Warehou database (Ministry of Fisheries 2010). One extract consisted of the complete data set (all fishing event information along with all tarakihi landing information) from every trip which recorded landing tarakihi from TAR 1, TAR 2 or TAR 3, starting from 1 October 1989 and extending to 30 September 2011. Two further extracts were obtained: one consisting of all trips using the methods BT, BPT (bottom pair trawl), MW or MWPT (midwater pair trawl), did not target ORH (orange roughy), OEO (oreo) or CDL (cardinalfish), fished at least one event in either TAR 1, TAR 2 or TAR 3. The final extract requested trips which used the setnet method in TAR 3 and which targeted or captured one of the following 9 species: SPO, SCH, ELE, SPD, OSD, NSD, KAH, TAR, and STA (see Appendix A for definitions of abbreviations). Once these trips were identified, all fishing event data and tarakihi landing data from the entire trip, regardless of method of capture, were obtained. These data extracts (MPI replog 8360) were received 19 December 2011. The first data extract was used to characterise and understand the fisheries taking tarakihi. These characterisations are reported in Sections 2.3.2 and 2.3.3, plus detailed summary tables in Appendix E, Appendix F and Appendix G. The remaining two extracts were used to calculate CPUE standardisations (Section 3, Appendix H, Appendix J and Appendix L).

Data were prepared by linking the effort ("fishing event") section of each trip to the landing section, based on trip identification numbers supplied in the database. Effort and landing data were groomed to remove "out-of-range" outliers (the method used to groom the landings data are documented in Appendix C; the remaining procedures used to prepare these data are documented in Starr (2007).

The original level of time stratification for a trip is either by tow, or day of fishing, depending on the type of form used to report the trip information. These data were amalgamated into a common level of stratification known as a "trip stratum" (see table of definitions: Appendix A). Depending on how frequently an operator changed areas, method of capture or target species, a trip could consist of one to several "trip strata". This amalgamation was required so that these data could be analysed at a common level of stratification across all reporting form types. Landed catches of tarakihi by trip were allocated to the "trip strata" in proportion to the estimated tarakihi catches in each "trip stratum". In situations when trips recorded landings of tarakihi without any associated estimates of catch in any of the "trip strata" (operators were only required to record the top five species in any fishing event), the tarakihi landings were allocated proportionally to effort (tows for trawl data and length of net set for setnet data) in each "trip stratum".

Table 2: Comparison of the total QMR/MHR catch (t), reported by fishing year, with the sum of the corrected landed catch totals (bottom part of the MPI CELR form), the total catch after matching effort with landing data ('Analysis' data set) and the sum of the estimated catches from the Analysis data set, all representing the combined TAR 1, TAR 2 and TAR 3 QMAs. Data source: MPI replog 8360: 1989-90 to 2010-11.

Fishing Year	QMR/MHR (t)	Total landed catch (t$)^{1}$	\% landed/ QMR/MHR	Total Analysis catch (t) ${ }^{2}$	\% Analysis /Landed	Total Estimated Catch (t)	\% Estimated /Analysis
89/90	3355	2775	83	2727	98	2488	91
90/91	3925	3762	96	3745	100	3470	93
91/92	4202	4148	99	4174	101	3806	91
92/93	3943	3883	98	3932	101	3439	87
93/94	3760	3774	100	3756	100	3328	89
94/95	3819	3824	100	3835	100	3380	88
95/96	4047	4041	100	3987	99	3624	91
96/97	4145	4023	97	4042	100	3658	90
97/98	4211	4158	99	4246	102	3896	92
98/99	4129	4121	100	4249	103	3857	91
99/00	4388	4379	100	4541	104	4065	90
00/01	4279	4244	99	4466	105	4082	91
01/02	4459	4394	99	4641	106	4256	92
02/03	4418	4401	100	4646	106	4118	89
03/04	4188	4166	99	4353	104	3970	91
04/05	4124	4136	100	4288	104	3903	91
05/06	4420	4366	99	4506	103	4152	92
06/07	4002	3993	100	4116	103	3824	93
07/08	3847	3836	100	3908	102	3600	92
08/09	4316	4285	99	4378	102	4037	92
09/10	3947	3965	100	4069	103	3765	93
10/11	4215	4170	99	4239	102	3955	93
Total	90141	88844	99	90845	102	82672	91

${ }^{1}$ includes all TAR 1, TAR 2 and TAR 3 landings in replog 8360 except for 12 trips excluded for being "out of range" (Appendix C)
2 based on statistical areas valid for TAR 1 or TAR 2 or TAR 3 (Appendix D), but will contain some landings from other TAR QMAs

The catch totals (Table 2, Figure 3) resulting from this procedure may not be the same as those reported to the QMS (Table 1) because the QMS is a separate reporting system from the MPI catch/effort reporting system. The procedure described by Starr (2007) drops trips which fished in ambiguous "straddling" statistical areas (the statistical area boundaries do not coincide with the QMA boundaries-see Appendix B) and which reported multiple tarakihi QMAs in the landing data. This procedure resulted in dropping an unacceptable proportion of trips and associated landings in Area 017 and Area 041, important areas for tarakihi fisheries. Consequently, the method of Starr (2007) was modified to scale estimated catches to the level of landings by statistical area, without regard to the reported QMA. This modification resulted in much better retention of the landings, especially in Area 017 and Area 041 but at the cost of losing the capacity to link captures and effort to a specific

QMA. Appendix D lists the total landings obtained for each statistical areas in the data set using each method, showing the improvement in the retention of landings when the QMA information is ignored.

Figure 3: Plot of the combined TAR 1, TAR 2 and TAR 3 catch dataset using the "statarea expansion" method with totals presented in Table 2.

Figure 4: [left panel]: Scatter plot of the sums of landed and estimated tarakihi catch for each trip in the combined TAR $1 \& 2 \& 3$ analysis dataset. [right panel]: Distribution (weighted by the landed catch) of the ratio of landed to estimated catch per trip. Trips where the estimated catch $=0$ have been assigned a ratio $=0$.

The annual totals at different stages of the data preparation procedure are presented in Table 2 and Figure 3. Total landings in the data set are similar to the landings in the QMR/MHR system, except for a 17% shortfall in landings in the first year of data (1989-90), which was affected by the changeover to a new system of data reporting. Landings by year in the subsequent fishing years vary from -4% to $+0 \%$ relative to the QMR/MHR annual totals (Table 2). The shortfall between landed and estimated catch by trip varies from -13% to -7% by fishing year and may be diminishing in recent years (Table 2). Note that the "analysis" dataset exceeds the combined TAR 1, TAR 2 and TAR 3 landings because it is based on statistical areas (see Appendix D) and will contain landings from TAR 7, TAR 8, and possibly TAR 4 or TAR 5 . A scatter plot of the estimated and landed catch by trip shows that relatively few trips overestimate the landing total for the trip (Figure 4 [left panel]). The
distribution of the ratios of the landed relative to estimated catch shows a skewed distribution with many ratios greater than 1.0 and with a mode slightly above 1.0 (Figure 4 [right panel]).

The 5% to 95% quantiles (excluding trips where there was no estimated catch) for the ratio of landed to estimated catch range from 0.58 to 2.12 for the dataset, with the median and mean ratios showing the landed catch 4% and 29% higher respectively than the estimated catch (Table 3). On average, 23\% of trips estimated no catch of tarakihi but then reported TAR in the landings (Table 3). These landings represented only 2% of the total TAR landings over the period, for a total of 1421 tonnes over all years (Table 3). The introduction of the new inshore forms (NCELR and TCER), which record fishing activity at the event level as well as the top eight species (instead of top five species), has nearly halved the proportion of trips which estimate nil tarakihi while landing this species, with the TAR landings in this category accounting for less than 1% of the total TAR 1 , TAR 2 and TAR 3 landings in the most recent three years (Table 3).

Table 3: Summary statistics pertaining to the reporting of estimated catch from the combined TAR $1 \& 2 \& 3$ analysis dataset. $A_{y}, L_{i, y}, A L_{y}$, and $A C_{y}$ are defined in Table 2; $L_{i, y}^{\prime}$ is defined in Eq.1; Z_{y} : number of trips in year y with no estimated catch; 5% : fifth percentile; 50% : median; 95\%: ninety-fifth percentile.

Fishing year	Trips with landed catch but which report no estimated catch			Statistics (excluding 0s) for the ratio of landed/estimated catch by trip			
	Trips: \% relative to total trips	$\begin{aligned} & \text { Landings: \% } \\ & \text { relative to } \\ & \text { total landings } \end{aligned}$	Landings (t)	$\begin{array}{r} 5 \% \\ \text { quantile } \end{array}$	Median	Mean	$\begin{gathered} 95 \% \\ \text { quantile } \end{gathered}$
89/90	23	3	85	0.60	1.00	1.27	1.89
90/91	22	2	66	0.60	1.01	1.33	1.89
91/92	24	2	78	0.60	1.01	1.16	1.94
92/93	26	3	130	0.60	1.02	1.24	2.00
93/94	25	2	81	0.53	1.00	1.22	2.00
94/95	25	2	80	0.55	1.02	1.22	2.05
95/96	25	3	117	0.50	1.03	1.36	2.10
96/97	26	2	87	0.50	1.03	1.26	2.16
97/98	26	2	75	0.57	1.03	1.39	2.08
98/99	26	2	93	0.57	1.04	1.26	2.00
99/00	23	2	104	0.54	1.04	1.20	2.00
00/01	24	1	56	0.56	1.04	1.20	2.00
01/02	24	1	44	0.60	1.05	1.23	2.04
02/03	23	1	57	0.60	1.06	1.24	2.10
03/04	23	1	46	0.65	1.05	1.27	2.20
04/05	26	1	52	0.64	1.06	1.33	2.32
05/06	26	1	42	0.67	1.07	1.31	2.33
06/07	23	1	36	0.60	1.08	1.29	2.23
07/08	15	0	18	0.56	1.06	1.26	2.33
08/09	12	0	11	0.56	1.05	1.32	2.50
09/10	13	0	16	0.50	1.06	1.48	2.70
10/11	14	1	49	0.55	1.04	1.72	2.74
Total	23	2	1421	0.58	1.04	1.29	2.12

2.3.2 Description of TAR 1, TAR 2 and TAR 3 landing information

Landing data for tarakihi were provided for every trip which landed TAR 1, TAR 2 or TAR 3 at least once, with one record for every reported TAR landing (including landings from all TAR Fishstocks landed by a trip that also landed TAR 1, TAR 2 or TAR 3) from the trip. Each of these records contained a reported green weight (in kilograms), a code indicating the processed state of the landing, along with other auxiliary information such as the conversion factor used, the number of containers involved and the average weight of the containers. Every landing record also contained a "destination code" (Table 4), which indicated the category under which the landing occurred. The majority of the
landings were made using destination code "L" (landed to a Licensed Fish Receiver; Table 4). However, other codes (e.g., A, O and C; Table 4) also potentially described valid landings and were included in this analysis. A number of other codes (notably R, Q and T; Table 4) were not included because it was felt that these landings were likely to have been reported at a later date under the "L" destination category. Two other codes (D and NULL) represented errors which could not be reconciled without making unwarranted assumptions and these were not included in the landing data set.

Almost all of the valid landing data for TAR 1, TAR 2 or TAR 3 were reported using state code GRE with the majority of the remaining landings using the state code DRE (Table 5). The few remaining landings were spread among HGU, GUT and MEA codes. There have only been minor changes in the conversion factors used for some of the state codes used for processing TAR (Table 6): these occurred early in the time series and only pertain to state codes that appear infrequently in the data set.

Table 4: Destination codes in the unedited landing data received for the TAR $1 \& 2 \& 3$ analysis. The "how used" column indicates which destination codes were included in the characterisation analysis. These data summaries have been restricted to TAR 1, TAR 2 and TAR 3 over the period 1989-90 to 2010-11.

Destination code	Number events	Green weight (t)	Description	How used
L	196425	89	707.2	Landed in NZ (to LFR)

Table 5: Total greenweight reported and number of events by state code in the landing file used to process the TAR $1 \& 2 \& 3$ characterisation and CPUE data, arranged in order descending landed weight (only for destination codes indicated as "Keep" in Table 4). These data summaries have been restricted to TAR 1, TAR 2 and TAR 3 from 1989-90 to 2010-11.

State	Number Total reported green		
code	Events	weight (t)	Description
GRE	199455	88498.4	Green (or whole)
DRE	1150	1141.0	Dressed
HGU	533	135.4	Headed and gutted
GUT	516	51.6	Gutted
MEA	161	30.4	Fish meal
FIL	125	6.3	Fillets: skin-on
Other	410	15.1	Other 1

${ }^{1}$ includes (in descending order): unknown, fins, gilled and gutted tail-on, heads, dressed-v cut (stargazer), fillets: skin-off, fillets: skin-off trimmed, squid wings, gilled and gutted tail-off, headed, gutted, and tailed, shark fins, headed, gutted, and finned, fillets: skin-on untrimmed

Total landings available in the data set are primarily for TAR 2, TAR 1 or TAR 3 (in descending order of importance) (Table 7). Small amounts of TAR 4, TAR 5, and TAR 8 were also taken in this set of trips. There is a greater amount of TAR 7 present in the data set which is the result of the complex relationships between TAR 2, TAR 3 and TAR 7 in Cook Strait. These landings have been included in this analysis by adopting the "statistical area" expansion procedure (see Appendix D).
Table 6.: Median conversion factor for the five most important state codes reported in Table 5 (in terms of total landed greenweight) and the total reported greenweight by fishing year in the edited file used to process TAR 3 landing data. These data summaries have been restricted to TAR 1, TAR 2 and TAR 3 over the period 1989-90 to 2010-11. ‘-': no observations

Fishing Year					Landed	Code
	GRE	DRE	HGU	GUT	MEA	Other
	Median Conversion Factor					
89/90	1	-	1.5	1.1	-	2.3
90/91	1	1.6	1.5	1.1	-	-
91/92	1	1.6	1.55	1.05	-	2.4
92/93	1	1.6	1.55	1.05	5.6	2.8
93/94	1	1.6	1.55	1.05	5.6	2.8
94/95	1	1.6	1.55	1.05	-	2.4
95/96	1	1.6	1.55	1.05	5.6	2.8
96/97	1	1.6	1.55	1.05	5.6	2.8
97/98	1	1.6	1.55	1.05	5.6	1.7
98/99	1	1.6	1.55	1.05	5.6	2.6
99/00	1	1.6	1.55	1.05	5.6	2.4
00/01	1	1.6	1.55	1.05	5.6	2.8
01/02	1	1.6	1.55	1.05	5.6	2.6
02/03	1	1.6	1.55	1.05	5.6	2.4
03/04	1	1.6	1.55	1.05	5.6	2.4
04/05	1	1.6	1.55	1.05	5.6	2.8
05/06	1	1.6	1.55	1.05	5.6	2.8
06/07	1	1.6	1.55	1.05	5.6	2.8
07/08	1	1.6	1.55	1.05	5.6	2.8
08/09	1	1.6	1.55	1.05	5.6	2.8
09/10	1	1.6	1.55	1.05	5.6	2.8
10/11	1	1.6	1.55	1.05	5.6	2.8
	Total Landings (t) 1.6					
89/90	2752.6	-	15.6	6.5	-	0.3
90/91	3700.5	43.8	16.8	0.3	-	0.2
91/92	4082.1	41.9	9.7	11.4	-	2.8
92/93	3827.4	12.1	16.2	4.4	22.6	0.0
93/94	3737.3	23.0	7.5	4.4	0.0	1.9
94/95	3802.8	8.4	11.3	1.1	-	0.8
95/96	3990.2	39.8	6.2	3.9	0.1	0.2
96/97	3941.3	72.5	4.6	1.0	0.1	3.3
97/98	4048.5	95.7	8.4	0.4	1.4	3.7
98/99	4074.1	39.9	3.4	0.9	0.0	2.2
99/00	4319.6	55.2	3.0	0.7	0.0	0.4
00/01	4208.6	33.9	0.4	0.6	0.1	0.3
01/02	4284.8	98.6	7.7	1.4	0.1	0.9
02/03	4332.8	57.6	8.4	0.5	0.1	1.4
03/04	4140.7	11.1	6.5	7.0	0.6	0.4
04/05	4120.9	13.9	0.2	0.4	0.2	0.4
05/06	4342.4	21.8	0.4	0.8	0.3	0.1
06/07	3948.8	42.8	0.2	0.7	0.1	0.2
07/08	3785.2	44.5	4.7	0.5	0.5	0.2
08/09	4258.3	22.2	1.6	1.2	0.1	1.1
09/10	3938.8	21.6	1.0	2.5	1.4	0.2
10/11	4132.8	30.5	2.4	0.8	2.7	0.4
Total	87771.0	830.9	136.3	51.3	30.4	21.5

Table 7.: Distribution of total landings (t) by tarakihi Fishstock and by fishing year for the set of trips that recorded TAR 1 or TAR 2 or TAR 3 landings. Landing records with improbable greenweights have been dropped (see Appendix C).

Fishing year	TAR 1	TAR 2	TAR 3	TAR 4	TAR 5	TAR 7	TAR 8	Total
89/90	772	1154	849	83	10	262	19	3149
$90 / 91$	1156	1654	951	42	3	219	50	4076
$91 / 92$	1418	1626	1104	47	2	250	51	4498
$92 / 93$	1452	1641	790	7	4	290	58	4242
$93 / 94$	1453	1578	743	2	4	272	57	4109
$94 / 95$	1376	1573	875	31	7	493	68	4424
$95 / 96$	1428	1541	1072	33	5	424	40	4543
$96 / 97$	1405	1553	1065	25	7	494	89	4637
$97 / 98$	1523	1612	1023	42	3	334	128	4665
$98 / 99$	1442	1579	1100	15	4	376	142	4658
$99 / 00$	1420	1691	1267	37	5	363	151	4934
$00 / 01$	1407	1640	1197	81	9	590	159	5083
$01 / 02$	1499	1697	1197	141	31	542	193	5300
$02 / 03$	1505	1730	1165	32	26	393	197	5050
$03 / 04$	1535	1627	1004	15	8	424	173	4787
$04 / 05$	1540	1720	876	27	7	366	173	4708
$05 / 06$	1400	1960	1006	122	7	347	267	5109
$06 / 07$	1194	1714	1085	63	20	314	218	4608
$07 / 08$	1273	1714	848	70	4	194	154	4258
$08 / 09$	1396	1873	1015	64	7	291	115	4762
$09 / 10$	1331	1872	763	29	4	443	196	4637
$10 / 11$	1365	1643	1162	64	7	310	129	4679
Total	30290	36393	22158	1073	182	7989	2829	100915

Table 8: Distribution by form type for landed catch by weight for each fishing year in TAR 1\&2\&3. Also provided are the number of days fishing and the associated distribution of days fishing by form type for the effort data using statistical areas consistent with TAR 1\&2\&3. See Appendix A for definitions of abbreviations used in this table.

Year	Landings (\%) ${ }^{1}$			Days Fishing (\%) ${ }^{2}$			CELR	TCEPR	TCER	NCELR	Days Fishing	
	CELR	CLR	NCELR	CELR	TCEPR	TCER					Other ${ }^{3}$	Total
89/90	93	7	0	88	12	-	13150	1743	-	-	-	14893
90/91	92	8	0	91	9	-	17162	1774	-	-	-	18936
91/92	92	8	0	90	10	-	19312	2100	-	-	-	21412
92/93	94	6	0	88	12	-	19169	2626	-	-	3	21798
93/94	87	13	0	87	13	-	18968	2825	-	-	-	21793
94/95	83	17	0	82	18	-	16700	3731	-	-	-	20431
95/96	59	41	0	69	31	-	14448	6523	-	-	1	20972
96/97	62	38	0	69	31	-	14635	6477	-	-	2	21114
97/98	64	36	0	68	32	-	13919	6576	-	-	-	20495
98/99	67	33	0	69	31	-	13357	5997	-	-	-	19354
99/00	70	30	0	70	30	-	14188	6061	-	-	-	20249
00/01	65	35	0	67	33	-	13422	6588	-	-	13	20023
01/02	57	43	0	67	33	-	11464	5757	-	-	17	17238
02/03	59	41	0	65	35	-	11424	6257	-	-	7	17688
03/04	56	44	0	65	35	-	10615	5661	-	-	13	16289
04/05	53	47	0	68	32	-	11449	5430	-	-	29	16908
05/06	59	41	0	73	26	-	12428	4422	-	-	113	16963
06/07	56	40	4.0	66	25	-	11068	4207	-	1287	172	16734
07/08	5.3	91	3.9	12	20	39	1914	3109	6241	1177	3385	15826
08/09	8.8	89	2.5	12	19	39	1872	2994	6256	1216	3649	15987
09/10	5.8	92	2.5	11	19	40	1866	3299	6882	1217	4068	17332
10/11	5.4	93	1.9	12	19	39	1972	3229	6685	1090	4118	17094
			0.7	65	24	6	264502	97386	26064	5987	15590	409529
${ }^{1}$ Percentages of landed greenweight												
${ }^{2}$ Percentages of number of days fishing												
${ }^{3}$ includ	days for	UN (tun	a lining), 1	258 days	for LCER ((lining),	nd 14148	days for LT	TCER (lin	ing trip)		

Just under sixty percent of the combined TAR 1, TAR 2 and TAR 3 landings have been reported on CELR forms over the 22 years of record, with just over 40% of the remaining landings reported using CLR forms and less than 1% on NCELR forms (Table 8). The NCELR form is used exclusively to report setnet effort and landings. The CLR form is used by vessels using the new TCER form developed specifically for small inshore trawl vessels as well as vessels using the older TCEPR forms. The use of these new forms, beginning in 2006-07, has resulted in a substantial drop in the use of the CELR form in the inshore fisheries, which have only accounted for between 5 and 9 percent of the combined TAR 1, TAR 2 and TAR 3 landings since the new forms were introduced from 2006-07 (Table 8). The introduction of these new forms can also be seen in the effort data associated with these trips, with a strong decline in the usage of the CELR form from 2007-08 (calculated as days fishing, Table 8).

2.3.3 Description of the TAR 1, TAR 2 and TAR 3 fisheries

2.3.3.1 Introduction

As discussed in Section 2.3.1, matching landings with effort by trip while maintaining the integrity of the QMA-specific information was not possible because of the large amount of fishing taking place in Area 017 (eastern Cook Strait) and Area 041 (North Taranaki Bight). Consequently, trips which fished in ambiguous statistical areas and landed to multiple QMAs were retained and corrections to estimated catches based on total trip landings were made without regard to the QMA information. For this reason, the summaries presented in this section of the report are presented by grouped statistical areas, rather than by QMA, using the statistical area grouping definitions in Table 9 (see Appendix B for statistical area locations):

Table 9: Definitions of Major Area groupings used in Appendix E and in the characterisation descriptions in this document.

Major Area grouping	Code	Statistical Area definition
East Northland	EN	$001-007,105,106$
Bay of Plenty	BoP	$008-010,107$
East coast, North Island	ECNI	$011-016,201-206$
East coast, South Island	ECSI	$017-026,301-303$
West coast, North Island	WCNI	$041-048,101-104$

Table E. 1 provides the total landings by "Major Area grouping" for all statistical areas included in the above definitions, listed in descending rank order of importance in terms of total landings accumulated over the 22 years of available data. Similarly, Table E. 2 provides a list by "Major Area groupings" for method of capture. Finally, target species ranked in descending order of landing importance for each "Major Area grouping" are provided for bottom trawl (Table E.3) and second and third tier tarakihi fisheries (defined independently for each Major Area grouping: Table E.4).

2.3.3.2 Distribution of landings and effort by method of capture and statistical area

Tarakihi in all five major regions are primarily taken by the bottom trawl method, but the second method in terms of importance varies with the Major Area grouping (Table 10; Figure 5). In terms of relative importance, only bottom longline in EN and setnet in ECSI exceed 20% of the total landings in their respective areas, with bottom trawl accounting for over 85% of the total landings in BoP, and WCNI and for 99% of landings in ECNI (Table 10). The two major areas on the east coast, ECNI and ECSI, predominate in terms of total landings of tarakihi, accounting for 39% and 27% of the average landings among these five areas (Table 11). The BoP is third in order of importance, followed by WCNI and EN. This order of importance has been unchanged over the 22-years of available data (Table 11).

Only two or three statistical areas predominate in the bottom trawl catch in most of the five major areas, except for ECNI, where four statistical areas (011 to 014), have significant levels of catch (Figure 6). The distribution of bottom trawl effort by statistical area resembles the distribution of tarakihi landings, except for EN, where Areas 003 and 005 have a disproportionately high number of tows, which is likely to be reflecting the non-target nature of the tarakihi fishery in these statistical areas, and for Area 045 (WCNI) which also has a higher level of effort for the amount of tarakihi taken (Figure 6). The secondary tarakihi fisheries in these five areas tend to be localised by statistical area in terms of both landings and effort: the BLL fishery in EN takes place in Areas 002 and 003 (off the upper east coast), while the setnet fishery in ECSI is concentrated in Area 018 (Kaikoura) (Figure 7). Two tertiary tarakihi fisheries have relatively short histories: the setnet fishery in BoP disappeared by the end of the 1990s, while the developing Danish seine fishery in ECSI only started in the mid-2000s and is located in Area 020 (Pegasus Bay) and Area 022 (Canterbury Bight) (Figure 8).

Figure 5: Distribution of catches for the major fishing methods by fishing year from trips which landed tarakihi to the statistical areas defined in Table A.1C from 1989-90 to 2010-11. Circles are proportional to the catch totals by method and fishing year within each subgraph: [EN]: largest circle $=409 \mathrm{t}$ in $96 / 97$ for BT ; [BoP]: largest circle= 852 t in 03/04 for BT; [ECNI]: largest circle=1937 \mathbf{t} in 05/06 for BT; [ECSI]: largest circle=1165 \mathbf{t} in $\mathbf{9 9 / 0 0}$ for BT; [WCNI]: largest circle= 439 t in $97 / 98$ for $B T$

Figure 6: Distribution of landings and number tows for the bottom trawl method for each Major Area (Table 9) by statistical area and fishing year from trips which landed tarakihi. Circles are proportional within each panel: [EN-Landings]: largest circle= 282 t in 96/97 for 002; [ENNumber tows]: largest circle= 2517 tows in 04/05 for 003; [BoP-Landings]: largest circle= 514 t in 03/04 for 010; [BoP-Number tows]: largest circle= 2740 tows in 03/04 for 009; [ECNI-Landings]: largest circle= 728 t in $02 / 03$ for 013; [ECNI-Number tows]: largest circle= 4694 tows in 04/05 for 013; [ECSI-Landings]: largest circle= 490 t in 06/07 for 022; [ECSI-Number tows]: largest circle= 5761 tows in 99/00 for 022; [WCNI-Landings]: largest circle= 223 t in 06/07 for 047; [WCNI-Number tows]: largest circle= 1809 tows in 93/94 for 047.

Table 10: Total landings (t) and distribution of landings (\%) for tarakihi for important fishing methods over the five major areas described in Section 2.3.3.1 from trips which landed tarakihi, summed from 1989-90 to 2010-11. Major Areas are defined in Table 9.

Major Area					Method		Total
	BT	SN	BLL	DS	BPT	OTH	
Total landings (t)							
EN	5929	94	1507	104	194	42	7870
BoP	12983	553	300	580	26	11	14452
ECNI	35421	123	92	88	1	39	35763
ECSI	17979	5926	8	455	0	28	24395
WCNI	7330	39	192	98	630	75	8364
Total	79642	6734	2098	1325	852	194	90845
Distribution of landings (\%)							
EN	75.3	1.2	19.1	1.3	2.5	0.5	8.7
BoP	89.8	3.8	2.1	4.0	0.2	0.1	15.9
ECNI	99.0	0.3	0.3	0.2	0.0	0.1	39.4
ECSI	73.7	24.3	0.0	1.9	0.0	0.1	26.9
WCNI	87.6	0.5	2.3	1.2	7.5	0.9	9.2
Total	87.7	7.4	2.3	1.5	0.9	0.2	100.0

Table 11: Total landings (t) and distribution of landings (\%) for tarakihi by fishing year over the five major areas described in Section 2.3.3.1 from trips which landed tarakihi, summed from 1989-90 to 2010-11. Major Areas are defined in Table 9.

Figure 7: Distribution of landings and effort for the 'second tier' methods for each Major Area (Table 9) by statistical area and fishing year from trips which landed tarakihi. Circles are proportional within each panel: [EN-Landings]: largest circle= 65 t in $97 / 98$ for 002; [ENNumber hooks]: largest circle= 2951×1000 hooks in 93/94 for 003; [BoP-Landings]: largest circle= 49 t in 03/04 for 009; [BoP-Number sets]: largest circle= 1216 sets in 93/94 for 008; [ECSI-Landings]: largest circle= 400 t in 01/02 for 018; ECSI-Length of net set]: largest circle $=2594 \mathrm{~km}$ in 00/01 for 018; [WCNI-Landings]: largest circle= 83 t in 07/08 for 047; [WCNI-Number tows]: largest circle= 493 tows in 07/08 for 047.

Figure 8: Distribution of landings and effort for the 'third tier' methods for each Major Area (Table 9) by statistical area and fishing year from trips which landed tarakihi. Circles are proportional within each panel: [BoP-Landings]: largest circle= 58 t in 92/93 for 009; [BoPLength of net set]: largest circle= 1380 km in $92 / 93$ for 009; [ECSI-Landings]: largest circle= 104 tin 08/09 for 022; [ECSI-Number sets]: largest circle= 255 sets in $06 / 07$ for 022.

2.3.3.3 Fine scale distribution of landings and CPUE for bottom trawl and setnet

Fine scale landings and effort data are available for the entire bottom trawl fleet taking tarakihi from 1 Oct 2007 onwards. A plot (Figure 9) showing landings gridded into $0.1 \times 0.1^{\circ}$ cells, summed over all four years, shows a broad range of latitudes where tarakihi have been successfully taken, with concentrations of catch extending northwards from north of the Otago Peninsula up to south of Kaikoura. High concentration landing grids appear in Cook Strait, and then extend northwards up the east coast of the North island and into the Bay of Plenty. High landing grids also are observed along both the east and west sides of North Cape, but do not extend very far down the west coast of the North Island, stopping near Manukau Harbour (Figure 9).

Figure 9: Total bottom trawl landings for tarakihi, arranged in $0.1^{\circ} \times 0.1^{\circ}$ grids, summed from 200708 to 2010-11. Legend colours divide the distribution of total landings into approximate $\mathbf{2 5 \%}, \mathbf{5 0 \%}, \mathbf{7 5 \%}, \mathbf{9 0 \%}$ and $\mathbf{9 5 \%}$ quantiles. Only grids consistent with the statistical areas present in TAR 1, TAR 2 or TAR 3, and which have at least three reporting vessels, are plotted. Boundaries are shown for the general statistical areas plotted in Appendix B and the bathymetry indicates the $\mathbf{1 0 0} \mathrm{m}, \mathbf{2 0 0} \mathrm{m}$ and $\mathbf{4 0 0} \mathrm{m}$ depth contours.

Bottom trawl tarakihi CPUE is more patchy, with areas of the highest catch rates concentrated in the Canterbury Bight, eastern Cook Strait, around East Cape into the Bay of Plenty and on both sides of North Cape, but do not go down very far on either side of the North Island (Figure 10).

Figure 10: Mean bottom trawl CPUE (in $\mathbf{k g} / \mathrm{h}$) for tarakihi, arranged in $0.1^{\circ} \times 0.1^{\circ}$ grids, summed from 2007-08 to 2010-11. Legend colours divide the distribution of BT CPUE into approximate $\mathbf{2 5 \%}, \mathbf{5 0 \%}, \mathbf{7 5 \%}, \mathbf{9 0} \%$ and $\mathbf{9 5 \%}$ quantiles. Only grids consistent with the statistical areas present in TAR 1, TAR 2 or TAR 3, and which have at least three reporting vessels, are plotted. Boundaries are shown for the general statistical areas plotted in Appendix B and the bathymetry indicates the $100 \mathrm{~m}, \mathbf{2 0 0} \mathrm{~m}$ and $\mathbf{4 0 0} \mathbf{m}$ depth contours.

Tarakihi landings and CPUE stemming from the setnet method are much more localised than observed for the bottom trawl method taking tarakihi. Fine scale data are available for an additional earlier fishing year (2006-07). Tarakihi landings using the setnet method are located near Timaru at the southern end of the Canterbury Bight, in a small area just south of Kaikoura, in the eastern Bay of Plenty near Tauranga and on the east side of North Cape (Figure 11). There are only two areas which have relatively high setnet catch rates for tarakihi: Kaikoura and Timaru (Figure 12).

Figure 11: Total setnet landings for tarakihi, arranged in $0.1^{\circ} \times 0.1^{\circ}$ grids, summed from 2006-07 to 2010-11. Legend colours divide the distribution of total landings into approximate $\mathbf{2 5 \%}$, $\mathbf{5 0 \%}, \mathbf{7 5 \%}, \mathbf{9 0 \%}$ and $\mathbf{9 5 \%}$ quantiles. Only grids consistent with the statistical areas present in TAR 1, TAR 2 or TAR 3, and which have at least three reporting vessels, are plotted. Boundaries are shown for the general statistical areas plotted in Appendix B and the bathymetry indicates the $\mathbf{1 0 0} \mathrm{m}, \mathbf{2 0 0} \mathrm{m}$ and $\mathbf{4 0 0} \mathrm{m}$ depth contours.

Figure 12: Mean setnet CPUE (in $\mathbf{k g} / \mathbf{k m}$ of net) for tarakihi, arranged in $0.1^{\circ} \times 0.1^{\circ}$ grids, summed from 2006-07 to 2010-11. Legend colours divide the distribution of mean CPUE into approximate $25 \%, 50 \%, 75 \%, 90 \%$ and 95% quantiles. Only grids consistent with the statistical areas present in TAR 1, TAR 2 or TAR 3, and which have at least three reporting vessels, are plotted. Boundaries are shown for the general statistical areas plotted in Appendix B and the bathymetry indicates the $\mathbf{1 0 0} \mathrm{m}, \mathbf{2 0 0} \mathrm{m}$ and $\mathbf{4 0 0} \mathrm{m}$ depth contours.

2.3.3.4 Seasonal distribution of landings

The seasonal distribution of bottom trawl landings has been relatively uniform over all months in ECNI, while the remaining four areas show a proportional increase in landings for three or five months during the period from January to June, depending on the area (Figure 13; Table F.1). The "bulge" is earliest in ECSI, spanning the 5 -month period from January to May. Moving north, but skipping over ECNI where the "bulge" isn't apparent, the peak landing months in BoP are from March to May and in EN from April to June (Table F.1). This shift in peak catch months when going north
may be weak evidence of a northward migration for this species along the NZ east coast. The west coast of the North Island has a slightly broader landing "bulge", covering a 4-month period between February and May (Table F.1).

Figure 13: Distribution of landings by month and fishing year for bottom trawl in the five defined Major Areas (Table 9) based on trips which landed tarakihi. Circle sizes are proportional within each panel: [EN]: largest circle= 113 t in 91/92 for Apr; [BoP]: largest circle= 150 t in 92/93 for May; [ECNI]: largest circle= 321 t in 92/93 for Mar; [ECSI]: largest circle= 274 t in 01/02 for Jan; [WCNI]: largest circle= $111 \mathbf{t}$ in 08/09 for Apr. Values for the plotted data are provided in Appendix F.

The ECSI setnet fishery is highly seasonal, being timed to the spawning migration of this species (Annala 1988). It has an initial broad peak between December and February, wanes in the months of March and April and then peaks again in May, apparently timed with the return of the spawning population (Figure 14; Table F.2). The timing of peak landing months in both the BoP Danish seine fishery and the EN bottom longline fishery has been in the late winter months, which are also the end of the fishing year (Figure 14; Table F.2). The BoP setnet fishery, when it existed, had its peak landings between February and May, similar to the peak months for the bottom trawl fishery in the same area (Figure 15; Table F.3). The ECSI Danish seine fishery has a late-season winter timing similar to that seen in the Bay of Plenty Danish seine fishery (Figure 15; Table F.3).

Figure 14: Distribution of landings by month and fishing year for second tier methods (defined in Appendix E) in the five defined Major Areas (Table 9) based on trips which landed tarakihi. Circle sizes are proportional within each panel: [EN-BLL]: largest circle= 22 t in 94/95 for Aug; [BoP-DS]: largest circle= 19 t in 03/04 for Mar; [ECSI-SN]: largest circle= 156 t in 01/02 for Dec; [WCNI-BPT]: largest circle= 21 t in 07/08 for May. Values for the plotted data are provided in Appendix F.

Month

Figure 15: Distribution of landings by month and fishing year for third tier methods in the five defined Major Areas (Table 9) based on trips which landed tarakihi. Circle sizes are proportional within each panel: [BoP-SN]: largest circle= 34 t in 92/93 for Mar; [ECSI-DS]: largest circle= $35 \mathbf{t}$ in $08 / 09$ for May. Values for the plotted data are provided in Appendix F.

2.3.3.5 Distribution of landings by declared target species

The primary declared target species in each of the five major areas has been tarakihi, ranging from 53% of the total 22 year accumulated landings in EN to 83% in ECNI (Table 12). Most of the target tarakihi catch has been taken by the bottom trawl method, with the exception of the target setnet fishery occurring in ECSI. Other fisheries which have taken more than 15% of the total tarakihi in a major area have been the target red cod bottom trawl fishery operating in ECSI and the target snapper bottom longline fishery operating in EN. All other method/target species combinations have taken less than 10% of the total landed tarakihi catch (Table 12).

All the bottom trawl fisheries operating in each of the five major areas are predominantly target fishing for tarakihi, ranging from an average 43% of the total landed weight in ECSI to 84\% in ECNI (Figure 16; Table G.1). The ECSI bottom trawl fishery has the greatest range of alternative target species among the five areas, with red cod and barracouta being the most important alternate species, but there has been a trend since the late 1990s for the relative importance of these two species to diminish in favour of an increasing trend to target tarakihi. Tarakihi target fishing has accounted for over 70% of the total tarakihi landings by bottom trawl in this area in the four years since 2007-08 (Table G.1). The bottom trawl fishery in WCNI, in addition to targeting tarakihi, also targets snapper (9% average of total landings) and trevally (6% average of total landings) (Table G.1). There is some targeting of snapper (11% average of total landings) and John dory (7% average of total landings) in the EN bottom trawl fishery (compared to 67% average of total landings for tarakihi target fishing, Table G.1).

Table 12: Total landings (t) and distribution of landings (\%) for tarakihi by target species and method of capture for each Major Area (Table E.1) from trips which landed tarakihi, summed from 1989-90 to 2010-11. Cells in the final row for each area sum the column above it. Cells in the final column for each area sum the row.

Target species	Method of Capture (t)							Method of Capture (\%)						
	BT	SN	BLL	DS	BPT	OTH	Total	BT	SN	BLL	DS	BPT	OTH	Total
Area: EN														
TAR	3977	30	74	18	88	6	4192	50.5	0.4	0.9	0.2	1.1	0.1	53
SNA	661	15	1302	39	70	5	2091	8.4	0.2	16.5	0.5	0.9	0.1	27
JDO	425	0	0	14	2	0	441	5.4	0.0	0.0	0.2	0.0	0.0	5.6
SKI	343	0	1	-	1	0	346	4.4	0.0	0.0	-	0.0	0.0	4.4
TRE	204	30	0	-	31	0	265	2.6	0.4	0.0	-	0.4	0.0	3.4
GUR	65	0	13	34	0	0	113	0.8	0.0	0.2	0.4	0.0	0.0	1.4
HPB	1	0	81	-	-	29	110	0.0	0.0	1.0	-	-	0.4	1.4
BAR	83	0	0	-	1	0	85	1.1	0.0	0.0	-	0.0	0.0	1.1
OTH	172	17	35	0	1	3	228	2.2	0.2	0.4	0.0	0.0	0.0	2.9
Total	5929	94	1507	104	194	42	7870	75.3	1.2	19.1	1.3	2.5	0.5	100
Area: BoP														
TAR	10219	461	10	201	0	3	10894	70.7	3.2	0.1	1.4	0.0	0.0	75
SNA	878	15	237	267	24	2	1423	6.1	0.1	1.6	1.9	0.2	0.0	10
TRE	497	33	0	5	1	0	536	3.4	0.2	0.0	0.0	0.0	0.0	3.7
SKI	447	10	0	0	0	1	458	3.1	0.1	0.0	0.0	0.0	0.0	3.2
GUR	202	1	24	100	0	0	326	1.4	0.0	0.2	0.7	0.0	0.0	2.3
HOK	240	6	-	2	-	0	247	1.7	0.0	-	0.0	-	0.0	1.7
BAR	224	0	-	0	-	0	225	1.6	0.0	-	0.0	-	0.0	1.6
JDO	167	0	0	2	0	0	170	1.2	0.0	0.0	0.0	0.0	0.0	1.2
OTH	109	27	30	2	1	4	173	0.8	0.2	0.2	0.0	0.0	0.0	1.2
Total	12983	553	300	580	26	11	14452	89.8	3.8	2.1	4.0	0.2	0.1	100

Table 12 (cont.):

Target species	Method of Capture (t)							Method of Capture (\%)						
	BT	SN	BLL	DS	BPT	OTH	Total	BT	SN	BLL	DS	BPT	OTH	Total
Area: ECNI														
TAR	29748	47	1	11	-	12	29819	83.2	0.1	0.0	0.0	-	0.0	83
GUR	2166	2	0	68	1	1	2239	6.1	0.0	0.0	0.2	0.0	0.0	6.3
SKI	1091	2	2	-	-	3	1097	3.0	0.0	0.0	-	-	0.0	3.1
WAR	623	32	0	-	-	0	654	1.7	0.1	0.0	-	-	0.0	1.8
HOK	584	0	0	0	-	10	594	1.6	0.0	0.0	0.0	-	0.0	1.7
BAR	488	0	-	-	-	1	489	1.4	0.0	-	-	-	0.0	1.4
SNA	277	0	10	8	0	1	296	0.8	0.0	0.0	0.0	0.0	0.0	0.8
TRE	131	0	-	0	0	-	132	0.4	0.0	-	0.0	0.0	-	0.4
MOK	70	27	-	-	-	0	97	0.2	0.1	-	-	-	0.0	0.3
JDO	85	0	-	0	-	0	85	0.2	0.0	-	0.0	-	0.0	0.2
OTH	158	12	78	1	-	11	261	0.4	0.0	0.2	0.0	-	0.0	0.7
Total	35421	123	92	88	1	39	35763	99.0	0.3	0.3	0.2	0.0	0.1	100
Area: ECSI														
TAR	7788	5519	0	423	-	3	13733	31.9	22.6	0.0	1.7	-	0.0	56
RCO	4991	8	-	27	0	1	5027	20.5	0.0	-	0.1	0.0	0.0	21
BAR	2101	0	-	-	-	4	2105	8.6	0.0	-	-	-	0.0	8.6
FLA	1334	0	0	1	-	0	1335	5.5	0.0	0.0	0.0	-	0.0	5.5
SQU	445	-	-	-	0	1	446	1.8	-	-	-	0.0	0.0	1.8
WAR	304	20	-	-	-	0	324	1.2	0.1	-	-	-	0.0	1.3
SPD	104	124	-	1	-	-	230	0.4	0.5	-	0.0	-	-	0.9
HOK	188	0	-	-	-	7	195	0.8	0.0	-	-	-	0.0	0.8
SPE	178	0	0	0	-	0	178	0.7	0.0	0.0	0.0	-	0.0	0.7
LIN	19	140	2	-	-	2	163	0.1	0.6	0.0	-	-	0.0	0.7
STA	134	0	-	-	-	-	134	0.6	0.0	-	-	-	-	0.6
OTH	391	115	6	2	0	10	524	1.6	0.5	0.0	0.0	0.0	0.0	2.1
Total	17979	5926	8	455	0	28	24395	73.7	24.3	0.0	1.9	0.0	0.1	100
Area: WCNI														
TAR	5322	7	26	5	388	4	5750	63.6	0.1	0.3	0.1	4.6	0.0	69
SNA	687	1	66	5	85	3	846	8.2	0.0	0.8	0.1	1.0	0.0	10
TRE	507	4	1	-	124	3	638	6.1	0.0	0.0	-	1.5	0.0	7.6
GUR	200	10	2	89	15	0	316	2.4	0.1	0.0	1.1	0.2	0.0	3.8
BAR	221	0	-	-	17	0	238	2.6	0.0	-	-	0.2	0.0	2.8
JMA	161	0	-	-	0	21	182	1.9	0.0	-	-	0.0	0.2	2.2
HPB	2	0	77	-	-	34	112	0.0	0.0	0.9	-	-	0.4	1.3
SKI	109	-	-	-	1	0	110	1.3	-	-	-	0.0	0.0	1.3
OTH	123	17	21	0	0	10	171	1.5	0.2	0.3	0.0	0.0	0.1	2.0
Total	7330	39	192	98	630	75	8364	87.6	0.5	2.3	1.2	7.5	0.9	100

The setnet fishery operating in ECSI is a target tarakihi fishery, with target landings averaging over 90% of the total landings and approaching 99% of the landings in the last decade (Figure 17; Table G.1). This is in contrast to the EN bottom longline fishery and the BoP Danish seine fishery, both of which are primarily targeted at snapper, although target fishing for tarakihi has exceeded the target snapper landings in the BoP DS fishery in two of the three most recent fishing years (Figure 17). The BoP setnet fishery, when it existed in the early 1990s, was also targeted at tarakihi, as is the developing Danish seine fishery in ECSI (Figure 18).

Bottom trawl

Target species

Figure 16: Distribution of landings by target species (ranked in terms of descending order of total landings) and fishing year for bottom trawl in the five defined Major Areas (Table 9) based on trips which landed tarakihi. Circle sizes are proportional within each panel: [EN]: largest circle= 304 t in 05/06 for TAR; [BoP]: largest circle= $\mathbf{6 3 5} \mathrm{t}$ in 03/04 for TAR; [ECNI]: largest circle=1811 t in $05 / 06$ for TAR; [ECSI]: largest circle= 796 t in $\mathbf{1 0 / 1 1}$ for TAR; [WCNI]: largest circle= 338 t in 02/03 for TAR.

Target species

Figure 17: Distribution of landings by target species (ranked in terms of descending order of total landings) and fishing year for second tier methods in the defined Major Areas (Table 9) based on trips which landed tarakihi. Circle sizes are proportional within each panel: [ENBLL]: largest circle= 109 t in 97/98 for SNA; [BoP-DS]: largest circle= 40 t in 03/04 for SNA; [ECSI-SN]: largest circle= 376 t in 01/02 for TAR; [WCNI-BPT]: largest circle= 102 t in 07/08 for TAR.

Figure 18: Distribution of landings by target species (ranked in terms of descending order of total landings) and fishing year for third tier methods in the defined Major Areas (Table 9) based on trips which landed tarakihi. Circle sizes are proportional within each panel: [BoP-SN]: largest circle= 106 t in 93/94 for TAR; [ECSI-DS]: largest circle= 144 t in 08/09 for TAR.

2.3.3.6 Preferred bottom trawl fishing depths for tarakihi

Depth information is available from TCEPR and TCER forms which report bottom trawl catches pertaining to tarakihi (either recording an estimated catch of tarakihi or declaring tarakihi as the target species). These data come either from the recently introduced (1 October 2007) TCER forms or the longstanding TCEPR forms, which are primarily used by the larger offshore vessels but have been in operation since the first year of data in this report (1989-90). Approximately one-third (over 43 000) of the depth observations reported in Table 13 originate from the TCER forms, accumulated in only four years and this form type accounts for about three quarters of the depth observations in those four years. This predominance of TCER reports reflects the inshore nature of the tarakihi bottom trawl fisheries. In addition, inshore bottom trawl fishers voluntarily undertook to report on tow-by-tow TCEPR forms in FMAs 1 and 9, beginning around 1995-96. Consequently, representative depth information is available from WCNI, EN and BoP from 1995-96.

Reported depth observations, summarised over both form types, show that the 5 to 95% quantiles for target tarakihi bottom trawl fishing tend to be shallow for the ECNI (40 to 175 m) and ECSI (46 to 130 m) fisheries compared to the equivalent depth range for EN (70 to 250 m), BoP (55 to 240 m) and WCNI (64 to 210 m) (Table 13). The distribution of tows which caught or targeted tarakihi varies according to the target fishery in all five areas, with deep fisheries such as squid, hoki and gemfish taking tarakihi at depths up to 500 m compared to the shallower depths for successful tarakihi catches for fisheries like red cod and flatfish (Figure 19).

The setnet forms (NCELR) introduced in 2006-07 do not request depth information (Ministry of Fisheries 2010).

Table 13: Summary statistics from distributions from all records (combined TCER and TCEPR formtypes) using the bottom trawl method for effort that targeted or caught tarakihi by target species category. Data for areas EN, BoP and WCNI include the period 1995-96 while data for areas ECNI and ECSI include the period 2007-08 to 2010-11.

Target species category	Number observations	Depth (m)			
		Lower 5\% of distribution	Mean of distribution	Median (50\%) of distribution	Upper 95\% of distribution
	[EN]				
TAR	6703	69	151	149	241
JDO	5286	40	74	73	112
SNA	5022	35	82	72	148
TRE	959	26	94	90	150
SKI	751	145	276	295	350
GUR	646	40	61	56	90
SCI	248	339	356	358	380
BAR	213	50	121	121	200
Other	154	68	255	294	405
Total	19982	41	115	95	270
[BoP]					
TAR	16617	55	147	140	240
SNA	5180	23	63	55	120
TRE	3094	25	57	50	112
GUR	1200	30	74	70	124
JDO	1200	39	81	80	130
BAR	588	72	129	120	202
SKI	384	120	261	270	400
HOK	361	120	256	240	410
Other	346	35	227	240	410
Total	28970	30	120	110	240

Table 13 (cont).:

Target species			Number
category observations			
[ECNI]	
TAR			20849
GUR			4610
WAR			610
SNA			281
SKI			250
HOK			179
SWA			138
MOK			129
BAR			106
FLA			105
Other			264
Total			27521
	[ECSI]		
TAR			6488
FLA			3165
RCO			928
BAR			864
STA			302
ELE			180
WAR			179
GUR			167
SPE			163
GSH			102
Other			317
Total			12855
	[WCNI]		
TAR			6603
SNA			2334
TRE			1829
GUR			669
BAR			621
JMA			284
SKI			224
JDO			124
SCH			107
Other			107

Depth (m)			
Lower 5\% of distribution	Mean of distribution	Median (50\%) of distribution	Upper 95\% of distribution
40	95	88	170
27	55	50	92
49	85	85	125
21	53	48	100
104	198	197	310
92	199	190	310
91	184	192	255
53	98	100	126
40	105	90	203
12	27	26	42
34	141	98	350
34	90	80	178
46	87	87	130
20	43	45	64
40	71	62	124
43	73	65	125
64	103	101	150
22	47	46	82
46	78	70	130
36	48	46	62
68	92	91	122
55	111	112	185
45	135	111	294
25	74	70	128
64	138	140	207
36	83	85	130
30	71	70	120
30	61	58	110
56	116	117	190
114	139	135	175
164	304	320	390
30	80	79	130
55	145	156	218
50	247	250	400

Figure 19: Box plot distributions of bottom depth from all records (combined TCER and TCEPR formtypes) using the bottom trawl method for effort that targeted or caught tarakihi by target species category. Data for areas EN, BoP and WCNI include the period 1995-96 while data for areas ECNI and ECSI include the period 2007-08 to 2010-11. Vertical line in each sub graph indicates the median depth from all tows which caught or targeted tarakihi in the indicated area.

3. STANDARDISED CPUE ANALYSIS, EAST COASTS NORTH AND SOUTH ISLANDS

Three fisheries were selected for detailed analysis to be included as biomass index series in a stock assessment of tarakihi on the east coasts of the North and South Islands of New Zealand (Langley \& Starr 2012). These fisheries were:
a) TAR2_BT_MIX: East coast, North Island mixed species bottom trawl-bottom single trawl in Statistical Areas 011 to 016 inclusive, target TAR, SNA, BAR, SKI, WAR, or GUR.
b) TAR3_BT_MIX: East coast, South Island mixed species bottom trawl-bottom single trawl in Statistical Areas 017, 018, 020, 022, 024, 026, target TAR, BAR, RCO, WAR, or GUR.
c) TAR3_SN_TAR: Kaikoura target tarakihi setnet-setnet in Statistical Area 018, target TAR.

Fisheries b) and c) were updates of equivalent analyses done in 2009 (Starr et al. 2009). Fishery a) was a broader definition of the target tarakihi fishery analysed by Bentley \& Jiang (2008). This change was added because work done in the intervening years indicated that these inshore CPUE series were less sensitive to data form issues if a broadening of the target species definition which characterised the fishery was used. Data were prepared in the same manner as described in Section 2.3.1 and detailed results, including all diagnostics, are presented for each of the above CPUE series in Appendix H and Appendix I.

These three fisheries show a considerable shift away from the unstandardised series, particularly the two mixed target species bottom trawl series (Figure 20). The TAR 2_BT_MIX series goes from a flat series with virtually no trend, to a complex series with a strong broad peak spanning the end of the 1990s and the first 3-4 years of the 2000s ([upper left panel] Figure 20). Similarly, a strong increasing trend in the unstandardised series for the TAR 3_BT_MIX series, beginning from the early 2000s, is transformed by the standardisation process into a flat series after a five-year decline from a peak in 1999-2000 ([upper right panel] Figure 20). The TAR3_SN_TAR series based on the target TAR setnet fishery, operating near Kaikoura, shows a lesser shift away from the unstandardised series attributable to the standardisation procedure. However, recent years are pulled down and the first three years are pulled up relative to the unstandardised TAR3_SN_TAR series ([lower left panel] Figure 20).

There is good agreement between previous series prepared for AMP reviews and the series generated for the 2012 tarakihi stock assessment (Figure 21). Because the definition of the TAR 2_BT_MIX series has been changed, the comparison for the east coast North Island series was done using the previous target TAR fishery definition (this analysis is not documented; [upper left panel] Figure 21). Note that there is reasonably good agreement between the previous TAR 3_BT_MIX series (Starr et al. 2009) and the equivalent 2012 series ([upper right panel] Figure 21), even though the latter series contained data from Area 017 while the 2009 series did not.

A direct comparison of all three series prepared for the 2012 tarakihi stock assessment shows that the TAR 3_BT_MIX series has the earliest peak, peaking about two years sooner than the TAR 2_BT_MIX series (Figure 22). The TAR 3_BT_MIX series also shows a strong 50\% increase in 2010-11, which coincides with the strong increase in the TAR 3 2010-11 LFR landings (see [lower left] Figure 2). This figure also shows that the peak for the TAR 2_BT_MIX series is much broader than the peak seen in the TAR 3_SN_TAR series, although both have the same peak year (Figure 22). Closer examination of the comparison between the TAR 2_BT_TAR target tarakihi series with the TAR 2_BT_MIX series, shows that the abundance peak for the TAR 2_BT_TAR series is also less broad and slightly lower than the equivalent indices for the TAR 2_BT_MIX series (see [upper left panel] Figure 21).

A similar comparison is made in Figure 23, where the TAR 2_BT_MIX series is compared with the TAR 3_SN_TAR and TAR 2_BT_TAR series. This comparison shows that the two target TAR series are almost identical, except for a lot of variation in the setnet indices at the beginning of the series. Both target series have narrow bands of peak abundance in the early 2000s, and don't scale as high as the TAR 2_BT_MIX series. Finally, Figure 24 shows that the Bay-of-Plenty_BT_MIX series (documented in Appendix J) is nearly identical to the TAR 2_BT_MIX series. The other series in Figure 24 (EN_BT_MIX, also documented in Appendix J) more closely resembles the TAR 3_BT_MIX, although this area is not known as a nursery area and tarakihi migration direction is thought to be mainly from South to North (Langley \& Starr 2012).

Figure 20: Standardised CPUE models for three East Coast tarakihi data sets: [upper left panel] TAR 2_BT_MIX: mixed target species bottom trawl from Areas 011-016; [upper right panel] TAR 3_BT_MIX: mixed target species bottom trawl from Areas 017-026; [lower left panel] TAR 3_SN_TAR: tarakihi target species setnet from Area 018. Error bars are ± 2 *SE. Also shown are two unstandardised series (arithmetic and geometric) using the same data that generated each standardised series. The effort variable for these unstandardised series was tows for the two bottom trawl fisheries and net length for the setnet fishery.

Figure 21: Comparison of previous standardised CPUE analyses with those prepared for this report: [upper left panel]: East coast North Island bottom trawl fishery, 2008 AMP target TAR with 2012 TAR and MIX target series; [upper right panel] East coast South Island bottom trawl fishery, 2009 AMP MIX (without Area 017) with 2012 MIX target series (with Area 017); [lower left panel]: Kaikoura target TAR setnet fishery, 2009 AMP with 2012 series.

Each series scaled so that the geometric mean=1 from $89 / 90$ to $10 / 11$

Figure 22: Comparison of 2012 standardised CPUE series: a) east coast South Island bottom trawl fishery, MIX target series; b) Kaikoura target TAR setnet fishery; c) east coast North Island bottom trawl fishery, MIX target series.

Each series scaled so that the geometric mean $=1$ from $89 / 90$ to $10 / 11$

Figure 23: Comparison of 2012 standardised CPUE series: a) east coast North Island bottom trawl fishery, MIX target series; b) east coast North Island bottom trawl fishery, TAR target series; c) Kaikoura target TAR setnet fishery.

Each series scaled so that the geometric mean=1 from $89 / 90$ to $10 / 11$

Figure 24: Comparison of 2012 standardised CPUE series: a) east coast North Island bottom trawl fishery, MIX target series; b) Bay of Plenty bottom trawl fishery, MIX target series; c) East Northland bottom trawl fishery, MIX target series.

4. STANDARDISED CPUE ANALYSIS, TAR 1

Standardised CPUE analyses are presented for three additional fisheries in Appendix J. These fisheries were not used in the stock assessment (Langley \& Starr 2012) for reasons presented in Appendix Section J.1, but are included in this report because they are used to monitor the tarakihi populations in this QMA. These fisheries were:
a) WCNI_BT_MIX-West coast North Island mixed species bottom trawl: bottom single trawl in statistical areas 041, 042, 045-048, and targeted TAR, SNA, or TRE.
b) EN_BT_MIX-East Northland mixed species bottom trawl: bottom single trawl in statistical areas 002-007, and targeted TAR, SNA, TRE, BAR, JDO, or GUR.
c) BoP_BT_MIX-Bay of Plenty mixed species bottom trawl: bottom single trawl fishing events in statistical areas 008-010, and targeted TAR, SNA, TRE, BAR, SKI, JDO, or GUR.
Three standardised CPUE models (Table K.2; Figure 25) are used to track the abundance of tarakihi populations in TAR 1 due to the wide and diverse area covered by this QMA as well as there being different trends among the three areas. The WCNI_BT_MIX model showed almost no trend, fluctuating around the long-term mean with fairly wide error bars on the annual indices, indicating that the model is not well determined (Figure 25 [upper left panel]). The East Northland (EN_BT_MIX) series dropped sharply after the first year, which is likely to be due to data issues in the first year of operation (Figure 25 [upper right panel]). After that drop, the series showed a long gradual declining trend from the late 1990s. This decline has now stabilised at about 60% of the long-term mean from 2006-07. Finally the Bay of Plenty (BoP_BT_MIX) series shows no long-term trend, with current levels near to the levels observed at the beginning of the series, interrupted by five years of increased CPUE in the early 2000s (Figure 25 [lower left panel]). The BoP_BT_MIX series very closely resembles the TAR 2_BT_MIX reported in Section 3 (see Figure 24).

Figure 25: Standardised CPUE models for the three TAR 1 tarakihi data sets: [upper left panel] WCNI_BT_MIX: mixed target species bottom trawl from Areas 041, 042, 045-048; [upper right panel] EN_BT_MIX: mixed target species bottom trawl from Areas 002-007; [lower left panel] BoP_BT_MIX: mixed target species bottom trawl from Areas 008-010. Error bars are $\pm 2^{*}$ SE. Also shown are two unstandardised series (arithmetic and unstandardised or geometric) using the same data that generated each standardised series.

The three TAR 1 CPUE series were analysed with software which selected the distributional assumption which best fit the available data, instead of always using the Lognormal distribution as was done in previous standardisation analyses (the TAR 2 and TAR 3 series reported in Section 3 were repeated using the same procedure; those results are reported in Section 5 and Appendix L). The methods used for this procedure are described in Appendix Section J.2.2, with the Weibull distribution selected as having the best fit to the data for each dataset (WCNI_BT_MIX: Figure K.12; EN_BT_MIX: Figure K.8; BoP_BT_MIX: Figure K.4) and these results are compared with a series calculated from the same data, but based on the Lognormal distribution (see Figure 26). Figure 26 also compares these two alternative series with previous series (Kendrick 2009) reviewed by the NINSWG for the same three areas. Although the three series based on the Weibull distribution appear to have less year-to-year variability (particularly in the WCNI_BT_MIX series), the general trends are very similar among the two distributional assumptions and these series would be interpreted similarly if used in a stock assessment population model. The correspondence with the earlier series (Kendrick 2009) (labelled '2008' in Figure 26) is relatively poor, particularly for the WCNI_BT_MIX series, even when comparing the two series which use the Lognormal distribution (Figure 26). These divergences are likely to reflect underlying differences in the data and show why it is important to regularly update these analyses.

Figure 26: Comparison of previous standardised CPUE analyses (Kendrick 2009) with the series prepared for this report, along with a comparison of the Weibull series with the equivalent Lognormal series: [upper left panel]: West coast North Island bottom trawl; [upper right panel] East Northland bottom trawl; [lower left panel]: Bay of Plenty bottom trawl.

5. ADDITIONAL ANALYSES

Appendix L documents analyses performed to explore the change from a daily formtype (CELR: Ministry of Fisheries 2010) to "event-based" formtypes (primarily TCER and NCELR for the inshore tarakihi fisheries in this report). There have been some disturbing changes in reporting behaviour by fishers associated with this shift in reporting format and there is concern that these shifts have the potential to bias the CPUE trends estimated in the standardisation procedure. None of the analyses reported in Appendix L can definitely rule out this potential for bias. However, there is some evidence in these analyses, particularly the similarity of the "influence" trends (Bentley et al. 2011) with the trend of mean effort per day for each standardisation analysis which suggest that the standardisation procedure is compensating reasonably well for these changes. A comparison of these two measures is made for the three northern New Zealand BT fisheries in Figure L. 15 and for the four east coast fisheries in Figure L. 16.

The three CPUE series presented in Appendix H were repeated, at the request of the NINSWG, using the "distributional" software that was also used to analyse the three TAR 1 CPUE series, but which was not available when the Appendix H series were initially done. These updated analyses are presented in Appendix L, along with full diagnostics for the two series (TAR 2_BT_MIX and

TAR 3_SN_TAR) which obtained a better fit to the data with the Weibull distributional assumption. The TAR 3_BT_MIX series remained unchanged because it was based on the Lognormal distribution which turned out to be the best fit to the data. The change in distributional assumption had very little effect on the TAR 2_BT_MIX series ([left panel] Figure 27), but the differences between the two distributions for the TAR 3_SN_TAR series is the greatest among the five CPUE series which shifted from the Weibull to the Lognormal distributions (compare [right panel] Figure 27 with the other panel in the same figure and all three panels in Figure 26). While the peak year in the two versions of the TAR 3_SN_TAR series was the same, the preceding year is much lower in the Weibull version and the following years are higher until 2007-08.

Figure 27: Comparison of standardised CPUE analyses based on the Weibull series with the equivalent Lognormal series: [left panel]: East coast North Island bottom trawl, mixed target species; [right panel] TAR 3 target TAR setnet fishery.

6. ACKNOWLEDGMENTS

This work was funded by MPI Research Project TAR2011/02. We thank the MPI Information and Data Management team for providing the catch/effort data in a timely manner. Members of the Northern Inshore Working Group provided important input and advice through several iterations of the analyses contained in this report.

7. REFERENCES

Annala, J.H. (1988). Tarakihi. New Zealand Fisheries Assessment Research Document 88/28. 31 p. (Unpublished report held in NIWA library, Wellington.)

Bentley, N.; Kendrick, T.H.; Starr, P. J.; Breen, P. A. (2011). Influence plots and metrics: tools for better understanding fisheries catch-per-unit-effort standardisations. ICES Journal of Marine Science, doi:10.1093/icesjms/fsr174
Boyd, R.O.; Reilly, J.L. (2005). 1999/2000 national marine recreational fishing survey: harvest estimates. Draft New Zealand Fisheries Assessment Report (Unpublished document held by Ministry for Primary Industries, Wellington.)

Bradford, E. (1998). Harvest estimates from the 1996 national recreational fishing surveys. New Zealand Fisheries Assessment Research Document. 98/16. 27 p. (Unpublished report held in NIWA library, Wellington.)

Francis, R.I.C.C. (1999). The impact of correlations on standardised CPUE indices. New Zealand Fishery Assessment Research Document 99/42. 30 p. (Unpublished report held in NIWA Greta Point library, Wellington.)

Francis, R.I.C.C. (2001). Orange roughy CPUE on the South and East Chatham Rise. New Zealand Fishery Assessment Report 2001/26. 30 p.

Jiang, W.; Bentley, N. (2008). TAR 2 Adaptive Management Programme Draft Report: 2006/07 Fishing Year. Document 2008/14[rev 1], 57 p. (Unpublished document held by the Ministry for Primary Industries, Wellington.) (http://cs.fish.govt.nz/forums/thread/1327.aspx)

Kendrick, T.H. (2009). Fishery characterisations and catch-per-unit-effort indices for three sub-stocks of tarakihi in TAR 1, 1989-90 to 2006-07. New Zealand Fisheries Assessment Report 2009/64. 57 p.

Langley, A.D.; Starr, P. (2012). Stock relationships of tarakihi off the east coast of mainland New Zealand and the feasibility of developing a statistical assessment of the corresponding tarakihi stock(s). New Zealand Fisheries Assessment Report 2012/30. 69 p.
Ministry of Fisheries (2010). WAREHOU Database Documentation Catch Effort Base Views and Fields. Version 9. 80 p. (Unpublished report held by the Ministry for Primary Industries, Wellington. Obtainable from rdm@mpi.govt.nz)
Ministry of Fisheries (2011). Report from the Fisheries Assessment Plenary, May 2011: Stock Assessments And Yield Estimates. Ministry of Fisheries, Wellington, New Zealand. 1178 p.

Quinn, T.R.; Deriso, R.B. (1999). Quantitative Fish Dynamics. Oxford University Press. 542 p.
Starr, P.J. (2007). Procedure for merging Ministry of Fisheries landing and effort data, version 2.0. Report to the Adaptive Management Programme Fishery Assessment Working Group: Document 2007/04, 17 p. (Unpublished document held by the Ministry for Primary Industries, Wellington.)
Starr. P.J.; Kendrick T.H.; Lydon, G.J.; Bentley, N. (2009). Report to the Adaptive Management Programme Fishery Assessment Working Group: Review of the TAR 3 Adaptive Management Programme. Document 2009/08 [version 2], 74 p. (Unpublished document held by the Ministry for Primary Industries, Wellington.) (http://cs.fish.govt.nz/forums/thread/2149.aspx)

Teirney, L.D.; Kilner, A.R.; Millar, R.E.; Bradford, E.; Bell, J.D. (1997). Estimation of recreational catch from 1991/92 to 1993/94 New Zealand Fisheries Assessment Research Document 97/15. 43 p. (Unpublished report held in NIWA library, Wellington.)

Vignaux, M. (1994). Catch per unit effort (CPUE) analysis of west coast South Island and Cook Strait spawning hoki fisheries, 1987-93. New Zealand Fisheries Assessment Research Document 94/11. 29 p. (Unpublished report held in NIWA library, Wellington, New Zealand)

Appendix A. Glossary of Abbreviations, Codes, and Definitions of Terms

Table A.1: Table of abbreviations and definitions of terms

rm/Abbreviation	Definition
AIC	Akaike Information Criterion: used to select between different models (lower is better)
AMP	Adaptive Management Programme
analysis dataset	data set available after completion of grooming procedure (Starr 2007)
arithmetic CPUE	Sum of catch/sum of effort, usually summed over a year within the stratum of interest
CDI plot	Coefficient-distribution-influence plot (see Figure I. 10 for an example) (Bentley et al. 2011)
CELR	Catch/Effort Landing Return (Ministry of Fisheries 2010): active since July 1989 for all vessels less than 28 m . Fishing events are reported on a daily basis on this form
CLR	Catch Landing Return (Ministry of Fisheries 2010): active since July 1989 for all vessels not using the CELR or NCELR forms to report landings
CPUE destination code	Catch Per Unit Effort code indicating how each landing was directed after leaving vessel (see Table 4)
EEZ estimated catch	Exclusive Economic Zone: marine waters under control of New Zealand an estimate made by the operator of the vessel of the weight of tarakihi captured, which is then recorded as part of the "fishing event". Only the top 5 species are required for any fishing event in the CELR and TCEPR data (expanded to 8 for the TCER form type)
fishing event	a "fishing event" is a record of activity in trip. It is a day of fishing within a single statistical area, using one method of capture and one declared target species (CELR data) or a unit of fishing effort (usually a tow or a line set) for fishing methods using other reporting forms
fishing year	1 October - 30 September for tarakihi
landing event	weight of tarakihi off-loaded from a vessel at the end of a trip. Every landing has an associated destination code and there can be multiple landing events with the same destination code for a trip
LCER	Lining Catch Effort Return (Ministry of Fisheries 2010): active since October 2003 for lining vessels larger than 28 m and reports set-by-set fishing events
LFR	Licensed Fish Receiver: processors legally allowed to receive commercially caught species
LTCER	Lining Trip Catch Effort Return (Ministry of Fisheries 2010): active since October 2007 for lining vessels between 6 and 28 m and reports individual set-by-set fishing events
MHR	Monthly Harvest Return: monthly returns used after 1 October 2001. Replaced QMRs but have same definition and utility
MPI	New Zealand Ministry for Primary Industries
NCELR	Netting Catch Effort Landing Return (Ministry of Fisheries 2010): active since October 2006 for inshore vessels using setnet gear between 6 and 28 m and reports individual fishing events
NINSWG	Northern Inshore Fisheries Assessment Working Group: MPI Working Group overseeing the work presented in this report
QMA	Quota Management Area: legally defined unit area used for tarakihi management (see Appendix B)
QMR	Quota Management Report: monthly harvest reports submitted by commercial fishermen to MPI. Considered to be best estimates of commercial harvest. In use from 1986 to 2001.
QMS	Quota Management System: name of the management system used in New Zealand to control commercial and non-commercial catches
replog	data extract identifier issued by MPI data unit
residual implied coefficient plots	plots which mimic interaction effects between the year coefficients and a categorical variable by adding the mean of the categorical variable residuals in each fishing year to the year coefficient, creating a plot of the "year effect" for each value of the categorical variable
rollup	a term describing the average number of records per "trip-stratum"
RTWG standardised CPUE	MPI Recreational Technical Working Group procedure used to remove the effects of explanatory variables such as vessel, statistical area and month of capture from a data set of catch/effort data for a species; annual abundance is usually modelled as an explanatory variable representing the year of capture and, after removing the effects of the other explanatory variables, the resulting year coefficients represent the relative change in species abundance

Term/Abbreviation

statistical area

TACC

TCEPR
TCER
trip-stratum
unstandardised CPUE
trip a unit of fishing activity by a vessel consisting of "fishing events" and "landing events", which are activities assigned to the trip. MPI generates a unique database code to identify each trip, using the trip start and end dates and the vessel code (Ministry of Fisheries 2010)

Definition

sub-areas (Appendix B) within a tarakihi QMA which are identified in catch/effort returns. The boundaries for these statistical areas do not always coincide with the QMA boundaries, leading to ambiguity in the assignment of effort to a QMA.
Total Allowable Commercial Catch: catch limit set by the Minister responsible for Fisheries for a QMA that applies to commercial fishing
Trawl Catch Effort Processing Return (Ministry of Fisheries 2010): active since July 1989 for deepwater vessels larger than 28 m and reports tow-by-tow fishing events Trawl Catch Effort Return (Ministry of Fisheries 2010): active since October 2007 for inshore vessels between 6 and 28 m and reports tow-by-tow fishing events summarisation within a trip by fishing method used, the statistical area of occupancy and the declared target species
geometric mean of all individual CPUE observations, usually summarised over a year within the stratum of interest

Table A.2: Code definitions used in Appendix E, Appendix F, Appendix H, Appendix J and in the body of the main report.

Code	Definition	Code	Description
BLL	Bottom longlining	BAR	Barracouta
BPT	Bottom trawl—pair	BCO	Blue Cod
BS	Beach seine/drag nets	BNS	Bluenose
BT	Bottom trawl—single	BYX	Alfonsino \& Long-finned Beryx
CP	Cod potting	ELE	Elephant Fish
DL	Drop/dahn lines	FLA	Flats
DS	Danish seining—single	GSH	Ghost Shark
HL	Handlining	GUR	Gurnard
MW	Midwater trawl—single	HOK	Hoki
RLP	Rock lobster potting	HPB	Hapuku \& Bass
SLL	Surface longlining	JDO	John Dory
SN	Set netting (including Gill nets)	JMA	Jack Mackerel
T	Trolling	KIN	Kingfish
TL	Trot lines	LIN	Ling
		MOK	Moki
EN	East Northland	RBY	Ruby Fish
BoP	Bay of Plenty	RCO	Red Cod
ECNI	East Coast North Island	RSN	Red Snapper
ECSI	East Coast South Island	SCH	School Shark
WCNI	West Coast North Island	SCI	Scampi
		SKI	Gemfish
		SNA	Snapper
		SPD	Spiny Dogfish
		SPE	Sea Perch
		SQU	Arrow Squid
		STA	Giant Stargazer
		SWA	Silver Warehou
		TAR	Tarakihi
		TRE	Trevally
		WAR	Blue Warehou

Appendix B. MAP OF MPI statistical and management areas

NEW ZEALAND FISHERY MANAGEMENT AREAS
AND STATISTICAL AREAS

Figure B.1: Map of Ministry for Primary Industries statistical areas and Quota Management Area (QMA) boundaries, showing locations where QMA boundaries are not contiguous with the statistical area boundaries

Appendix C. Method used to exclude "out-of-range" landings

C. 1 Introduction

The method previously used to identify "implausibly large" landings used arithmetic CPUE, with the presumption that trips with extremely large arithmetic CPUE values existed because the contributing landings were implausibly large. This method had two major problems: one was that the arithmetic CPUE for mixed-method trips could not be easily calculated and the other was that there was a lot of subjectivity in the process (how does one identify an "implausibly large" arithmetic CPUE?). Dropping "implausibly large" landings is necessary because there often are large landings which are due to data errors (possibly at the data entry step), with landings from single trips occasionally exceeding 100-300 t for some species. These errors can result in substantial deviations from the accepted QMR/MHR catches and affect the credibility of the characterisation and CPUE analyses. The previous method transferred the problem of identifying "implausibly large" landings to identifying unreasonably large CPUE values. A further problem with the procedure was that the CPUE method was difficult to automate, requiring intermediate evaluations.

C. 2 Methods

The method use for this new procedure is less subjective and can be automated, evaluating trips with very large landings based on internal evidence within the trip that potentially corroborate the landings. The method proceeds in two steps:

Step 1 Trips with large landings were selected using the empirical distribution of trip landing totals from all trips in the data set (for instance, all trips in the largest 1% quantile in terms of total trip landings);

Step 2 Internal evidence substantiating the landings within each trip was derived from summing the estimated catch for the species in question, as well as summing the "calculated green weight" (=number_bins*avg_weight_bin*conversion_factor) (Eq. C.1). The ratio of each these totals is taken with the declared green weight for the trip, with the minimum of the two ratios taken as the "best" validation (Eq. C.2). High values for this ratio (for instance, greater than 9.0 with declared green weight in the numerator) would be evidence that the declared greenweight landing for the trip is not corroborated from the other data available, making the trip a candidate for dropping.

A two-way grid search was implemented for this procedure across a range of empirical quantiles (Step 1) and test ratio values (Step 2). For each pair of values, the "fit" of the annual sum of the landings was evaluated against the QMR/MHR totals, using a least-squares criterion. The pair of "Step 1" and "Step 2" values which gave the lowest $S S q^{2}$ was used to select the set of candidate trips to drop because the resulting landings totals would be the closest overall to the QMR/MHR total catch. The search was stopped at a maximum value for the ratio ($r a t_{t, s}$: Eq. C.2)=9.0, on the premise that trips where the corroborating evidence was an order of magnitude less than the declared landings were implausible.

C. 3 Equations

For every trip, there exist three estimates of total greenweight catch for species s :

Eq. C. 1

$$
\begin{aligned}
G_{t, s}^{d} & =\sum_{i=1}^{n_{t}} g w t_{t, s, i} \\
G_{t, s}^{c} & =\sum_{i=1}^{n_{t}} C F_{s} * W_{t, i} * B_{t, i} \\
G_{t, s}^{e} & =\sum_{j=1}^{m_{t}} e s t_{t, s, j}
\end{aligned}
$$

where $\quad G_{t, s}^{d}=$ sum of declared greenweight $(g w t)$ for trip t over all n_{t} landing records;
$G_{t, s}^{c}=$ sum of calculated greenweight for trip t over all n_{t} landing records, using conversion factor $C F_{s}$, weight of bin $W_{t, i}$ and number of bins $B_{t, i}$;
$G_{t, s}^{e}=$ sum of estimated catch (est) for trip t over all m_{t} effort records.
Assuming that $G_{t, s}^{d}$ is the best available estimate of the total landings of species s for trip t, calculate the following ratios:

Eq. C. 2

$$
\begin{aligned}
& r 1_{t, s}=G_{t, s}^{d} / G_{t, s}^{c} \\
& r 2_{t, s}=G_{t, s}^{d} / G_{t, s}^{e} \\
& r a t_{t, s}=\min \left(r 1_{t, s}, r 2_{t, s}\right)
\end{aligned}
$$

where $G_{t, s}^{d}, G_{t, s}^{c}$ and $G_{t, s}^{e}$ are defined in Eq. C.1, and ignoring $r 1_{t, s}$ or $r 2_{t, s}$ if missing when calculating rat $_{t, s}$.

The ratio $r a t t_{t, s}$ can be considered the "best available information" to corroborate the landings declared in the total $G_{t, s}^{d}$, with ratios exceeding a threshold value (e.g. rat $t_{t, s}>9.0$) considered to be uncorroborated. This criterion can be applied to a set of trips selected using a quantile of the empirical distribution of total trip greenweights. The set of trips to drop was selected on the basis of the pair of criteria (quantile and ratio threshold) which gave the lowest $S S q^{2}$ (Eq. C.3) relative to the annual QMR/MHR totals.

Eq. C. 3

$$
g g_{y}^{z}=\sum_{1}^{p_{y}^{z}} L_{y}^{z}
$$

$$
S s q^{z}=\sum_{y=89 / 90}^{y=10 / 11}\left(g g_{y}^{z}-M H R_{y}\right)^{2}
$$

where $\quad p_{y}^{z}$ is the number landing records in year y for iteration z (i.e.: a combination of a ratio threshold criterion with an empirical quantile cut-off criterion);
L_{y}^{z} is a landing record included in year y for iteration z.
$M H R_{y}$ is the corresponding MHR/QMR landing total for (TAR 1 or TAR 2 or TAR 3) in year y.

C. 4 Results

This approach conservatively dropped 12 trips from the combined TAR 1 (3 trips for 393 t), TAR 2 (5 trips for 497 t) and TAR 3 (4 trips for 163 t) landing data set (Table C.1). There were a total of 183000 trips in the combined data set, but these 12 dropped trips accounted for 1053 t of landings with two trips each having more than 300 t of landings. The total landings from these three QMAs in this data set was about 89000 t (after dropping the 12 trips), but the presence of the two trips with very large landings is quite noticeable in the "raw landings" plots for TAR 1 and TAR 2 (Figure C.1).

Table C.1: Results from a search over two parameters defined above: A) a quantile cut-off which selected the set of large landings over which to search and B) the ratio (Eq. C.2) defining the maximum criterion for accepting a landing. The quantile/ratio pair with the lowest $S s q^{2}$ (Eq. C.3) is highlighted in colour (maximum ratio accepted=9.0 and quantile cut-off=97\%).

Figure C.1: Comparison of QMR/MHR annual total landings for TAR 1, TAR 2, and TAR 3 with two extracts A: total or "raw" landings; B: "best" fit after dropping landings identified using the two-way search algorithm described in Table C. 1 using data provided by MPI data extract replog 8360.

Appendix D. Comparison by statistical area of two data preparation METHODS

This appendix compares TAR 1, TAR 2 and TAR 3 landings by statistical area from data sets prepared in two ways:

1. "Fishstock expansion": uses the method of Starr (2007) where trips are dropped which fished in statistical areas valid for more than one Fishstock and which declared more than one Fishstock in the landing data;
2. "Statistical area expansion": scales all estimated catches by statistical area within a trip by the total trip landings, without reference to the Fishstock of capture.
Table D. 1 provides a measure of how much data are lost as a consequence of dropping trips which fished in ambiguous statistical areas and landed to multiple TAR Fishstocks. The "Fishstock expansion" procedure is necessary to provide Fishstock-specific advice because catches using the "Statistical Area expansion" procedure will potentially contain catches from multiple Fishstocks. The latter procedure retains landings from ambiguous statistical areas, but the capacity to trace the landings to specific Fishstocks has been lost.

Approximately 5300 t are dropped when using the "Fishstock expansion" method compared to "Statistical area expansion" method, comprising about 6% of the total valid landings in the dataset (Table D.1). Statistical areas 017, 018, and 016, all in eastern Cook Strait (Appendix B), account for 60% of the dropped landings. This is because the boundaries of these three statistical areas encompass three QMAs and there is considerable opportunity for ambiguity in the assignment of QMA-specific catches. The problem is especially acute in Area 017 , where over 90% of the landings are discarded by the "Fishstock expansion" method. Consequently, the "Statistical area" expansion method was used for the analyses presented in this report.

Table D.1: Total catch (1989-90 to 2010-11) by statistical area, comparing the "Fishstock expansion" data preparation procedure with the catch resulting from the "Statistical Area expansion" preparation procedure (described above), sorted in descending order of dropped landings. Only statistical areas valid for the TAR 1, TAR 2, and TAR 3 characterisation analyses are shown. Statistical areas where more than 40% of the total (1989-90 to 2010-11) landings have been dropped using the "Fishstock expansion" method are indicated with coloured cells.

Statistical				
Area	Statistical area expansion	Fishstock expansion	Difference (t)	Difference $(\%)$
017	1651.2	112.2	1539.0	-93%
018	8017.9	6864.8	1153.1	-14%
016	1932.0	1443.2	488.8	-25%
041	579.8	109.5	470.3	-81%
002	3702.4	3325.7	376.7	-10%
015	1854.6	1533.5	321.1	-17%
020	5536.7	5352.9	183.8	-3%
011	6641.4	6500.9	140.5	-2%
012	8510.3	8405.3	105.0	-1%
042	436.4	334.0	102.4	-23%
013	11846.3	11755.0	91.3	-1%
014	4957.1	4873.4	83.7	-2%
001	371.0	296.2	74.8	-20%
022	7125.5	7051.7	73.8	-1%
003	2713.1	2655.1	58.0	-2%
046	1568.6	1541.6	27.0	-2%
024	1581.5	1556.7	24.8	-2%
045	1167.1	1148.2	18.9	-2%
047	4514.1	4500.9	13.2	0%

Table D. 1 (cont.):

Statistical Area	Statistical area expansion	Fishstock expansion	Difference (t)	Difference (\%)
008	2142.4	2135.4	7.0	0\%
021	61.7	55.5	6.2	-10\%
026	333.0	327.0	6.0	-2\%
044	8.0	2.5	5.5	-69\%
048	71.5	67.3	4.2	-6\%
106	20.5	16.4	4.1	-20\%
019	9.9	6.4	3.5	-35\%
103	3.0	0.1	2.9	-97\%
201	3.5	0.6	2.9	-83\%
007	36.5	34.9	1.6	-4\%
205	1.6	0.7	0.9	-56\%
005	469.0	468.1	0.9	0\%
202	0.8	0.0	0.8	-100\%
101	5.3	4.6	0.7	-13\%
107	3.6	2.9	0.7	-19\%
204	14.6	14.1	0.5	-3\%
006	68.3	68.0	0.3	0\%
203	1.2	1.1	0.1	-8\%
023	26.9	26.8	0.1	0\%
043	5.1	5.1	0.0	0\%
102	1.0	1.0	0.0	0\%
104	4.1	4.1	0.0	0\%
105	0.7	0.7	0.0	0\%
206	0.0	0.0	0.0	-
301	0.0	0.0	0.0	-
302	6.1	6.1	0.0	0\%
303	0.0	0.0	0.0	-
004	488.2	489.4	- 1.2	0\%
009	5477.4	5502.4	- 25.0	0\%
010	6828.7	6863.5	- 34.8	1\%
Total	90799.6	85465.5	5334.1	-6\%

Appendix E. Data summaries by major area and total, all areas: combined TAR 1, TAR 2, and TAR 3

Table E.1: \quad Statistical areas for each of the five major areas selected for the combined TAR 1, TAR 2 and TAR 3 characterisation and the total across all areas, showing each statistical area in descending rank order of total landings and the number (N) of trip stratum records over the period 198990 to 2010-11. The statistical areas shaded in grey have been combined into a "plus" category for graphical and tabular presentation. ‘ 0 ': <0.5 t of total landings.

	East Northland				Bay of Plenty		East coast, North Island			East coast, South Island			West coast, North Island			Total, all areas		
Rank	Stat.	N(trip	Land-		N(trip	Land-	Stat.	N(trip		Stat.	N(trip		Stat.	N(trip	Land-		$\mathrm{N} \text { (trip }$	Land-
order	Area	strata)	ings (t)															
1	002	23040	3702	010	12371	6829	013	20576	11846	018	37129	8018	047	10102	4514	013	20576	11846
2	003	25909	2713	009	22512	5477	012	7199	8510	022	19050	7126	046	4133	1569	012	7199	8510
3	004	2154	488	008	17906	2142	011	5020	6641	020	12416	5537	045	5473	1167	018	37129	8018
4	005	13448	469	107	64	4	014	11707	4957	017	2642	1651	041	1711	580	022	19050	7126
5	001	1961	371				016	8489	1932	024	14967	1581	042	4247	436	010	12371	6829
6	006	4762	68				015	4621	1855	026	3832	333	048	518	72	011	5020	6641
7	007	912	37				204	613	15	021	687	62	044	53	8	020	12416	5537
8	106	218	21				201	90	4	025	476	34	101	52	5	009	22512	5477
9	105	13	1				205	46	2	023	547	27	043	46	5	014	11707	4957
10							203	24	1	027	749	11	104	15	4	047	10102	4514
11							202	6	1	019	278	10	103	36	3	002	23040	3702
12							206	2	0	302	19	6	102	12	1	003	25909	2713
13										303	11	0				008	17906	2142
14										301	10	0				016	8489	1932
15																015	4621	1855
16																017	2642	1651
17																024	14967	1581
18																046	4133	1569
19																045	5473	1167
20																041	1711	580
21																004	2154	488
22																005	13448	469
23																042	4247	436
24																001	1961	371
25																026	3832	333
Plus																Plus	10259	402
Total		72417	7870		52853	14452		58393	35763		92813	24395		26398	8364		302874	90845

Table E.2: Method of capture for each of the five major areas selected for the TAR 1, TAR 2 and TAR 3 characterisation and the total across all areas, showing each method in descending rank order of total landings and the number (N) of trip stratum records over the period 1989-90 to 201011. The methods shaded in grey have been combined into a "plus" category for graphical and tabular presentation. Pink cells reference methods for which the ranked target species by major area are reported in Table E. 3 (bottom trawl capture method) and Table E. 4 (mixed second and third ranked methods). 0 ': $<\mathbf{0 . 5} \mathbf{t}$ of total landings; definitions of codes used in this table can be found in Appendix A.

	East Northland			Bay of Plenty			East coast, North Island			East coast, South Island			West coast, North Island			Total, all areas		
Rank order	Method	N(trip strata)	$\begin{aligned} & \text { Land- } \\ & \text { ings (} \mathrm{t} \text {) } \end{aligned}$	Method	N(trip strata)	$\begin{gathered} \text { Land- } \\ \text { ings (t) } \end{gathered}$	Method	N(trip strata)	$\begin{gathered} \text { Land- } \\ \text { ings }(\mathrm{t}) \end{gathered}$	Method	$\begin{aligned} & \text { N(trip } \\ & \text { strata) } \end{aligned}$	Landings (t)	Method	$\begin{aligned} & \text { N(trip } \\ & \text { strata) } \end{aligned}$	Landings (t)	Method	N(trip strata)	$\begin{gathered} \text { Land- } \\ \text { inos }(f) \end{gathered}$
1	BT	23003	5929	BT	27054	12983	BT	46459	35421	BT	54539	17979	BT	17459	7330	BT	168514	79642
2	BLL	40064	1507	DS	4359	580	SN	3556	123	SN	30300	5926	BPT	3055	630	SN	44236	6734
3	BPT	1336	194	SN	5072	553	BLL	4224	92	DS	432	455	BLL	2474	192	BLL	61254	2098
4	DS	1699	104	BLL	13723	300	DS	302	88	MW	1610	16	DS	380	98	DS	7172	1325
5	SN	3766	94	BPT	336	26	MW	2634	22	CP	1795	9	SN	1542	39	BPT	4743	852
6	TL	278	29	HL	1252	4	T	290	8	BLL	769	8	HL	327	25	MW	4650	61
7	DL	473	6	TL	47	2	DL	384	4	RLP	1926	1	MW	269	21	TL	457	35
8	HL	1054	3	DL	258	1	BPT	12	1	DL	1253	0	DL	227	14	HL	2911	33
9	SLL	190	2	T	329	1	SLL	34	1	T	25	0	RLP	393	8	DL	2595	26
10	T	223	1	MW	99	1	BS	1	1	BPT	4	0	TL	51	3	CP	1879	12
11	BS	13	1	RLP	302	0	TL	54	1	TL	27	0	CP	29	3	RLP	3146	11
12	RLP	257	1	BS	4	0	HL	145	1	HL	133	0	SLL	28	0	T	1030	10
13	MW	38	0	SLL	16	0	RLP	268	0				T	163	0	SLL	268	4
14	CP	23	0	CP	2	0	CP	30	0				BS	1	0	BS	19	2
Total		72417	7870		52853	14452		58393	35763		92813	24395		26398	8364		302874	90845

Table E.3: Target species for the bottom trawl method of capture for each of the five major areas selected for the TAR 1, TAR 2 and TAR 3 characterisation, showing each target species in descending rank order of total landings and the number (N) of trip stratum records over the period 1989-90 to 2010-11. This list has been truncated at 5 tonnes in each major area, with the lesser species not reported. The target species shaded in grey have been combined into a "plus" category for graphical and tabular presentation (as well as the unlisted species where $<5 \mathbf{t}$ was taken). ' 0 ': $<\mathbf{0 . 5} \mathbf{t}$ of total landings.

Rank order	East Northland			Bay of Plenty			East coast, North Island			East coast, South Island			West coast, North Island		
	Target	N(trip L	ndings	Target	$\mathrm{N} \text { (trip I }$	andings	Target	N(trip L	andings	Target	N(trip L	andings	Target	N(trip	ndings
	species	strata)	(t)												
1	TAR	3798	3977	TAR	8481	10219	TAR	19397	29748	TAR	6374	7788	TAR	3721	5322
2	SNA	8457	661	SNA	6181	878	GUR	11146	2166	RCO	16975	4991	SNA	5037	687
3	JDO	5694	425	TRE	4021	497	SKI	2702	1091	BAR	5598	2101	TRE	4456	507
4	SKI	716	343	SKI	1467	447	WAR	2311	623	FLA	12149	1334	BAR	614	221
5	TRE	1553	204	HOK	1287	240	HOK	2495	584	SQU	2721	445	GUR	2160	200
6	BAR	383	83	BAR	968	224	BAR	1082	488	WAR	1077	304	JMA	65	161
7	GUR	1443	65	GUR	1343	202	SNA	1530	277	HOK	2950	188	SKI	617	109
8	RCO	165	56	JDO	1628	167	TRE	841	131	SPE	1193	178	SCH	106	28
9	HOK	151	31	RBY	161	45	JDO	469	85	STA	697	134	SWA	84	24
10	SCI	113	23	LIN	336	16	MOK	202	70	SPD	485	104	JDO	134	19
11	SWA	82	11	SCI	341	11	FLA	1643	44	GUR	663	87	SQU	32	18
12	RBY	44	10	SWA	73	7	SWA	142	36	ELE	858	79	HOK	56	11
13	RSN	20	9				RCO	121	22	SKI	209	59	LIN	172	6
14	LIN	64	9				RBY	165	18	SWA	661	41			
15	SQU	23	6				BYX	302	9	GSH	224	31			
16	FLA	52	5				LIN	233	8	JMA	119	24			
17										BCO	95	22			
18										LIN	429	19			
19										TRE	20	12			
20										SCH	49	8			
21										HPB	103	7			
Total		23003	5929		27054	12983		46459	35421		54539	17979		17459	7330

Table E.4: Target species for the second and third methods of capture (in rank order of total landings by method: see C) for each of the five major areas selected for the TAR 1, TAR 2 and TAR 3 characterisation, showing each target species in descending rank order of total landings and the number (N) of trip stratum records over the period 1989-90 to 2010-11. This list has been truncated at 5 tonnes per major area, with the lesser species not reported. The target species shaded in grey have been combined into a "plus" category for graphical and tabular presentation (as well as the unlisted species where $<5 \mathbf{t}$ was taken). ' $\mathbf{0}$ ': $<\mathbf{0} .5 \mathrm{t}$ of total landings.

	East Northland				Bay of Plenty		East coast, North Island			East coast, South Island			West coast, North Island		
Rank order	Target species	N (trip strata)	andings (t)	Target species	N(trip strata)	Landings (t)	Target species	N(trip L strata)	Landings (t)	Target species	N(trip L strata)	ndings (t)	Target species	N(trip strata)	dings (t)
Method	BLL			DS						SN			BPT		
1	SNA	35520	1302	SNA	2684	267				TAR	13828	5519	TAR	419	388
2	HPB	1745	81	TAR	409	201				LIN	5201	140	TRE	1435	124
3	TAR	400	74	GUR	1057	100				SPD	2675	124	SNA	889	85
4	BNS	1169	17	TRE	59	5				SPO	2948	39	BAR	70	17
5	GUR	482	13							HPB	2123	36	GUR	185	15
6	RSN	191	10							BNS	631	21			
7										WAR	749	20			
8										SCH	1271	9			
9										RCO	120	8			
10										MOK	442	5			
Total		40064	1507		4359	580					30300	5926		3055	630
Method				SN						DS					
1				TAR	1758	461				TAR	187	423			
2				TRE	1337	33				RCO	157	27			
3				SNA	749	15									
4				SKI	70	10									
5				KIN	135	7									
6				WAR	144	6									
7				HOK	32	6									
Total					5072	553					432	455			

Appendix F. Monthly summaries by major area and method of capture

Table F.1: Distribution of landings (\%) by month and fishing year for bottom trawl in the five defined major areas based on trips which landed tarakihi. The final column gives the annual total landings for bottom trawl in each major area. These values are plotted in Figure 13.

Fishing year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Month		
											Aug	Sep	Total
EN													
89/90	3.3	2.1	3.2	3.4	3.4	10.4	6.3	17.7	11.3	11.8	7.0	19.8	196
90/91	10.1	3.6	2.9	3.1	6.2	5.9	12.9	22.3	9.7	9.9	5.8	7.7	277
91/92	5.1	2.4	3.2	2.3	6.2	6.8	28.4	20.7	12.4	2.4	4.0	6.2	369
92/93	4.4	4.6	1.8	0.7	2.6	3.5	26.5	17.0	14.5	14.4	5.0	4.9	284
93/94	12.9	5.3	3.5	3.4	5.6	10.9	17.8	12.8	13.6	5.0	5.0	4.3	353
94/95	5.5	12.2	5.2	2.7	4.1	5.7	14.3	18.7	9.9	5.8	4.3	11.5	306
95/96	4.4	4.1	2.1	2.3	3.6	7.2	9.5	27.5	12.2	9.8	9.7	7.6	316
96/97	7.7	5.1	6.0	6.1	4.3	8.4	14.2	13.3	15.0	6.7	3.7	9.4	409
97/98	4.0	4.7	4.2	5.0	5.7	11.6	16.9	12.0	11.0	6.7	10.3	8.0	374
98/99	8.7	6.0	9.2	3.4	1.9	4.9	7.2	18.5	11.4	11.0	8.7	9.2	281
99/00	9.1	6.1	5.5	3.4	4.6	7.6	13.5	14.1	10.6	5.7	7.7	12.1	315
00/01	13.8	4.0	5.7	8.7	6.4	3.7	4.9	7.8	13.5	8.8	14.3	8.4	243
01/02	4.4	9.7	5.2	8.6	2.6	3.5	8.5	19.6	18.6	7.3	7.7	4.2	256
02/03	8.2	6.2	8.1	4.1	7.1	14.2	3.2	5.8	9.7	12.8	11.6	9.1	133
03/04	5.1	5.0	4.3	3.6	8.3	7.2	14.9	6.6	12.9	9.8	12.2	10.0	175
04/05	1.4	2.6	9.7	13.3	1.8	1.7	24.5	22.4	10.5	2.9	5.8	3.4	331
05/06	5.9	12.7	7.4	8.4	10.8	13.8	13.1	6.7	3.4	4.0	6.8	7.0	358
06/07	7.0	10.9	7.5	13.8	12.2	6.5	7.4	13.2	3.7	3.4	8.5	5.8	226
07/08	5.1	7.2	6.6	5.7	19.0	12.1	8.0	16.3	5.3	5.7	4.5	4.4	186
08/09	8.5	11.7	11.6	2.2	4.0	12.7	7.9	10.7	13.0	6.1	7.6	4.1	199
09/10	4.9	9.9	14.1	4.5	1.3	3.0	5.8	9.7	14.0	19.8	7.8	5.1	167
10/11	5.1	13.8	3.6	1.0	10.6	7.1	8.1	6.3	18.1	7.3	10.2	8.9	177
Mean	6.6	6.5	5.7	5.1	5.7	7.6	13.7	15.2	11.5	7.5	7.3	7.7	5929
BOP													
89/90	0.3	2.2	4.3	7.4	3.8	2.7	4.7	19.6	16.6	14.9	8.7	14.8	289
90/91	2.4	4.8	4.0	3.7	5.8	9.2	16.0	19.2	5.2	15.4	7.1	7.4	511
91/92	2.7	4.7	5.0	3.2	3.1	9.3	20.0	10.8	18.0	6.2	7.4	9.7	633
92/93	9.1	7.2	3.3	4.0	6.0	10.2	17.6	21.6	6.5	7.1	4.9	2.7	630
93/94	5.2	6.4	7.2	7.3	8.9	16.0	16.9	11.7	8.4	3.5	4.6	4.1	638
94/95	3.4	4.1	4.3	5.4	4.8	12.6	11.1	20.6	8.2	6.3	9.6	9.7	530
95/96	6.9	6.7	2.8	3.9	8.4	10.3	14.8	23.2	7.7	4.0	3.8	7.5	544
96/97	5.1	6.3	3.8	7.3	12.3	13.5	12.9	12.1	8.0	8.5	6.1	4.2	488
97/98	5.2	5.2	5.5	7.4	7.4	14.4	18.7	18.2	6.1	3.8	3.3	5.0	540
98/99	2.8	9.8	8.5	7.8	4.7	13.3	8.1	18.7	8.8	6.9	6.7	3.9	515
99/00	7.6	10.3	5.1	3.4	10.3	14.8	14.3	15.8	6.3	3.1	4.6	4.3	397
00/01	8.3	6.8	8.5	5.3	5.7	18.0	16.1	9.9	6.9	6.8	4.6	3.1	613
01/02	5.9	7.4	2.9	9.8	12.5	10.7	14.8	12.2	9.0	5.9	3.4	5.4	734
02/03	7.5	8.5	5.2	6.7	9.1	11.4	12.5	13.7	10.7	3.4	5.3	5.9	789
03/04	7.0	7.4	6.8	6.2	7.0	14.8	15.5	11.2	9.4	4.9	5.4	4.5	852
04/05	5.1	8.7	3.9	9.1	8.7	11.2	14.9	18.8	8.9	3.8	4.5	2.2	706
05/06	3.7	6.7	6.3	7.1	6.7	11.1	22.7	20.1	5.6	3.3	3.2	3.6	621
06/07	4.4	8.1	8.4	2.9	2.6	14.9	17.7	22.3	5.2	3.9	4.7	5.0	507
07/08	3.7	7.5	5.2	4.4	7.1	11.7	20.1	13.0	11.4	4.8	3.9	7.1	500
08/09	5.2	4.9	4.8	3.3	4.2	13.4	16.5	13.8	11.6	7.0	7.0	8.3	645
09/10	5.1	5.1	6.9	4.5	6.4	14.3	18.0	13.1	10.1	6.0	5.6	5.0	700
10/11	7.1	7.9	3.2	3.2	9.2	17.7	20.2	11.0	7.2	3.5	5.1	4.7	602
Mean	5.4	6.8	5.3	5.7	7.1	12.7	16.0	15.6	8.9	5.7	5.3	5.6	12983

Table F.1: (cont.)

Fishing year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Month		
											Aug	Sep	Total
ECNI													
89/90	3.9	7.2	7.5	8.3	10.8	8.7	6.4	3.9	10.3	8.2	8.3	16.6	1153
90/91	11.5	9.7	4.6	4.7	7.5	8.1	10.7	10.9	4.0	14.4	3.7	10.0	1636
91/92	9.1	8.9	5.4	4.8	10.2	17.1	9.0	6.3	10.0	8.6	4.6	6.1	1600
92/93	13.8	12.0	7.2	4.9	8.4	19.9	5.5	6.3	6.6	7.6	4.1	3.7	1602
93/94	12.6	13.0	7.4	8.6	9.2	10.6	7.8	3.8	6.7	3.9	9.9	6.6	1428
94/95	9.5	14.1	9.5	7.6	10.8	9.1	6.5	6.9	8.0	6.1	2.7	9.3	1476
95/96	10.9	12.0	7.3	6.0	7.7	9.1	7.3	7.0	7.3	7.3	6.1	11.8	1438
96/97	9.6	12.5	7.9	8.4	7.9	7.5	9.0	7.7	4.9	8.4	6.1	10.1	1431
97/98	14.7	12.0	5.7	5.7	7.9	11.2	6.5	8.2	7.3	6.3	6.3	8.3	1521
98/99	9.1	13.0	9.2	3.6	7.2	9.1	7.4	7.9	9.1	8.9	5.8	9.6	1562
99/00	7.7	10.7	9.5	4.3	8.9	10.0	7.6	11.8	6.9	5.2	9.7	7.7	1704
00/01	12.4	6.3	5.6	6.9	8.4	8.5	8.6	8.0	6.4	12.0	9.0	7.9	1600
01/02	8.0	8.5	5.8	6.4	5.1	6.6	8.6	9.1	11.8	9.4	10.2	10.6	1690
02/03	9.2	10.6	9.8	6.5	6.1	8.1	6.1	7.6	8.3	9.5	7.4	10.8	1725
03/04	9.9	8.2	9.7	4.7	6.7	9.7	5.2	5.3	9.9	10.2	10.1	10.4	1602
04/05	10.2	9.4	6.5	6.8	6.7	10.4	5.4	5.1	7.2	9.2	12.2	11.0	1665
05/06	7.1	7.7	7.5	4.9	7.6	9.1	7.5	8.1	9.8	9.3	11.4	10.0	1937
06/07	7.6	6.3	4.2	8.7	10.3	10.7	10.3	9.3	8.1	11.8	6.8	5.8	1674
07/08	7.7	9.9	6.5	4.4	7.8	10.5	9.0	8.6	10.0	6.7	6.4	12.4	1676
08/09	8.2	9.0	6.1	7.0	8.2	9.4	5.3	7.7	12.3	10.5	6.2	10.1	1845
09/10	12.9	10.3	6.8	4.5	6.5	11.3	6.3	6.0	10.5	8.7	8.8	7.4	1843
10/11	14.1	14.0	5.6	4.9	7.5	7.1	8.7	6.8	9.2	6.6	10.0	5.5	1614
Mean	10.0	10.2	7.0	6.0	8.0	10.1	7.5	7.5	8.5	8.7	7.6	9.1	35421
ECSI													
89/90	1.7	2.2	4.1	6.8	17.3	14.8	8.8	9.5	4.2	14.9	12.1	3.5	589
90/91	5.8	5.5	3.5	12.2	19.8	18.7	14.1	9.6	2.8	3.5	2.3	2.2	640
91/92	6.1	8.0	9.2	11.5	9.6	8.9	20.5	6.5	4.1	6.9	5.8	2.9	777
92/93	2.0	9.5	8.6	7.5	22.8	13.5	11.5	10.0	4.0	4.3	1.6	4.6	476
93/94	4.1	6.9	3.6	5.9	13.1	9.1	7.7	13.8	9.1	8.3	10.2	8.2	505
94/95	1.8	5.5	7.7	18.4	15.8	9.9	11.0	6.3	5.6	2.4	11.2	4.3	588
95/96	3.8	4.4	4.4	7.2	17.7	17.1	12.0	6.8	13.5	5.8	3.2	4.3	791
96/97	3.3	10.3	7.7	12.5	9.2	7.9	7.9	16.6	9.3	7.6	3.4	4.4	872
97/98	4.7	9.4	5.2	10.0	10.4	11.2	6.6	9.2	6.0	4.7	14.3	8.2	854
98/99	2.1	2.7	4.2	8.1	12.9	11.2	9.8	9.4	7.4	6.3	13.0	12.9	995
99/00	3.0	5.7	9.5	14.1	15.0	15.8	11.1	9.3	5.7	4.2	2.3	4.4	1165
00/01	3.1	13.6	9.3	12.4	11.5	14.0	12.6	8.2	5.2	3.5	4.4	2.3	1023
01/02	5.1	13.0	4.9	11.9	12.9	10.2	12.2	12.4	8.3	2.6	2.3	4.1	999
02/03	5.1	6.4	5.6	12.3	11.0	11.6	8.3	10.9	5.5	15.9	4.2	3.1	1040
03/04	9.7	5.2	6.6	8.6	5.7	8.5	10.8	10.2	11.3	5.0	5.8	12.6	829
04/05	4.2	3.8	4.3	7.6	8.7	13.0	6.3	6.8	13.2	3.9	4.4	23.8	872
05/06	1.9	2.6	7.4	5.8	7.1	9.9	15.7	14.2	9.5	6.8	7.8	11.4	898
06/07	1.8	5.2	6.9	10.1	17.0	16.9	13.4	6.8	8.7	6.3	2.5	4.4	932
07/08	3.0	3.9	5.6	4.5	17.4	12.0	11.1	15.4	6.3	4.7	4.7	11.3	646
08/09	3.4	3.8	4.6	11.6	21.4	10.3	7.7	7.8	9.7	8.2	4.6	6.8	752
09/10	2.1	4.9	6.5	17.1	15.4	9.4	10.5	7.6	7.8	7.9	5.1	5.7	659
10/11	3.7	2.1	2.2	12.4	13.5	15.2	12.5	16.1	8.3	5.4	7.0	1.8	1080
Mean	3.8	6.2	6.0	10.5	13.4	12.3	11.1	10.2	7.6	6.3	5.9	6.7	17979

Table F.1: (cont.)

Fishing year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Month		
											Aug	Sep	Total
WCNI													
89/90	1.4	5.3	2.5	1.2	6.2	13.7	8.8	10.5	12.0	7.8	10.2	20.4	181
90/91	2.3	1.9	1.7	2.2	7.1	8.4	13.9	24.5	15.2	6.4	3.3	13.2	189
91/92	5.1	2.0	5.3	4.2	16.4	5.8	24.2	12.5	7.7	3.6	5.2	8.0	219
92/93	1.6	4.1	4.9	2.6	10.0	26.5	15.5	3.2	7.2	4.9	11.0	8.5	304
93/94	7.8	5.5	7.0	9.1	7.7	12.5	13.2	6.8	10.1	9.1	9.2	2.1	278
94/95	1.5	2.6	3.6	7.0	7.3	7.7	30.2	11.8	4.7	3.6	6.6	13.5	334
95/96	4.4	10.0	8.3	11.8	12.5	10.2	9.2	15.4	6.1	7.0	1.9	3.2	381
96/97	3.4	4.0	9.2	5.7	12.2	2.6	8.2	8.1	16.4	9.2	9.5	11.5	411
97/98	2.2	4.2	17.4	11.5	9.3	11.6	10.0	9.9	3.4	7.8	5.4	7.3	439
98/99	6.3	10.3	4.3	9.4	13.2	15.7	12.3	9.7	3.9	2.1	6.7	6.1	424
99/00	8.6	5.2	4.7	8.9	12.9	13.9	11.6	10.3	8.2	4.5	8.0	3.4	420
00/01	2.1	4.0	1.9	8.5	8.3	26.6	13.4	9.9	7.6	6.0	5.6	6.3	322
01/02	3.5	4.6	9.7	8.2	8.7	9.2	11.0	16.3	8.7	7.8	6.1	6.2	393
02/03	2.3	5.6	4.7	4.1	11.7	9.6	22.1	16.3	8.1	4.3	7.8	3.3	421
03/04	4.5	4.9	7.1	7.2	11.4	16.1	16.4	6.4	5.7	2.4	5.9	11.9	363
04/05	5.9	3.4	3.2	3.1	12.2	19.2	15.4	15.6	3.0	7.7	6.0	5.5	390
05/06	3.5	4.4	5.0	7.7	10.2	21.9	20.9	7.1	8.2	3.4	6.1	1.6	321
06/07	3.2	2.1	2.8	7.8	9.2	31.4	18.6	6.7	4.0	6.2	4.7	3.3	316
07/08	1.7	3.2	1.2	4.0	9.0	22.0	18.0	17.6	7.2	6.7	6.0	3.5	357
08/09	5.1	5.2	3.4	4.0	3.6	25.8	26.9	9.1	4.4	4.4	4.4	3.7	341
09/10	1.5	3.1	2.4	4.7	14.5	17.9	33.0	1.4	0.8	4.4	9.1	7.2	219
10/11	2.5	5.0	3.1	4.3	5.1	22.4	29.7	5.9	4.4	5.2	7.6	4.8	312
Mean	3.8	4.8	5.5	6.6	10.1	15.8	16.9	10.8	7.0	5.7	6.6	6.6	7331

Table F.2: Distribution of landings (\%) by month and fishing year for second tier methods (defined in Appendix E) in the five defined major areas based on trips which landed tarakihi. The final column gives the annual total landings for each method/area combination. These values are plotted in Figure 14.

Fishingyear											Month		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
EN-BLL													
89/90	4.4	3.0	3.0	7.1	7.6	7.4	5.9	6.8	12.2	16.1	3.7	22.8	48
90/91	7.3	2.8	3.0	2.4	3.7	4.5	10.3	17.7	11.1	8.5	14.2	14.4	57
91/92	6.6	2.0	2.4	4.0	7.9	7.2	11.9	10.8	10.5	6.9	11.5	18.3	56
92/93	5.7	3.4	2.7	5.9	2.6	7.1	3.6	4.9	11.1	17.6	15.1	20.1	65
93/94	11.2	5.0	5.3	4.1	1.8	2.8	3.4	6.7	11.6	13.6	19.7	14.7	89
94/95	6.5	4.9	5.0	1.8	3.8	8.1	3.0	5.5	6.1	12.3	22.3	20.7	99
95/96	12.9	9.6	3.3	4.2	5.0	6.6	2.9	5.2	7.0	9.5	16.7	17.1	76
96/97	10.4	8.1	5.2	2.5	4.0	6.2	4.7	5.1	12.0	17.0	11.8	13.2	97
97/98	11.0	8.6	7.3	4.1	6.4	7.8	7.0	6.9	7.9	5.7	12.3	15.1	121
98/99	11.3	10.5	4.3	6.7	1.5	8.9	3.4	4.9	10.1	12.1	14.8	11.5	103
99/00	8.6	4.0	7.6	6.0	8.3	8.3	5.1	7.1	8.2	5.7	13.5	17.5	118
00/01	11.5	7.1	7.5	8.0	4.0	3.6	4.4	2.6	10.6	13.7	17.0	9.9	99
01/02	10.9	9.1	3.9	6.3	5.5	8.4	8.2	7.6	10.2	9.3	12.4	8.3	76
02/03	8.9	7.2	3.9	6.7	11.3	5.3	10.5	6.0	7.5	9.5	9.9	13.4	67
03/04	8.4	4.3	1.8	4.7	5.8	9.2	5.0	2.2	8.2	7.6	22.6	20.3	52
04/05	13.7	7.3	4.4	4.4	6.8	7.3	2.7	3.4	8.1	9.5	16.8	15.6	34
05/06	4.0	2.2	4.8	4.6	4.6	3.1	2.8	2.4	4.1	10.3	25.1	31.9	42
06/07	12.0	5.6	4.7	5.8	8.4	6.6	9.0	6.1	9.3	8.1	12.8	11.8	40
07/08	6.1	3.6	2.5	8.0	11.8	10.0	3.2	5.5	10.3	11.0	12.5	15.4	37
08/09	9.3	14.8	2.9	4.0	9.1	7.0	4.1	2.8	8.0	10.5	7.3	20.0	39
09/10	10.2	10.8	5.0	5.5	5.9	7.7	4.1	6.1	2.7	9.4	13.2	19.3	40
10/11	13.2	18.6	7.1	3.2	7.7	2.2	2.5	1.4	5.3	6.6	12.9	19.2	51
Mean	9.5	6.9	4.8	5.0	5.6	6.6	5.3	5.9	9.0	10.6	14.7	16.1	1507

Table F.2: (cont.)

Fishing year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Month		
											Aug	Sep	Total
BoP-DS													
89/90	-	-	-	-	-	-	-	-	9.3	8.8	17.2	64.7	1
90/91	5.6	-	0.0	-	5.7	0.0	-	0.8	4.4	9.4	36.3	37.8	5
91/92	3.6	1.0	0.3	0.0	0.0	0.0	0.1	0.1	4.9	3.7	31.6	54.6	6
92/93	16.4	5.7	0.3	-	0.1	1.4	0.2	1.6	9.5	27.8	29.7	7.4	6
93/94	10.8	5.6	1.4	2.1	0.1	0.0	0.5	0.1	7.9	13.7	40.1	17.9	9
94/95	1.7	1.2	7.1	2.8	0.2	0.2	0.8	8.1	0.6	16.0	28.4	33.0	13
95/96	15.3	2.5	3.6	0.5	0.0	0.0	1.5	10.1	11.0	10.7	15.7	29.1	8
96/97	8.9	8.9	3.8	2.5	0.3	0.6	2.6	0.5	20.1	20.7	18.3	12.8	7
97/98	3.8	2.1	13.4	0.9	9.1	6.4	1.8	4.3	8.6	11.1	19.0	19.4	29
98/99	11.1	6.7	9.2	1.7	7.4	0.4	0.1	23.0	14.6	10.4	5.0	10.4	36
99/00	8.5	5.1	2.3	1.0	3.1	6.6	9.1	10.0	8.7	38.2	5.0	2.5	34
00/01	7.1	4.3	2.6	1.0	9.0	11.7	11.8	14.1	17.8	8.5	6.7	5.4	21
01/02	6.1	3.9	1.5	4.4	7.3	2.5	7.0	8.4	10.7	16.8	21.9	9.5	36
02/03	10.3	3.9	2.0	1.5	13.2	8.7	12.2	10.5	16.4	3.2	8.8	9.4	43
03/04	3.4	4.9	0.8	1.1	0.7	28.0	19.5	5.8	16.7	6.3	5.8	7.1	69
04/05	11.3	24.6	2.9	3.2	2.5	2.5	1.7	10.6	8.1	9.6	14.3	8.6	42
05/06	14.3	9.0	4.8	7.1	2.2	5.7	14.8	12.5	8.9	1.9	14.8	4.1	29
06/07	4.7	18.3	16.3	1.1	1.9	0.5	-	-	0.1	15.3	22.0	19.8	16
07/08	15.9	8.1	1.0	1.2	1.7	3.0	11.0	20.3	3.3	1.6	17.1	15.9	24
08/09	11.0	13.9	9.1	4.1	7.2	12.7	9.5	5.2	6.8	5.1	4.7	10.7	39
09/10	14.8	11.1	2.5	2.9	1.6	1.8	7.7	21.8	11.3	2.7	12.9	8.9	54
10/11	10.4	11.5	4.5	5.5	14.8	8.9	5.5	9.7	15.5	2.6	5.5	5.5	54
Mean	9.3	8.5	4.3	2.6	5.4	7.8	8.0	10.6	11.2	9.2	12.3	10.9	580
89/90	0.5	8.3	12.3	24.1	5.0	5.4	15.6	23.0	5.7	0.1	0.0	0.0	198
90/91	0.3	3.0	8.1	28.2	14.6	21.5	7.6	13.7	2.8	0.0	0.0	0.2	311
91/92	0.8	1.3	9.4	27.8	14.7	15.4	20.0	6.9	3.6	0.1	0.1	0.0	387
92/93	1.2	0.9	5.1	20.1	19.6	11.1	7.8	27.2	6.9	0.1	0.0	0.0	373
93/94	0.2	3.5	14.1	28.0	11.8	5.3	13.5	19.2	4.3	0.1	0.1	0.0	244
94/95	0.1	0.8	7.2	16.7	14.9	7.0	18.5	20.5	14.1	0.1	0.0	0.0	336
95/96	0.4	1.1	5.8	20.4	12.0	9.1	15.9	27.6	7.3	0.4	0.0	0.0	315
96/97	0.6	1.3	13.8	27.9	11.1	4.2	11.6	24.2	4.9	0.3	0.0	0.0	235
97/98	0.2	1.3	10.4	24.8	18.9	5.6	14.4	18.6	5.5	0.2	0.1	0.1	302
98/99	0.1	1.4	16.3	30.4	12.9	5.7	7.7	16.9	8.4	0.2	0.0	0.0	251
99/00	0.0	1.3	14.8	35.6	11.7	3.1	6.5	21.2	5.6	0.3	0.0	0.0	273
00/01	0.2	1.9	16.3	31.8	14.3	3.8	8.7	12.4	10.5	0.1	0.0	0.0	377
01/02	0.1	5.3	38.8	38.5	3.1	0.8	3.6	9.0	0.7	0.1	0.0	0.0	402
02/03	0.2	1.5	16.3	33.2	15.2	3.6	4.9	18.2	6.8	0.1	0.0	0.0	336
03/04	0.0	1.3	16.4	37.4	8.7	4.6	7.9	16.7	6.9	0.3	-	-	314
04/05	0.0	0.5	6.9	45.1	26.1	2.0	2.3	12.8	4.2	0.0	0.0	0.0	160
05/06	0.2	4.8	24.2	34.3	8.1	0.9	5.9	16.1	5.4	0.0	0.0	0.0	214
06/07	0.0	1.1	8.2	24.0	15.4	4.9	11.8	26.1	8.4	0.0	0.0	0.0	179
07/08	0.1	0.1	3.5	34.1	17.2	6.5	8.1	22.1	7.3	0.0	0.0	1.1	186
08/09	0.8	0.8	15.8	39.8	14.1	3.2	7.0	16.2	2.3	0.0	0.0	0.0	206
09/10	0.1	0.2	16.1	31.4	16.5	3.9	5.7	22.0	4.2	0.0	0.0	0.0	179
10/11	0.0	1.4	14.3	24.2	12.3	2.0	6.4	26.3	12.1	1.0	0.0	-	148
Mean	0.3	2.0	13.8	29.5	13.3	6.4	9.9	18.3	6.2	0.2	0.0	0.1	5926

Table F.2: (cont.)

Table F.3: Distribution of landings (\%) by month and fishing year for third tier methods (defined in Appendix E) in the five defined major areas based on trips which landed tarakihi. The final column gives the annual total landings for each method/area combination. These values are plotted in Figure 15.

Fishingyear											Month		
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
BoP-SN													
89/90	-	-	-	-	-	7.0	3.6	45.6	24.0	12.3	2.6	4.8	10
90/91	2.1	4.2	2.3	3.7	2.6	13.9	29.5	28.1	4.7	3.0	0.9	4.8	35
91/92	1.0	1.7	3.7	2.0	15.2	15.2	22.4	12.4	16.4	1.8	1.4	6.7	68
92/93	4.7	3.3	1.8	7.4	12.5	29.1	14.8	10.2	5.9	4.4	2.8	3.1	117
93/94	8.1	2.4	4.3	7.4	20.1	20.8	21.5	7.9	2.9	0.6	2.5	1.5	116
94/95	1.9	2.8	4.0	9.5	7.4	24.8	25.9	13.4	3.4	0.7	1.1	5.0	78
95/96	3.0	5.4	1.5	1.8	13.5	15.5	30.9	13.0	4.6	2.9	3.9	4.1	43
96/97	2.8	5.7	9.2	6.9	7.2	14.0	19.8	21.1	6.9	3.8	1.3	1.3	42
97/98	3.2	10.2	5.6	15.3	17.3	13.7	9.2	8.7	8.6	1.3	2.6	4.4	18
98/99	0.8	6.1	2.0	1.1	3.3	22.4	21.6	27.4	6.2	3.6	3.2	2.2	11
99/00	2.6	1.9	7.1	14.0	16.9	22.6	10.8	17.6	4.9	0.9	0.2	0.6	4
00/01	4.5	1.6	3.0	3.0	0.1	-	21.9	23.5	31.9	2.9	5.3	2.3	1
01/02	8.0	36.6	10.2	23.3	4.3	1.6	3.3	2.8	2.6	2.0	0.8	4.5	1
02/03	2.3	6.8	19.6	17.1	24.7	4.0	3.2	7.1	4.8	4.9	4.8	0.7	4
03/04	1.8	6.7	3.4	27.1	-	1.2	35.5	3.2	12.2	6.4	1.3	1.2	1
04/05	2.3	-	5.3	44.7	-	1.0	1.0	0.4	6.4	27.0	3.3	8.7	1
05/06	14.4	15.5	2.1	10.8	0.1	4.5	19.6	24.7	1.2	-	0.1	7.1	1
06/07	-	0.3	-	42.3	2.2	-	-	41.2	-	6.0	-	8.1	0
07/08	-	2.2	16.6	3.6	2.6	0.2	49.5	17.1	3.4	4.8	-	-	0
08/09	-	24.1	18.6	-	2.2	0.4	-	-	10.2	12.4	5.8	26.3	0
09/10	12.2	16.2	3.2	19.7	3.7	0.6	1.4	2.3	27.5	11.1	2.1	-	1
10/11	-	10.8	1.7	2.1	2.1	4.1	-	-	16.2	39.7	9.3	13.9	0
Mean	3.9	3.6	3.8	6.6	12.5	20.3	20.9	13.6	6.6	2.6	2.2	3.6	553

Table F.3: (cont.)

| Fishing
 year | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ECSI-DS | | | | | | | | | | | | | |
| $89 / 90$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $90 / 91$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $91 / 92$ | - | - | - | - | 100.0 | - | - | - | - | - | - | - | 0 |
| $92 / 93$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $93 / 94$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $94 / 95$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $95 / 96$ | - | - | 100.0 | - | - | - | - | - | - | - | - | - | 0 |
| $96 / 97$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $97 / 98$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $98 / 99$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $99 / 00$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $00 / 01$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $01 / 02$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $02 / 03$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $03 / 04$ | - | - | - | - | - | - | 1.6 | 1.5 | - | - | 95.6 | 1.3 | 5 |
| $04 / 05$ | - | - | - | - | - | - | - | 100.0 | - | - | - | - | 0 |
| $05 / 06$ | - | - | - | - | - | - | 1.5 | 0.2 | 0.9 | 40.8 | 56.6 | - | 2 |
| $06 / 07$ | - | 0.1 | 1.0 | 0.0 | 0.0 | 1.2 | 6.2 | 18.6 | 17.6 | 21.0 | 25.2 | 9.2 | 113 |
| $07 / 08$ | 0.1 | 2.7 | 0.7 | 1.1 | 12.0 | 4.5 | 0.1 | 6.1 | 28.6 | 33.6 | 10.4 | 0.2 | 86 |
| $08 / 09$ | 0.1 | 3.3 | 2.3 | 0.0 | - | 8.6 | 2.5 | 23.7 | 8.7 | 15.6 | 21.3 | 13.9 | 149 |
| $09 / 10$ | 0.1 | 7.6 | 5.0 | 18.7 | 22.7 | 29.0 | 3.1 | - | 7.6 | 1.6 | 2.3 | 2.3 | 43 |
| $10 / 11$ | 3.1 | 14.5 | 5.3 | 9.3 | 5.2 | 13.9 | 5.5 | 17.7 | 4.2 | 7.0 | 10.7 | 3.5 | 57 |
| Mean | 0.4 | 4.2 | 2.3 | 3.2 | 5.1 | 8.5 | 3.4 | 15.8 | 13.8 | 17.8 | 18.0 | 7.6 | 455 |

Appendix G. Summaries for target species by major area and method of CAPTURE

Table G.1: Distribution of landings (\%) by month and fishing year by target species category for the indicated capture method and defined major areas (see Appendix A for definitions of codes in the table) based on trips which landed tarakihi. The final column gives the annual total landings for bottom trawl in each major area. These values are plotted in Figure 16, Figure 17 and Figure 18.

	Target species													
	TAR	SNA	JDO	SKI	TRE	BAR	GUR	RCO	HOK	SCI	SWA	RBY	OTH	Total
89/90	47.9	28.3	5.8	7.1	1.7	5.5	0.8	1.2	0.0	0.0	-	-	1.6	196
90/91	67.9	10.8	2.6	6.0	1.9	4.5	1.1	0.0	0.1	1.8	-	-	3.2	277
91/92	71.9	13.8	3.1	6.8	1.1	0.3	1.1	0.0	0.4	0.1	-	-	1.4	369
92/93	68.1	12.1	3.2	11.2	0.4	2.4	0.8	0.6	0.3	0.2	0.0	0.0	0.5	284
93/94	67.2	12.7	2.7	10.9	3.9	1.1	0.1	0.2	0.4	0.0	0.0	0.6	0.3	353
94/95	74.2	7.8	2.8	8.4	2.9	1.3	0.5	0.0	1.5	0.1	0.0	-	0.5	306
95/96	59.7	11.3	4.0	18.0	4.3	1.9	0.0	0.1	0.1	0.2	0.1	-	0.4	316
96/97	72.8	4.7	7.7	7.2	3.0	0.6	1.3	0.6	1.4	0.0	0.6	0.0	0.1	409
97/98	66.9	5.5	9.2	4.4	7.4	1.4	1.4	0.0	3.0	0.4	0.2	0.1	0.0	374
98/99	55.7	17.9	12.5	6.0	3.4	0.4	0.6	0.0	0.2	0.5	2.4	-	0.4	281
99/00	53.4	14.0	15.0	5.9	4.7	1.7	3.0	-	0.5	0.8	0.2	0.1	0.7	315
00/01	48.8	9.5	23.3	4.8	3.1	4.1	2.0	0.3	0.1	1.8	0.0	0.9	1.3	243
01/02	44.2	6.9	12.0	8.5	3.1	2.8	1.5	18.6	0.0	1.8	0.0	0.5	0.0	256
02/03	52.8	13.9	14.4	7.2	6.5	0.6	2.3	0.0	-	0.9	0.2	0.4	0.9	133
03/04	55.5	21.4	9.6	1.8	7.0	1.6	1.6	-	0.0	0.1	0.0	0.7	0.8	175
04/05	75.6	9.5	7.6	1.6	4.5	0.0	1.0	-	0.1	0.0	0.0	-	0.1	331
05/06	84.8	7.8	2.2	0.4	2.2	0.6	0.9	-	0.3	0.0	-	0.0	0.6	358
06/07	80.2	9.9	3.6	0.0	3.9	0.4	0.6	0.0	0.2	0.0	0.0	0.0	1.3	226
07/08	82.7	6.0	6.4	0.1	3.5	0.1	0.7	-	0.0	0.0	0.0	0.1	0.3	186
08/09	78.5	10.6	5.5	0.1	3.9	0.1	0.7	-	0.1	-	-	0.0	0.7	199
09/10	75.5	10.5	8.3	0.2	2.6	0.1	2.2	-	0.1	0.0	-	0.1	0.4	167
10/11	79.5	13.2	3.3	-	1.8	0.1	0.7	-	0.1	0.0	-	0.7	0.7	177
Mean	67.1	11.1	7.2	5.8	3.4	1.4	1.1	0.9	0.5	0.4	0.2	0.2	0.7	5929
BoP-BT														
	TAR	SNA	TRE	SKI	HOK	BAR	GUR	JDO	RBY	LIN	SCI	OTH		Total
89/90	59.6	21.4	3.0	12.6	0.6	2.0	0.1	0.3	0.0	0.0	0.0	0.4		289
90/91	78.9	11.1	0.6	7.3	0.0	1.9	0.0	0.1	-	-	0.1	0.1		511
91/92	75.4	7.4	0.6	10.9	1.1	2.9	0.5	0.8	0.0	-	0.1	0.3		633
92/93	71.2	5.6	1.8	13.6	2.0	1.8	2.2	1.2	-	0.0	0.4	0.2		630
93/94	84.2	5.9	1.8	3.4	1.0	0.9	1.4	0.8	0.0	0.0	0.4	0.1		638
94/95	78.0	4.4	1.2	5.9	2.9	4.1	0.3	2.3	0.3	0.0	0.1	0.3		530
95/96	78.7	8.9	0.4	6.7	2.4	0.8	0.4	1.0	0.0	0.0	0.0	0.8		544
96/97	80.1	5.3	1.8	4.6	4.7	0.8	1.5	0.4	0.1	0.0	0.4	0.3		488
97/98	72.4	5.8	1.6	2.8	10.1	2.0	1.5	2.6	1.0	0.0	0.0	0.2		540
98/99	75.1	5.4	6.8	1.3	5.8	4.2	0.2	0.9	0.0	0.3	0.0	0.1		515
99/00	76.7	4.4	5.5	2.5	4.3	1.6	2.6	1.9	-	0.1	0.0	0.3		397
00/01	70.2	3.6	14.9	1.3	1.5	3.1	1.7	1.5	1.1	0.6	0.0	0.5		613
01/02	73.0	7.3	8.4	2.6	0.3	2.9	1.5	2.2	1.0	0.4	0.1	0.3		734
02/03	72.8	5.5	6.5	3.2	1.5	3.1	4.6	1.6	0.4	0.3	0.0	0.5		789
03/04	74.5	8.4	3.1	1.1	2.7	3.1	4.5	0.9	1.4	0.1	0.0	0.2		852
04/05	80.0	9.5	3.9	1.1	0.5	0.2	3.0	1.6	0.0	0.0	0.0	0.1		706
05/06	86.1	5.9	2.6	0.3	0.2	1.0	1.5	1.9	0.1	0.0	0.0	0.3		621
06/07	86.3	7.2	1.3	0.5	0.6	0.6	1.2	1.5	0.0	0.1	0.0	0.8		507
07/08	87.8	6.0	3.2	0.0	0.1	0.3	0.3	2.0	-	0.3	0.0	0.0		500
08/09	87.3	7.7	2.6	0.0	0.1	0.0	0.9	0.6	0.2	0.0	0.0	0.5		645
09/10	88.4	5.3	4.0	0.2	0.1	0.1	0.6	0.9	0.2	0.1	0.0	0.0		700
10/11	88.6	3.0	5.8	0.1	0.4	-	0.1	1.1	0.8	0.0	0.0	0.0		602
Mean	78.7	6.8	3.8	3.4	1.8	1.7	1.6	1.3	0.3	0.1	0.1	0.3		12983

Table G.1: (cont.)

																		Target species

Table G.1: (cont.)

											Target	eecies	
WCNI-BT													
	TAR	SNA	TRE	BAR	GUR	JMA	SKI	SCH	SWA	JDO	SQU	OTH	Total
89/90	65.5	17.1	10.0	4.6	0.0	1.3	0.6	0.0	-	-	-	0.8	181
90/91	63.7	13.7	14.1	6.6	0.6	0.8	0.3	0.0	-	0.0	-	0.0	189
91/92	56.0	28.6	6.5	3.2	3.6	1.1	0.8	0.0	-	0.0	-	0.1	219
92/93	59.3	18.3	13.9	2.6	3.5	0.7	1.0	0.3	0.1	0.0	-	0.2	304
93/94	63.8	18.2	7.2	5.4	1.1	0.7	2.8	-	0.1	0.1	-	0.5	278
94/95	54.1	28.7	7.4	3.5	1.7	0.6	2.8	-	0.4	0.1	-	0.8	334
95/96	71.0	11.1	2.6	1.9	0.3	3.7	4.4	0.0	4.6	0.2	-	0.1	381
96/97	69.3	9.3	4.9	2.2	2.7	8.0	2.9	0.0	0.2	0.1	-	0.3	411
97/98	57.4	7.5	7.4	1.8	1.6	17.1	4.3	-	0.4	0.9	-	1.6	439
98/99	74.4	6.5	6.2	4.8	3.8	-	3.2	-	0.2	0.1	0.1	0.7	424
99/00	68.3	6.5	11.1	3.4	4.5	2.1	2.7	0.3	0.0	0.0	0.9	0.2	420
00/01	66.1	6.5	10.2	5.0	8.2	-	2.4	0.2	-	0.2	0.6	0.6	322
01/02	74.5	4.4	4.0	8.9	0.9	3.9	0.5	0.2	-	0.2	1.3	1.3	393
02/03	80.2	6.3	3.0	2.8	5.2	0.1	0.4	0.3	-	0.4	1.3	0.1	421
03/04	81.8	7.5	5.1	0.7	2.7	0.7	0.0	0.3	-	0.7	0.0	0.4	363
04/05	77.1	11.2	5.2	2.6	3.0	0.0	0.1	0.4	0.0	0.2	-	0.1	390
05/06	84.0	2.4	4.0	1.0	6.4	-	-	1.0	0.0	0.4	-	0.7	321
06/07	86.6	1.0	7.2	2.5	1.6	-	-	0.5	0.0	0.1	0.4	0.2	316
07/08	82.3	4.6	7.5	1.1	3.4	-	0.2	0.3	0.2	0.0	0.0	0.3	357
08/09	86.4	3.0	6.6	0.9	0.8	-	0.1	1.5	0.0	0.1	-	0.6	341
09/10	81.0	6.3	10.0	0.8	0.2	-	0.1	1.1	-	0.5	-	0.0	219
10/11	84.7	3.4	6.0	1.5	0.7	0.0	0.0	2.3	0.1	1.4	-	0.0	312
Mean	72.6	9.4	6.9	3.0	2.7	2.2	1.5	0.4	0.3	0.3	0.2	0.5	7331
EN-BLL													
	SNA	HPB	TAR	BNS	GUR	RSN	OTH						Total
89/90	95.9	0.8	0.2	1.9	1.0	-	0.2						48
90/91	92.2	4.5	0.1	2.1	1.0	-	0.0						57
91/92	90.8	4.2	1.2	1.0	2.7	0.0	0.1						56
92/93	80.5	9.3	7.5	0.6	1.6	-	0.4						65
93/94	85.5	8.2	4.3	0.8	0.9	-	0.3						89
94/95	89.4	4.8	4.4	1.0	0.4	-	0.1						99
95/96	91.7	3.5	1.7	0.7	0.3	0.2	1.9						76
96/97	90.6	3.5	4.5	0.5	0.3	0.0	0.6						97
97/98	90.6	1.3	7.2	0.3	0.2	0.1	0.3						121
98/99	93.4	2.0	3.6	0.4	0.0	-	0.5						103
99/00	91.8	4.0	3.2	0.3	0.0	-	0.6						118
00/01	83.2	5.3	6.4	0.7	2.3	-	2.2						99
01/02	83.0	2.7	12.6	0.1	1.2	0.0	0.3						76
02/03	89.9	2.7	4.3	0.6	2.4	0.0	0.1						67
03/04	89.6	4.2	2.2	0.6	3.2	-	0.2						52
04/05	77.4	8.7	2.1	3.8	2.8	4.9	0.3						34
05/06	83.9	10.6	0.5	3.8	0.1	0.5	0.6						42
06/07	84.0	9.5	0.8	4.1	0.3	0.8	0.5						40
07/08	68.1	21.0	1.9	2.3	0.1	5.8	0.8						37
08/09	70.9	12.9	2.8	3.0	0.2	8.9	1.3						39
09/10	74.0	7.0	12.9	2.2	0.2	2.3	1.3						40
10/11	65.1	9.4	19.9	3.2	0.0	1.5	0.8						51
Mean	86.4	5.4	4.9	1.2	0.9	0.7	0.6						1507

Table G.1: (cont.)

Target species											
BoP-DS											
	SNA	TAR	GUR	TRE	OTH						Total
89/90	99.4	-	0.6	-	-						1.4
90/91	92.4	5.2	0.9	-	1.5						4.9
91/92	52.7	14.2	32.9	-	0.3						6.2
92/93	68.5	1.4	20.9	0.5	8.7						5.8
93/94	80.0	-	15.6	-	4.5						8.9
94/95	63.2	4.0	26.8	-	6.0						13
95/96	77.2	3.9	14.7	-	4.2						8.1
96/97	45.9	17.2	32.1	0.2	4.6						7.1
97/98	21.0	36.2	39.5	1.0	2.3						29
98/99	12.5	51.8	29.2	5.3	1.1						36
99/00	20.5	63.1	13.5	2.8	0.2						34
00/01	19.7	50.0	29.9	0.3	0.1						21
01/02	33.2	27.9	35.4	3.0	0.4						36
02/03	50.4	28.8	20.8	0.0	0.0						43
03/04	57.1	36.5	6.4	-	0.1						69
04/05	75.7	21.4	2.9	-	-						42
05/06	51.0	26.7	21.6	0.0	0.8						29
06/07	84.5	6.6	8.7	-	0.2						16
07/08	71.9	25.8	1.5	0.0	0.7						24
08/09	43.7	50.9	5.4	-	-						39
09/10	43.5	42.4	13.7	0.0	0.5						54
10/11	32.7	42.9	20.1	1.0	3.3						54
Mean	46.1	34.7	17.3	0.8	1.1						580
ECSI-SN											
	TAR	LIN	SPD	SPO	HPB	BNS	WAR	SCH	RCO	OTH	Total
89/90	96.3	2.5	0.6	0.1	0.1	0.1	0.1	0.3	-	0.1	198
90/91	96.5	1.1	0.5	0.0	0.2	0.0	0.3	0.0	1.2	0.2	311
91/92	93.9	3.0	1.3	0.2	0.0	0.0	0.2	0.0	1.0	0.3	387
92/93	94.8	2.1	2.1	0.2	0.8	0.0	-	0.1	-	0.0	373
93/94	89.8	0.6	6.8	0.7	0.0	0.0	1.0	0.1	0.0	1.0	244
94/95	87.7	0.1	10.5	0.7	0.1	0.3	0.4	0.1	0.0	0.2	336
95/96	80.6	14.4	3.4	0.1	0.1	0.0	1.0	0.1	0.0	0.2	315
96/97	84.3	0.8	11.8	1.0	0.3	0.1	1.6	0.1	-	0.1	235
97/98	90.0	2.8	4.9	1.1	0.4	0.2	0.0	0.1	-	0.5	302
98/99	97.6	1.6	0.1	0.0	0.3	0.2	0.0	0.1	-	0.0	251
99/00	97.7	1.3	0.1	0.1	0.4	0.0	0.1	0.2	0.0	0.1	273
00/01	82.3	5.9	0.0	0.9	6.5	4.0	0.1	0.1	-	0.2	377
01/02	93.5	2.0	0.3	2.0	0.0	0.4	1.7	0.1	-	0.0	402
02/03	93.7	2.7	0.2	2.5	0.6	0.2	0.0	0.0	-	0.0	336
03/04	96.3	1.4	0.0	1.5	0.1	0.1	-	0.6	-	0.0	314
04/05	97.5	2.1	0.0	0.1	0.1	0.0	0.0	0.1	-	0.0	160
05/06	99.4	0.0	0.1	0.1	0.1	0.0	0.0	0.2	-	0.1	214
06/07	99.1	0.0	0.0	0.3	0.1	0.1	0.0	0.2	-	0.2	179
07/08	99.0	0.1	0.1	0.1	0.1	0.0	0.0	0.3	-	0.3	186
08/09	99.2	0.0	0.0	0.2	0.0	0.0	-	0.2	-	0.3	206
09/10	98.9	0.1	0.6	0.1	0.1	0.0	0.0	0.1	-	0.1	179
10/11	98.9	0.2	-	0.1	0.0	0.0	0.0	0.4	-	0.4	148
Mean	93.1	2.4	2.1	0.7	0.6	0.4	0.3	0.1	0.1	0.2	5926

Table G.1: (cont.)

Target species									
WCNI-BPT									
	TAR	TRE	SNA	BAR	GUR	OTH			Total
89/90	-	52.5	47.5	-	-	-			11
90/91	14.4	26.7	53.5	5.3	-	0.1			18
91/92	-	39.0	61.0	-	0.0	-			5.3
92/93	8.4	36.2	55.3	-	-	-			8.9
93/94	-	10.5	79.7	9.8	-	-			14
94/95	-	20.4	79.4	0.2	0.0	0.0			6.7
95/96	-	5.5	81.5	12.8	-	0.3			9.0
96/97	13.3	-	84.3	-	-	2.4			2.4
97/98	-	0.8	99.2	-	-	-			1.7
98/99	66.3	22.9	5.8	-	3.9	1.2			37
99/00	61.6	17.6	4.2	10.7	3.9	2.0			45
00/01	63.6	20.9	4.7	10.1	0.3	0.3			56
01/02	-	70.5	6.6	21.5	-	1.3			2.0
02/03	39.0	47.1	4.1	-	9.7	0.1			15
03/04	86.8	9.0	0.2	-	4.0	-			27
04/05	0.7	37.4	57.4	4.6	-	0.0			34
05/06	48.7	34.5	11.1	-	5.7	-			17
06/07	70.6	3.6	10.4	-	15.4	-			42
07/08	90.8	7.3	1.9	-	-	0.0			112
08/09	74.9	24.4	0.0	0.2	0.4	-			67
09/10	81.4	14.7	0.1	1.2	2.6	-			64
10/11	67.2	32.8	-	-	-	-			37
Mean	61.5	19.7	13.5	2.7	2.4	0.3			630
BoP-SN									
	TAR	TRE	SNA	SKI	KIN	WAR	HOK	OTH	Total
89/90	80.7	4.2	2.3	0.8	4.3	2.5	-	5.2	10
90/91	80.9	5.0	4.7	-	5.5	0.3	-	3.5	35
91/92	85.1	3.4	3.6	0.7	2.9	2.4	-	1.9	68
92/93	84.0	3.5	1.8	5.3	1.9	1.3	-	2.2	117
93/94	91.8	3.3	0.6	1.2	0.5	0.4	1.1	1.2	116
94/95	93.4	3.2	0.5	0.2	0.0	0.8	0.1	1.8	78
95/96	76.6	8.4	5.3	1.8	0.1	1.0	4.6	2.2	43
96/97	64.2	16.0	9.5	1.6	-	0.1	5.3	3.4	42
97/98	78.7	13.8	1.1	1.9	-	2.1	-	2.4	18
98/99	79.6	12.0	0.0	2.2	-	2.8	-	3.4	11
99/00	68.3	27.9	0.6	-	-	0.3	-	2.8	3.5
00/01	6.6	56.8	1.9	-	-	0.0	-	34.7	1.1
01/02	5.6	68.9	8.4	-	-	0.5	-	16.5	1.1
02/03	64.9	25.5	2.5	-	-	0.1	-	7.0	4.2
03/04	42.9	3.7	13.5	-	-	1.7	-	38.3	0.6
04/05	37.7	0.3	2.3	-	0.2	5.1	-	54.3	1.4
05/06	12.5	14.9	37.3	-	4.9	4.7	-	25.7	0.8
06/07	-	31.2	1.6	-	-	-	-	67.2	0.2
07/08	-	23.1	15.1	-	-	-	-	61.8	0.4
08/09	-	53.6	5.8	-	-	4.4	-	36.1	0.3
09/10	-	12.7	10.0	-	-	4.7	-	72.6	0.8
10/11	-	11.7	0.0	-	-	6.7	-	81.6	0.2
Mean	83.4	6.0	2.7	1.9	1.3	1.1	1.0	2.7	553

Table G.1: (cont.)

	Target species			
ECSI-DS				
	TAR	RCO	OTH	Total
$89 / 90$	-	-	-	-
$90 / 91$	-	-	-	-
$91 / 92$	100.0	-	-	0.0
$92 / 93$	-	-	100.0	0.1
$93 / 94$	-	-	-	-
$94 / 95$	-	-	-	-
$95 / 96$	-	-	-	-
$96 / 97$	-	-	-	-
$97 / 98$	-	-	-	-
$98 / 99$	-	-	-	-
$99 / 00$	-	-	-	-
$00 / 01$	-	-	-	-
$01 / 02$	-	-	-	-
$02 / 03$	-	-	-	5.2
$03 / 04$	1.5	96.9	1.6	0.0
$04 / 05$	-	-	100.0	1.6
$05 / 06$	0.9	97.5	1.6	113
$06 / 07$	90.0	8.2	1.8	86
$07 / 08$	92.8	5.7	1.5	149
$08 / 09$	96.5	3.5	0.0	43
$09 / 10$	97.3	2.3	0.4	57
$10 / 11$	98.8	0.8	0.5	455
Mean	93.1	6.0	0.9	-1

Appendix H. East coast North/South Island tarakihi CPUE Analysis

H. 1 General overview

This study was prompted by simultaneous declines in standardised CPUE for tarakihi from two separate QMA based studies reported in 2008 and 2009 for adjacent Fishstocks (TAR 2 and TAR 3) along the east coast of both the north and south islands. On the basis of known spawning grounds and migration patterns, it seemed clear that tarakihi biological stocks extended beyond the scale of current QMAs and that a coordinated approach for monitoring the wider stock was desirable.

Three standardised CPUE analyses are presented in detail in this Appendix, with full documentation for each series. These series were used as input to a stock assessment of tarakihi on the east coasts of the North and South Islands (Langley \& Starr 2012).

Studies that are QMA based can suffer from a loss of data when they include straddling statistical areas (shared by more than one Fishstock). Trips that fish in these statistical areas and land to more than one Fishstock are excluded from the analysis if the integrity of the Fishstock identification is to be maintained because the landed catch cannot be allocated unambiguously. Unfortunately, such ambiguous catches are important in the TAR 2 and TAR 3 fisheries, which share Areas 017, 018, and 019 , and which also share Area 017 with TAR 7. Consequently, it was decided to abandon the integrity of the Fishstock information so that catches in these shared statistical areas could be retained, resulting in CPUE analyses that are defined by statistical area of capture, rather than to a specific QMA.

The standardisation procedure in each of the three defined fisheries reported here demonstrates how fishing behaviour can affect tarakihi catch rates, with the statistical procedure resulting in considerable modification of the unstandardised CPUE series. In TAR 2, there is evidence of active avoidance of tarakihi during a peak of abundance in the early 2000s, and in TAR 3 there is evidence of improved targeting of the species over the whole study period, but particularly during much of the 2000s when abundance in the underlying population appears to have been in decline.

H. 2 Methods

H.2.1 Data Preparation

The identification of candidate trips for these analyses and the methods used to prepare the data have been described in Section 2.3.1. The potential data variables available from each trip include estimated and landed catch of tarakihi, the number of tows, total duration of fishing, fishing year, statistical area, target species, month of landing, and a unique vessel identifier. Data might not represent an entire fishing trip; just those portions of it that qualified, but the amount of landed catch assigned to the part of the trip that was kept would be proportional to the total landed catch for the trip based on the estimated catches which apportion the landings to each trip stratum. Trips were not dropped because they targeted more than one species or fished in more than one statistical area. Trips landing more than one Fishstock from one of the straddling statistical areas were not dropped

Those groups of events that satisfied the criteria of target species, method and statistical areas defining the defined fisheries were selected from available fishing trips. Any effort strata that were matched to a landing of tarakihi were termed "successful", and included any relevant but unsuccessful effort, so that the analysis of catch rates in successful strata also incorporates much of the relevant zero catch information. Strata which did not include any landed tarakihi were assigned a value of zero so that the effort data associated with them could be included in the analysis that considered total effort (as differentiated from successful effort only).

H.2.2 Analytical methods for standardisation

Arithmetic CPUE $\left(\hat{A}_{y}\right)$ in year y was calculated as the total catch for the year divided by the total effort in the year:

Eq. H. 1

$$
\hat{A}_{y}=\frac{\sum_{i=1}^{n_{y}} C_{i, y}}{\sum_{i=1}^{n_{y}} E_{i, y}}
$$

where $C_{i, y}$ is the [catch] and $E_{i, y}=T_{i, y}$ ([tows]) or $E_{i, y}=H_{i, y}$ ([hours_fished]) for record i in year y, and n_{y} is the number of records in year y.

Unstandardised CPUE $\left(\hat{G}_{y}\right)$ in year y is the geometric mean of the ratio of catch to effort for each record i in year y :

Eq. H. 2

$$
\hat{G}_{y}=\exp \left[\frac{\sum_{i=1}^{n_{y}} \ln \left(C_{i, y} / E_{i, y}\right)}{n_{y}}\right]
$$

where $C_{i}, E_{i, y}$ and n_{y} are as defined for Eq. H.1. Unstandardised CPUE makes the same log-normal distributional assumption as the standardised CPUE, but does not take into account changes in the fishery. This index is the same as the "year index" calculated by the standardisation procedure, when not using additional explanatory variables and using the same definition for $E_{i, y}$. Presenting the arithmetic and unstandardised CPUE indices in this report provide measures of how much the standardisation procedure has modified the series from these two sets of indices.

A standardised abundance index (Eq. H.3) was calculated from a generalised linear model (GLM) (Quinn \& Deriso 1999) using a range of explanatory variables including [year], [month], [vessel] and other available factors:

Eq. H. 3

$$
\ln \left(I_{i}\right)=B+Y_{y_{i}}+\alpha_{a_{i}}+\beta_{b_{i}}+\ldots . .+f\left(\chi_{i}\right)+f\left(\delta_{i}\right) \ldots .+\varepsilon_{i}
$$

where $I_{i}=C_{i}$ for the $i^{\text {th }}$ record, $Y_{y_{i}}$ is the year coefficient for the year corresponding to the $i^{\text {th }}$ record, $\alpha_{a_{i}}$ and $\beta_{b_{i}}$ are the coefficients for factorial variables a and b corresponding to the $i^{\text {th }}$ record, and $f\left(\chi_{i}\right)$ and $f\left(\delta_{i}\right)$ are polynomial functions (to the $3^{\text {rd }}$ order) of the continuous variables χ_{i} and δ_{i} corresponding to the $i^{\text {th }}$ record, B is the intercept and ε_{i} is an error term. The actual number of factorial and continuous explanatory variables in each model depends on the model selection criteria. Fishing year was always forced as the first variable, and month (of landing), statistical area, target species, and a unique vessel identifier were also offered as categorical variables. Tows $\left(\ln (T)_{i}\right)$ and fishing duration $\left(\ln \left(H_{i}\right)\right)$ were offered to the model as continuous third order polynomial variables.

Each model was fit to $\log (c a t c h)$ against the full set of explanatory variables in a stepwise procedure and assuming a lognormal distribution, selecting variables one at a time until the improvement in the model R^{2} was less than 0.01 . The order of the variables in the selection process was based on the variable with the lowest AIC, so that the degrees of freedom were minimised. Datasets were restricted to core fleets of vessels, defined by their activity in the fishery, thus selecting only the most active vessels without unduly constraining the amount of catch and effort available for analysis.

Canonical coefficients and standard errors were calculated for each categorical variable (Francis 1999). Standardised analyses typically set one of the coefficients to 1.0 without an error term and estimate the remaining coefficients and the associated error relative to the fixed coefficient. This is required because of parameter confounding. The Francis (1999) procedure rescales all coefficients so that the geometric mean of the coefficients is equal to 1.0 and calculates a standard error for each coefficient, including the fixed coefficient.

The procedure described by Eq. H. 3 is necessarily confined to the positive catch observations in the data set because the logarithm of zero is undefined. Observations with zero catch were modelled by fitting a linear regression model based on a binomial distribution and using the presence/absence of tarakihi as the dependent variable (where 1 is substituted for $\ln \left(I_{i}\right)$ in Eq. H. 3 if it is a successful catch record and 0 if it is not successful), using the same data set. Explanatory factors were estimated in the model in the same manner as described for Eq. H.3. Such a model provides an alternative series of standardised coefficients of relative annual changes that is analogous to the equivalent series estimated from the positive catch regression.

A combined model, which integrates the lognormal and binomial annual abundance coefficients, was estimated using the delta distribution, which allows zero and positive observations (Vignaux 1994):

Eq. H. 4

$$
{ }^{C} Y_{y}=\frac{{ }^{L} Y_{y}}{\left(1-P_{0}\left[1-1 /{ }^{B} Y_{y}\right]\right)}
$$

where $\quad{ }^{C} Y_{y}=$ combined index for year y
${ }^{L} Y_{y}=$ lognormal index for year i
${ }^{B} Y_{y}=$ binomial index for year i
$P_{0}=$ proportion zero for base year 0
Confidence bounds, while straightforward to calculate for the binomial and lognormal models, were not calculated for the combined model because a bootstrap procedure (recommended by Francis 2001) had not yet been implemented in the available software. The positive catch model almost always represents the major portion of the signal in the combined model and there is concern that the information added by the binomial model may be an artefact of the data amalgamation procedure and not always interpretable as a biomass index. The binomial model is presented here for information and to contrast with the positive catch model.

H.2.3 Fishery definitions for CPUE analysis

Three fisheries have been modelled to cover different components of the east coast tarakihi population. Other fisheries were examined during the exploratory work done for this project but are described in Appendix J.

Tarakihi is an important bycatch of most inshore bottom trawl fisheries along the east coast of both islands and there are also well defined target fisheries, however the choice of which target fisheries to include was intended to be inclusive rather than selective, so as to be compatible with previously accepted series and also to reduce the sensitivity of the analysis to trends in reporting of target species in these fisheries and to lessen the impact of the shift from daily to tow-by-tow reporting.

While the definitions in the defined three fisheries below make reference to the predominant QMA represented in each analysis, the selection of data for these fisheries was based on the statistical area of capture rather than the QMA. The choice of statistical areas in each defined fishery is based mainly on the characterisation work presented in Section 2.3.3, but was additionally evaluated using "residual implied coefficients" (see Appendix A) which can be used to approximate year×area interactions (for example, see Figure I.5). Because of the decision to drop QMA integrity in this analysis, catch from

Area 017, which would have been dropped in previous versions of these analyses, has been retained in this analysis. In this study it is included in the TAR 3 mixed target trawl dataset. Only catches from the inshore statistical areas were kept, and the small amounts taken in adjacent offshore areas were dropped.

TAR2_BT_MIX - East coast, North Island mixed species bottom trawl - The fishery is defined from bottom single trawl fishing events which fished in statistical Areas 011 to 016 inclusive, and targeted TAR, SNA, BAR, SKI, WAR, or GUR. This definition allows the use of total effort in the analysis of catch rates.

TAR3_BT_MIX - East coast, South Island mixed species bottom trawl - The fishery is defined from bottom single trawl fishing events which fished in statistical Areas 017, 018, 020, 022, 024, and 026, and targeted TAR, BAR, RCO, WAR, or GUR. This definition allows the use of total effort in the analysis of catch rates.

TAR3_SN_TAR - Kaikoura target tarakihi setnet -- The fishery is defined from set net fishing events which fished in statistical area 018, and targeted TAR. This definition allows the use of total effort in the analysis of catch rates.

H. 3 Unstandardised CPUE

H.3.1 TAR2_BT_MIX: East coast, North Island mixed species bottom trawl

There has been relatively little change in the number of successful trips which reported TAR in this fishery, apart from a strong increase in the first two years of the series (Figure H.1). There has been little trend in the nominal catch rate of successful trips. There has been a slight declining trend in the proportion of trip-strata with zero tarakihi catch ([left panel] Figure H.2) and a very large effect in the number of events per trip-stratum after the introduction of the TCER form at the beginning of 2007-08 ([right panel] Figure H.2).

Figure H.1: Number of qualifying trips in TAR2_BT_MIX) (dark area), the number of those trips that landed tarakihi (light area) and the simple catch rate (kg/tow) of tarakihi in successful tripstrata, by fishing year.

Figure H.2: The proportion of qualifying trips in TAR2_BT_MIX, that landed zero tarakihi (left), and the effect of amalgamation to trip-strata on the number of original records per trip-stratum and the number of tows per trip-stratum, by fishing year.

H.3.2 TAR3_BT_MIX: East coast, South Island mixed species bottom trawl

There has been a large change in this fishery, with a long-term declining trend in the number of reporting trips and with a strong increasing trend in nominal catch per trip (Figure H.3). There is a step down in the proportion of trip-strata reporting no tarakihi catch ([left panel] Figure H.4) and again a very strong response in the number of events per trip-stratum after the introduction of the TCER form at the beginning of the 2007-08 fishing year ([right panel] Figure H.4).

Figure H.3: Number of qualifying trips in TAR3_BT_MIX (dark area), the number of those trips that landed tarakihi (light area) and the simple catch rate (kg/tow) of tarakihi in successful tripstrata, by fishing year.

Figure H.4: The proportion of qualifying in TAR3_BT_MIX, that landed zero tarakihi (left), and the effect of amalgamation to trip-strata on the number of original records per trip-stratum and the number of tows per trip-stratum, by fishing year.

H.3.3 TAR3_SN_TAR: Kaikoura target tarakihi setnet

This fishery had virtually no trip-strata reporting zero tarakihi catch up to the 2008-09 fishing year, when inexplicably, there was a sudden appearance of zero-catch trip strata (Figure H.5). Otherwise, there has been little change in this fishery over the 22 years. The strong increase in proportion of zero trip-strata is apparent in the [left panel] of Figure H.14. This fishery had a long history of only recording a single trip-stratum per trip, presumably these being day trips ([right panel] Figure H.14). The average number of events per trip-stratum jumped to over 1.5 in the year the NCELR forms were introduced (2006-07) and have since increased to greater than 2 events per trip-stratum.

Figure H.5: Number of trips targeting tarakihi, in TAR3_SN_TAR (dark area), the number of those trips that landed tarakihi (light area) and the simple catch rate $(\mathbf{k g} / \mathrm{km})$ of tarakihi in successful trip-strata, by fishing year.

Figure H.6: The proportion of qualifying trips targeting tarakihi in TAR3_SN_TAR, that landed zero tarakihi (left), and the effect of amalgamation to trip-strata on the number of original records per trip-stratum and the number of sets per trip-stratum, by fishing year.

H. 4 Standardised CPUE analysis

H.4.1 Core fleet definitions

The data sets used for the standardised CPUE analysis were restricted to those vessels that participated with some consistency in the defined fishery. Core vessels were selected by specifying two variables; the number of trips that determined a qualifying year, and the number of qualifying years that each vessel participated in the fishery. The effect of these two variables on the amount of landed tarakihi retained in the dataset and on the number of core vessels, and the length of participation by the core vessels in each fishery are depicted for each of the defined fisheries in Figure I. 1 (TAR 2_BT_MIX), Figure I. 2 (TAR 3_BT_MIX) and Figure I. 3 (TAR 3_SN_TAR). The core fleet was selected by choosing variable values that resulted in the fewest vessels while maintaining the largest catch of tarakihi. The selection process usually reduced the number of vessels in the dataset by about 70% while reducing the amount of landed tarakihi by about 20%. The summary for the data sets with the core vessels is presented in Table I.1.

H.4.2 Model selection and trends in model year effects

The lognormal models selected for each of the above three fisheries are described in Table H. 1 (TAR2_BT_MIX), Table H. 2 (TAR3_BT_MIX), and Table H. 3 (TAR3_SN_TAR). These tables include the explanatory variables that met the AIC criteria and are not necessarily a complete list of the variables that were offered. The variables that met the acceptance criteria based on a 1% improvement in R^{2} are indicated with asterisks in the table, along with the amount of deviance they explained.

Following each table are step-influence plots that demonstrate the progressive effect on the annual indices of each explanatory variable as it enters the model, and compares the influence of each variable on observed catch (which the model adjusts for), in adjacent panels. These plots highlight the observation made in Bentley et al. (2011) that the variables that explain the most deviance are not necessarily the ones responsible for most of the difference between standardised and observed series of CPUE. The influence of an explanatory variable is a combination of its GLM coefficients and its distributional changes over years, and these are summarised in Coefficient-Distribution-Influence (CDI) plots (Bentley et al. 2011), given for each accepted explanatory variable presented in Table H.1, Table H.2, and Table H.3.

Diagnostic plots of the residuals from each lognormal model fit show a relatively poor fit to the distributional assumption for the TAR2_BT_MIX analysis (Figure I.4) and the TAR3_SN_TAR
analysis (Figure I.9). However, the TAR3_BT_MIX analysis (Figure I.7) shows a much better fit to the lognormal distribution. Analyses testing alternative distributional assumptions (not reported here because these analyses were not used in the stock assessment) found that the Weibull distribution gave better fits to the data sets for the TAR2_BT_MIX and TAR3_SN_TAR data sets (see Appendix Section J.2.2 for a description of this method), but that the lognormal distributional assumption was the best (lowest AIC) for TAR3_BT_MIX data set. However, the resulting Weibull-based year indices were not greatly different from the lognormal-based indices.

Implied coefficient plots for each statistical area by year combination shows a likely area×year interaction effect for TAR2_BT_MIX analysis (Figure I.5) but not for the TAR 3_BT_MIX analysis (Figure I.8). Figure I. 5 appears to show that the two statistical areas north of Hawkes Bay (Area 011 and Area 012) have different annual trends than the areas off the Wairarapa coast (Area 013 and Area 014, which have the greater catch levels; see Appendix D). Further investigation of these issues should be considered for the next iteration of these analyses. Month \times area interaction effects were also investigated for the TAR2_BT_MIX and TAR3_BT_MIX analyses but were found to be unimportant. Finally, implied residual coefficients for targetspecies \times year in the TAR2_BT_MIX analysis show that the two most important target species in terms of total catch (TAR and GUR, Figure I.6) show similar peak periods of good catches, but there are periods of lower TAR catch rates before and after the peak period when targeting GUR compared to TAR. The NINSWG concluded, on the basis of this evidence, that the addition of GUR as an explanatory factor improved the analysis because it covered a portion of the TAR depth distribution that was not sampled by the target TAR fishery.

H.4.2.1 Other models

Other models that were examined but were not used in the stock assessment and are therefore not presented here. These include binomial and combined models for the mixed target fisheries, and a lognormal model for the TAR2_BT_MIX fishery that offered a month \times area interaction term to better account for the seasonal migration of tarakihi along the coast. The interaction term was accepted in the TAR2_BT_MIX analysis in preference to area and month (offered only as main effects), but did not produce discernibly different annual indices. For ease of interpretation and clearer diagnostics, the main effects models are presented here.

H.4.2.2 TAR2_BT_MIX: East coast, North Island mixed species bottom trawl

The TAR2_BT_MIX lognormal model (Table H.1) explained 60\% of the variance in log catch, by standardising for the effect of changes in targeting, number of tows, and participation of vessels in the core fleet. Diagnostic residual plots are presented for the lognormal model in Figure I. 4 and show a relatively poor fit of the data to the lognormal assumption with unexplained patterns in the residuals, and with a marked departure at the tail of the distribution associated with smaller observed values.

Table H.1: Order of acceptance of variables into the lognormal model of successful catches of tarakihi for core vessels (based on the vessel selection criteria of at least 10 trips in 5 or more fishing years) in the TAR2_BT_MIX fishery with the amount of explained deviance for each variable. Variables accepted into the model are marked with an *. Fishing year was forced as the first variable.

Term	DF	Deviance	Deviance explained (\%)	AIC	Final
None	0	116987	0.00	124167	
fyear	22	116038	0.81	123969	$*$
target	27	80271	31.38	113130	$*$
poly(log(tows) 3)	30	57491	50.86	103310	$*$
vessel	97	46626	60.14	97277	$*$
area	102	45473	61.13	96550	
poly(log(duration) 3)	105	44465	61.99	95896	
month	116	44191	62.23	95736	

Residual implied coefficients show an earlier peak in Area 011 compared to Areas 012, 013 or 014 (Figure I.5). This implies some difference in the fishing year trends among the statistical areas. Area 011 is an important area with respect to landed catch, and this difference in trend may reduce the utility of this index series.

Shifts in the importance of bycatch (mainly red gurnard) relative to the target fishery are predicted to have accounted for greater catches of tarakihi in the early 1990s and a period of lower catches in the early 2000s; a pattern that is cyclical but that had a negative influence overall (Figure I.10). Adjusting for this influence lowers the initial points and creates the peak in the middle of the time series. The influence of tows on observed catches has also been cyclical but slightly negative overall and its inclusion into the lognormal model reduces some of the interannual variance, smoothing the trajectory without changing its shape (Figure I.11). Changes in the core fleet have also had a cyclical influence on observed catches that has had an increasing trend over the last ten years (Figure I.12). Its inclusion into the model further lifts the peak, drops some recent points, and generally smoothes the trajectory giving it a more credible shape. Shifts in all three explanatory variables have been cyclical in their influence on observed CPUE, but all suggest that there was some active and effective avoidance of tarakihi during the early 2000s when abundance was at a peak (Figure H.7).

Figure H.7: Step and annual influence plot for TAR2_BT_MIX. (a) CPUE index at each step in the selection of variables. The index obtained in the previous step (if any) is shown by a dotted line and for steps before that by grey lines. (b) Annual influence on observed catches arising from a combination of its GLM coefficients and its distributional changes over years, for each explanatory variable in the final model.

The effect of standardisation on catch rate in successful trips was to create a broad peak over several years in the late 1990s and early 2000s that was not evident in the unstandardised series (Figure H.8). This indicates that factors within the control of fishers can be altered to reduce catches when abundance was high. This appears to have been caused by a shift towards shallower gurnard tows. After 2002-03, the opposite is apparent, with standardisation dropping the series to account for more effective targeting of tarakihi. The last half of the time series declines over a period of nine years, except for a shallow recovery in 2008-09 and 2009-10 which was reversed by a sharp drop in 201011 , which is the lowest point in the series. The trajectory is well-determined with relatively small error bars around each point and there is good agreement with the previous series presented for this fishery (Jiang \& Bentley 2008). That series was based on target tows only (Figure H.10) and was replicated for this study (Figure 22), producing a lower and broader peak than the series presented here.

A standardised binomial model showed a shallow increasing trend for this fishery, but very little effect on the overall trend when combined with the lognormal model (Figure H.9).

Figure H.8: The effect of standardisation on the raw CPUE of tarakihi in successful trips by core vessels in the TAR2_BT_MIX fishery. Broken lines are the raw CPUE (kg/tow) for all vessels and for the core fleet only, the solid line is the unstandardised CPUE (annual geometric mean), the bold line is the standardised CPUE canonical indices with ± 2 * SE error bars. Grey line is the previous lognormal series presented in 2008 for a similar fishery(target tows only). All series are relative to the geometric mean over the years in common.

Figure H.9: The effect of standardisation on the raw CPUE of tarakihi by core vessels in the TAR2_BT_MIX fishery. Top: Binomial index of probability of capture. Middle: Lognormal index of magnitude of catch. broken line is the raw CPUE (kg/tow) the solid line is the standardised CPUE canonical indices with $\pm 2 *$ SE error bars. Bottom: The effect on the lognormal index of combining it with the Binomial index.

H.4.2.3 TAR3_BT_MIX: East coast, South Island mixed species bottom trawl

The TAR3_BT_MIX lognormal model (Table H.2) explained 40\% of the variance in log catch, by standardising for the effect of changes in the core fleet, duration of fishing, targeting, as well as month and area fished. Diagnostic residual plots are presented for the lognormal model in Figure I. 7 and show a good fit of the data to the assumed lognormal distribution. Residual implied coefficients show very similar year indices in each of the component statistical areas (Figure I.8).

Changes in the participation of the core vessels in this fishery are predicted to have steadily increased observed catches over the entire study period and when the model adjusts for this influence, an apparently increasing trajectory is changed to one that is flat overall (Figure I.13). The inclusion of duration into the model lifts some recent points in an adjustment for a shift towards lower total duration per stratum, but the inclusion of the remaining variables continue to move the standardised series downwards in recent years (Figure I.14). A shift away from red cod bycatch and towards more targeted tarakihi since the early 2000s increased catches (Figure I.15), and an increased emphasis since 2004-05 on the months of peak abundance of tarakihi (January to May), similarly increased catches (Figure I.16). Increased fishing in the less productive areas of 024 and 026 may have depressed observed catches somewhat since 2001-02 but the influence is small (Figure I.17) and the effect on the year effects was negligible (Figure H.10).

The effect of standardisation on catch rate in successful trips is dramatic; changing a trajectory that increases steadily over the first half of the time series, and steeply over the second half, to one that is flat overall, and which declines over four consecutive years from a peak in 1999-2000 to a new low
level where it has been relatively stable for the most recent eight years (Figure H.11). This difference between the unstandardised and standardised CPUE demonstrates the high degree to which fishers are able to adjust their catch of tarakihi in this mixed species fishery and appear to have resulted in increased tarakihi catches due to more specific targeting despite flat or declining underlying abundance (Figure H.11).

Table H.2: Order of acceptance of variables into the lognormal model of successful catches of tarakihi for core vessels (based on the vessel selection criteria of at least 10 trips in 5 or more fishing years) in the TAR3_BT_MIX fishery with the amount of explained deviance for each variable. Variables accepted into the model are marked with an *. Fishing year was forced as the first variable.

	DF	Deviance	Deviance explained (\%)	AIC	Final
Term	0	146463	0.00	116027	
fyear	22	143182	2.24	115497	$*$
vessel	98	120748	17.56	111347	$*$
poly(log(duration), 3)	101	106533	27.26	108191	$*$
target	105	92168	37.07	104543	$*$
month	116	90088	38.49	103989	$*$
area	121	88097	39.85	103435	$*$
poly(log(num), 3)	124	88036	39.89	103423	

Figure H.10: Step and annual influence plot for TAR3_BT_MIX. (a) CPUE index at each step in the selection of variables. The index obtained in the previous step (if any) is shown by a dotted line and for steps before that by grey lines. (b) Annual influence on observed catches arising from a combination of its GLM coefficients and its distributional changes over years, for each explanatory variable in the final model.

Figure H.11: The effect of standardisation on the raw CPUE of tarakihi in successful trips by core vessels in the TAR3_BT_MIX fishery. Broken lines are the raw CPUE (kg /tow) for all vessels and for the core fleet only, the solid line is the unstandardised CPUE (annual geometric mean), the bold line is the standardised CPUE canonical indices with ± 2 * SE error bars. Grey line is the previous lognormal series presented in 2009 for a similar fishery. All series are relative to the geometric mean over the years in common.

Figure H.12: The effect of standardisation on the raw CPUE of tarakihi by core vessels in the TAR3_BT_MIX fishery. Top: Binomial index of probability of capture. Middle: Lognormal index of magnitude of catch. broken line is the raw CPUE (kg/tow) the solid line is the standardised CPUE canonical indices with $\pm 2 *$ SE error bars. Bottom: The effect on the lognormal index of combining it with the Binomial index.

A standardised binomial model showed a stepped decrease from a peak near 2000, resembling closely the lognormal trend (Figure H.12). However, as for the TAR 2_BT_MIX CPUE series, there was very little effect on the overall trend when combined with the lognormal model (Figure H.12).

H.4.2.4 TAR3_SN_MIX: Kaikoura target tarakihi setnet

The TAR3_SN_TAR lognormal model (Table H.3) explained 45\% of the variance in log catch, by standardising for the effect of changes in length of net set, and changes in the core fleet as well as to the seasonality of fishing. Although net length was the variable with the greatest explanatory power (23\%), its influence on observed catches was neutral overall and its inclusion in the lognormal model did not markedly alter the trajectory of annual indices (Figure I.18). The influence of changes in the core fleet however was strongly positive and predicted to have increased catches of tarakihi over the study period (Figure I.19). The inclusion of vessel into the model lifted early points and lowered the peak in the early 2000s that is the main effect in the shift away from the unstandardised series. The influence of shifts in the seasonality of fishing was also positive overall (Figure I.20), and continued to move the standardised series away from the unstandardised by lifting early points, lowering the peak in the early 2000s and dropping more recent points (Figure H.13).

Figure H.13: Step and annual influence plot for TAR3_SN_TAR. (a) CPUE index at each step in the selection of variables. The index obtained in the previous step (if any) is shown by a dotted line and for steps before that by grey lines. (b) Annual influence on observed catches arising from a combination of its GLM coefficients and its distributional changes over years, for each explanatory variable in the final model.

Diagnostic residual plots are presented for the lognormal model in Figure I. 9 and show a poor fit of the data to the lognormal assumption with considerable departure at the lower tail end of the residual distribution but with the remaining distribution reasonably well formed.

Table H.3: Order of acceptance of variables into the lognormal model of successful catches of tarakihi for core vessels (based on the vessel selection criteria of at least 10 trips in $\mathbf{3}$ or more fishing years) in the TAR3_SN_TAR fishery with the amount of explained deviance for each variable. Variables accepted into the model are marked with an *. Fishing year was forced as the first variable

	DF	Deviance	Deviance explained (\%)	AIC	Final
Term	0	20161	0.00	42080	
None	22	19159	4.97	41471	$*$
fyear	25	14526	27.95	37941	$*$
poly(log(netlength), 3)	40	11988	40.54	35519	$*$
vessel	50	11047	45.21	34494	$*$
month	53	10985	45.51	34428	

The effect of standardisation on catch rate in successful trips was considerable, and mainly flattened and smoothed the series, reducing the apparent peak in observed catches in the early 2000s, and thereby the steepness of the decline sustained over the following six consecutive years (Figure H.14). An apparent recovery after the low in 2007-08 is also reduced by standardisation. The differences between the standardised and unstandardised series indicates that despite this being a target fishery, fishers have been able to improve their targeting of the species, even while the underlying population has been apparently declining. The trajectory is reasonably well-determined with small error bars around each point and there is good agreement with the previous series presented for this fishery (Figure H.14).

Figure H.14: The effect of standardisation on the raw CPUE of tarakihi in successful trips by core vessels in the TAR3_SN_TAR fishery. Broken lines are the raw CPUE ($\mathrm{kg} / \mathrm{km}$ net) for all vessels and for the core fleet only, the solid line is the unstandardised CPUE (annual geometric mean), the bold line is the standardised CPUE canonical indices with $\pm 2 *$ SE error bars. Grey line is the previous lognormal series presented in 2009 for this fishery. All series are relative to the geometric mean over the years in common.

Figure H.15: The effect of standardisation on the raw CPUE of tarakihi by core vessels in the TAR3_SN_TAR fishery. Top: Binomial index of probability of capture. Middle: Lognormal index of magnitude of catch. broken line is the raw CPUE ($\mathrm{kg} / \mathrm{km}$) the solid line is the standardised CPUE canonical indices with ± 2 * SE error bars. Bottom: The effect on the lognormal index of combining it with the Binomial index.

A standardised binomial model showed no change over every year in the series except for the final three years, where there is a strong drop caused by the increasing proportion of zero trip strata in this fishery (Figure H.15). Surprisingly, as for the TAR 2_BT_MIX and TAR 3_BT_MIX CPUE series, this declining trend had very little overall effect on the trend when combined with the lognormal model (Figure H.15).

Appendix I. Detailed diagnostics for tarakihl (EASt coast) CPUE STANDARDISATIONS

I. 1 Core vessel selection

Figure I.1: The total landed tarakihi [top left] and the number of vessels [bottom left] retained in the TAR2_BT_MIX dataset depending on the minimum number of qualifying years used to define core vessels. The distribution of trips by fishing year for the selected core vessels (defined as $\mathbf{1 0}$ trips per year in $\mathbf{5}$ years) is shown on the right.

Figure I.2: The total landed tarakihi [top left] and the number of vessels [bottom left] retained in the TAR3_BT_MIX dataset depending on the minimum number of qualifying years used to define core vessels. The distribution of trips by fishing year for the selected core vessels (defined as 10 trips per year in 5 years) is shown on the right.

Figure I.3: The total landed tarakihi [top left] and the number of vessels [bottom left] retained in the TAR3_SN_TAR dataset, depending on the minimum number of qualifying years used to define core vessels. The distribution of trips by fishing year for the selected core vessels (defined as $\mathbf{1 0}$ trips per year in $\mathbf{3}$ years) is shown on the right.

I. 2 Data summaries

Table I.1: Number of vessels, trips, trip strata, events, sum of catch, sum of tows (or net length) and sum of hours fishing for core vessels in the three CPUE analyses by fishing year.

	TAR 2_BT_MIX										TAR 3 BT_MIX											TAR 3_SN_TAR		
Fishing year	Vessel	Trips	Trip strata	ents	Catch	Tow	Hours	$\%$	Vessel	Trips	Tripstrata	ents	Catch	Tows	Hours	$\begin{gathered} \% \\ \text { zero } \end{gathered}$		Trips	Tripstrata	ts	Catch	$\begin{array}{r} \text { Net } \\ (\mathrm{km}) \end{array}$	Hours	$\%$ \% ero
1990	33	876	1086	1881	942	4508	16901	33.0	41	1421	1640	2872	315	6028	19977	52.5	10	803	803	805	189	861	22140	2.0
1991	35	1071	1408	2723	1409	6455	24258	29.7	49	1666	1911	3461	420	7689	25498	45.4	9	836	836	847	287	063	22006	0.7
1992	38	1422	1807	3425	1327	7630	29939	27.2	56	1993	2331	4338	540	8992	32431	44.	9	848	848	852	352	348	21370	1.1
1993	42	1319	1782	3230	1395	7588	31070	28.8	55	2317	2655	4883	386	9985	36062	50.6	7	799	799	806	337	1154	19511	. 4
1994	40	1511	2025	3730	1136	7632	31170	39.2	62	2785	3033	4881	430	11091	36189	53.4	6	611	611	622	198	888	15070	1.5
1995	42	1400	1871	3321	1133	6587	26675	34.7	61	3105	3349	5432	566	11804	39599	54.6	6	600	600	618	259	911	14852	1.0
1996	41	1187	1596	3362	1040	5902	22425	33.6	60	2713	2930	5643	579	11136	35652	61.2	7	507	507	522	209	745	12417	1.0
1997	38	1134	1637	3381	1098	6226	23178	25.7	62	3082	3348	5920	761	13064	40449	54.6	8	495	495	498	180	718	11654	. 8
1998	39	1234	1682	3458	1225	6785	24697	32.2	59	3027	3326	6135	735	13619	40824	57.3	7	666	666	669	259	1000	15485	2.0
1999	40	1423	1915	3872	1339	7636	28183	33.6	56	2387	2596	4793	806	10740	32699	48.0	6	590	590	591	240	750	13812	1.7
2000	37	1337	1837	3829	1541	7890	29906	32.2	55	2022	2247	4446	988	10145	31038	40.6	6	591	591	600	243	845	14692	0.2
2001	41	1477	2021	4137	1437	8089	29594	33.7	55	1995	2187	4211	1085	11169	36269	37.7	7	604	604	604	309	863	14680	0.5
2002	39	1551	2126	4364	1561	8278	29906	30.9	50	1465	1674	3439	824	8868	28267	33.1	7	481	481	481	348	816	10829	0.2
2003	38	1521	2179	4454	1587	8589	32055	27.9	45	1519	1766	3635	916	9296	31713	37.5	7	55	554	558	308	932	13480	1.6
2004	38	1367	1987	4177	1546	7951	28971	28.6	45	1575	1848	3571	933	8055	2745	46.1	7	620	620	626	299	904	15036	1.3
2005	35	1450	2089	4580	1553	9047	33546	26.6	44	1497	1794	3371	864	8061	28180	44.5	6	408	408	409	15	474	9284	1.5
2006	39	1426	2030	4493	1738	9150	32909	29.1	41	1402	1677	3152	855	7478	26650	39.9	6	564	564	565	212	679	16327	0.2
2007	33	1299	1885	4704	1540	8808	31040	30.0	39	1039	1297	2469	844	5965	22042	37.9	6	604	604	1075	176	714	29500	0.2
2008	35	1105	1971	7817	1495	7859	27705	24.6	35	864	1475	4078	563	4078	14733	40.2	6	529	529	982	178	695	29287	0.4
2009	32	1170	2174	8396	1700	8397	29574	24.2	37	941	1634	4428	708	4496	16524	44.9	5	512	512	1001	200	703	29349	13.1
2010	33	1252	2379	9173	1698	9173	32365	22.4	40	929	1720	4721	661	4742	17326	47.3	5	537	537	1103	178	748	32368	27.9
2011	32	1088	2178	8514	1486	8514	29320	23.0	38	898	1680	4841	889	4841	17561	38.7	5	537	537	1159	144	765	33460	33.7

I. 3 Diagnostic plots

Figure I.4: Plots of the fit of the standardised CPUE model to successful catches of tarakihi in the TAR2_BT_MIX fishery. [Upper left] histogram of the standardised residuals compared to a lognormal distribution (SDSR: standard deviation of standardised residuals. MASR: median of absolute standardised residuals); [Upper right] Standardised residuals plotted against the predicted model catch per trip; [Lower left] Q-Q plot of the standardised residuals; [Lower right] Observed catch per record plotted against the predicted catch per record.

Figure I.5: Residual implied coefficients for each area in each fishing year for the TAR2_BT_MIX CPUE analysis. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year in each area. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure I.6: Residual implied coefficients for each target species in each fishing year for the TAR2_BT_MIX CPUE analysis. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year for each target species. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure I.7: Plots of the fit of the standardised CPUE model to successful catches of tarakihi in the TAR3_BT_MIX fishery. [Upper left] histogram of the standardised residuals compared to a lognormal distribution (SDSR: standard deviation of standardised residuals. MASR: median of absolute standardised residuals); [Upper right] Standardised residuals plotted against the predicted model catch per trip; [Lower left] Q-Q plot of the standardised residuals; [Lower right] Observed catch per record plotted against the predicted catch per record.

Figure I.8: Residual implied coefficients for each area in each fishing year for the TAR3_BT_MIX CPUE analysis. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year in each area. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure I.9: Plots of the fit of the standardised CPUE model to successful catches of tarakihi in the TAR3_SN_MIX fishery. [Upper left] histogram of the standardised residuals compared to a lognormal distribution (SDSR: standard deviation of standardised residuals. MASR: median of absolute standardised residuals); [Upper right] Standardised residuals plotted against the predicted model catch per trip; [Lower left] Q-Q plot of the standardised residuals; [Lower right] Observed catch per record plotted against the predicted catch per record.

I. 4 Model coefficients

Figure I.10: Effect of target in the lognormal model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.11: Effect of number of tows in the lognormal model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.12: Effect of vessel in the lognormal model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.13: Effect of vessel in the lognormal model for the TAR3_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.14: Effect of duration in the lognormal model for the TAR3_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.15: Effect of target in the lognormal model for the TAR3_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.16: Effect of month in the lognormal model for the TAR3_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.17: Effect of area in the lognormal model for the TAR3_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.18: Effect of netlength in the lognormal model for the TAR3_SN_TAR fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.19: Effect of vessel in the lognormal model for the TAR3_SN_TAR fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure I.20: Effect of month in the lognormal model for the TAR3_SN_TAR fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

1.5 CPUE indices

Table I.2: Arithmetic indices for the total and core data sets, geometric and lognormal standardised indices and associated standard error for the core data set by fishing year for each of the three CPUE models.

	TAR 2_BT_MIX					TAR 3_BT_MIX						TAR 3_SN_TAR			
Fishing	All				Core	All				Core	All				Core
Year	Arithmetic	Arithmetic	Geometric	Standardised	SE	Arithmetic	Arithmetic	Geometric	Standardised	SE	Arithmetic	Arithmetic	Geometric	Standardised	SE
1990	0.924	0.997	1.340	1.071	0.0473	0.582	0.531	0.769	1.037	0.0684	0.725	0.715	0.663	1.294	0.0416
1991	1.004	1.105	1.319	0.959	0.0412	0.546	0.554	0.703	1.117	0.0591	0.907	0.899	0.816	1.264	0.0395
1992	0.832	0.921	1.004	0.933	0.0363	0.652	0.649	0.817	1.150	0.0533	0.907	0.918	0.819	1.276	0.0381
1993	0.915	1.016	0.939	0.980	0.0369	0.394	0.405	0.492	0.728	0.0531	1.026	1.024	0.950	1.070	0.0366
1994	0.732	0.779	0.829	0.879	0.0370	0.465	0.442	0.558	0.839	0.0517	0.737	0.766	0.734	0.748	0.0416
1995	0.899	0.846	0.912	0.958	0.0366	0.575	0.581	0.710	0.971	0.0503	0.967	0.959	1.099	1.154	0.0429
1996	0.928	0.891	0.901	0.977	0.0388	0.599	0.588	0.809	1.268	0.0560	1.038	1.026	0.962	1.004	0.0466
1997	1.032	0.993	0.996	1.037	0.0368	0.693	0.668	0.738	1.116	0.0490	0.946	0.935	0.809	0.938	0.0447
1998	1.061	1.019	1.016	0.941	0.0372	0.649	0.637	0.657	1.097	0.0508	0.967	0.956	1.005	1.075	0.0391
1999	0.997	0.967	1.047	1.077	0.0353	0.978	0.976	0.768	0.947	0.0517	1.214	1.197	1.202	1.155	0.0412
2000	1.103	1.159	1.176	1.279	0.0360	1.186	1.226	1.083	1.521	0.0516	0.937	1.035	0.980	0.878	0.0401
2001	1.026	0.990	1.009	1.283	0.0346	1.189	1.240	1.071	1.250	0.0516	1.611	1.592	1.143	1.006	0.0390
2002	1.234	1.212	1.095	1.537	0.0334	1.510	1.310	1.102	1.263	0.0562	1.663	1.726	1.529	1.286	0.0450
2003	1.210	1.168	1.047	1.446	0.0325	1.646	1.585	0.927	1.038	0.0565	1.348	1.349	1.408	1.214	0.0415
2004	1.169	1.166	1.199	1.285	0.0342	1.821	1.926	0.962	0.799	0.0594	1.188	1.187	1.230	1.104	0.0396
2005	1.072	1.023	0.882	0.946	0.0329	1.516	1.536	1.108	0.785	0.0596	1.221	1.204	1.361	0.947	0.0490
2006	1.085	1.019	1.006	0.907	0.0339	1.387	1.397	1.113	0.825	0.0592	1.035	1.021	1.071	0.929	0.0412
2007	0.937	0.916	0.969	0.772	0.0353	1.556	1.633	1.732	0.962	0.0662	0.820	0.809	0.866	0.822	0.0410
2008	0.989	0.994	0.867	0.760	0.0335	1.674	1.659	1.516	0.841	0.0655	0.827	0.816	0.745	0.698	0.0440
2009	1.061	1.040	0.990	0.821	0.0322	1.656	1.784	2.057	0.868	0.0655	1.071	1.057	1.104	0.887	0.0465
2010	1.036	0.998	0.897	0.884	0.0308	1.464	1.448	1.922	0.817	0.0657	0.819	0.808	0.986	0.808	0.0491
2011	0.908	0.905	0.770	0.719	0.0321	2.054	2.249	2.639	1.166	0.0615	0.659	0.650	1.031	0.806	0.0512

Appendix J. CPUE analyses for WCNI, East Northland and Bay of Plenty BOTTOM TRAWL FISHERIES

J. 1 General overview

This appendix describes three fisheries that were updated and examined for this project, which had been previously accepted as standardised CPUE series by the NINSWG (Kendrick 2009), but were not used in the stock assessment (Langley \& Starr 2012). Two major trawl fisheries off East Northland and in the Bay of Plenty were investigated: the Bay of Plenty series was nearly identical to the East coast North Island series and the NINSWG agreed that it would not add information to the stock assessment model, while the East Northland series appeared to be inconsistent with the series from the main portion of the biological stock. Consequently, neither series was used as input to the stock assessment model. The west coast of Northland was not considered to be a candidate series as these tarakihi were not thought to belong to the same biological stock as on the east coast.

The marked shift away from the unstandardised as a result of the standardisation procedure in each of the three fisheries demonstrates that there have been changes over time in these fisheries which affect the expected catch rate. Some of these shifts are likely to be due to active choices made by the fleet participants to affect the catch of tarakihi. For the Bay of Plenty bottom trawl fishery, there was evidence of active and effective avoidance of tarakihi during a peak of abundance in the early 2000s, and for the west coast North Island bottom trawl fishery, the increasing unstandardised catch rates of tarakihi appear to be the result of increased targeting without a corresponding increase in the underlying abundance.

J. 2 Methods

J.2.1 Data Preparation

Data were prepared as described in Section 2.3.3 and Appendix Section H.2.1. The same potential data variables were available from each trip in these data sets, including estimated and landed catch of tarakihi, the number of tows, total duration of fishing, fishing year, statistical area, target species, month of landing, and a unique vessel identifier. Data might not represent an entire fishing trip; just those portions of it that qualified, but the amount of landed catch assigned to the part of the trip that was kept would be proportional to the total landed catch for the trip based on the estimated catches which apportion the landings to each trip stratum. Trips were not dropped because they targeted more than one species or fished in more than one statistical area.

J.2.2 Analytical methods for standardisation

The analytical methods used for standardisation are described in Appendix Section H.2.2, with one important addition. Updated analytical software, not available at the time the analyses described in Appendix H were performed, was used to process these series. This software allowed the exploration of alternative distributional assumptions for the standardisation models. This was done in two steps when fitting to the successful (positive) catch records. First, alternative regressions based on five statistical distributional assumptions (lognormal, log-logistic, inverse Gaussian, gamma and Weibull) predicted catch based on a dataset with a reduced set of six explanatory variables (year, month, area, vessel, target species and the log of number tows). The distribution which resulted in the model with the lowest negative log-likelihood was then selected for use in the final model. The second step involved repeating the regression using the selected distribution: regressing \log (catch) against the full set of explanatory variables in a stepwise procedure, selecting variables one at a time until the improvement in the model R^{2} was less than 0.01 . The order of the variables in the selection process was based on the variable with the lowest AIC, so that the degrees of freedom were minimised. Datasets were again restricted to core fleets of vessels, defined by their activity in the fishery, thus
selecting only the most active vessels without unduly constraining the amount of catch and effort available for analysis.

A binomial model which predicted success or failure of tarakihi catch was fitted to the total dataset, including records that reported a zero catch of tarakihi and a lognormal model was fitted to positive catches. These two models were combined into a single set of indices using the method of Vignaux (1994) (Eq. H.4) but these analyses were not strongly informative and are not presented in detail (See Appendix K. 6 for plots of the resultant annual effects).

J.2.3 Fishery definitions for CPUE analysis

Tarakihi is an important bycatch of most inshore bottom trawl fisheries along the east coast of both islands and there are also well defined target fisheries, however the choice of which target fisheries to include was intended to be inclusive rather than selective, so as to be compatible with previously accepted series and also to be less sensitive to any trends in reporting of target species that these fisheries are subject to, because of the shift from daily to tow-by-tow reporting.

The inclusion of statistical areas in the defined fisheries is also largely based on previous studies but their relevance is evaluated with the help of residual implied coefficients plotted for each year in each area that are included in Appendix K.4. Only catches from the inshore statistical areas were kept, and the small amounts taken in adjacent offshore areas were dropped.

BoP_BT_MIX - Bay of Plenty mixed species bottom trawl - The Fishery is defined from bottom single trawl fishing events which fished in statistical areas 008-010, and targeted TAR, SNA, TRE, BAR, SKI, JDO, or GUR. This definition potentially allows the use of total effort in the analysis of catch rates, however only the analysis of positive catches is presented in detail.

EN_BT_MIX - East Northland mixed species bottom trawl - The Fishery is defined from bottom single trawl fishing events which fished in statistical areas 002-007, and targeted TAR, SNA, TRE, BAR, JDO, or GUR. This definition potentially allows the use of total effort in the analysis of catch rates, however only the analysis of positive catches is presented in detail.

WCNI_BT_MIX- West coast North Island mixed species bottom trawl -- The Fishery is defined from bottom single trawl fishing events which fished in statistical areas 041, 042, 045-048, and targeted TAR, SNA, or TRE. This definition potentially allows the use of total effort in the analysis of catch rates, however only the analysis of positive catches is presented in detail.

J. 3 Unstandardised CPUE

J.3.1 BoP_BT_MIX Mixed target Bottom trawl in TAR 1

Effort in this fishery has cycled several times with peaks in the early 1990s and again in the early 2000s (Figure J.1). Tarakihi is caught in most trips in this fishery, with that proportion increasing, especially in the most recent few years. Nominal catch rates have varied similarly to effort and are currently near the highest level of the study period. At trip stratum level success rate shows an increasing trend during the 1990s and improved stability at about 70\% since then (Figure J. 2 [left panel]). The effect of improved reporting on TCEPR forms is evident in the roll-up of data to tripstratum from the mid 1990s (Figure J. 2 [right panel]).

Figure J.1: Number of qualifying trips in BoP_BT_MIX (dark area), the number of those trips that landed tarakihi (light area) and the simple catch rate (kg/tow) of tarakihi in successful tripstrata, by fishing year.

Figure J.2: The proportion of qualifying trips in BoP_BT_MIX, that landed zero tarakihi (left), and the effect of amalgamation to trip-strata on the number of original records per trip-stratum and the number of tows per trip-stratum, by fishing year.

J.3.2 EN_BT_MIX Mixed target Bottom trawl in TAR 1

The number of qualifying trips in this fishery declined by about 50% from its peak in the early 1990s, but the number of trips reporting tarakihi catches did not decline proportionately. The nominal catch rate in successful trips shows some structure with a steady decline from the mid 1990s to a low point in 2002-03, but higher and more variable rates since then (Figure J.3). The proportion of zero catches of tarakihi at trip-stratum level decreased during the first half of the time series contradictory to the declining catch rate and has been more stable at about 60% in the last half of the series (Figure J. 4 [left panel]). The effect of improved reporting on the TCEPR form is evident from the mid 1990s in the roll-up of data to trip-stratum (Figure J. 4 [right panel]).

Figure J.3: Number of qualifying trips in EN_BT_MIX (dark area), the number of those trips that landed tarakihi (light area) and the simple catch rate (kg/tow) of tarakihi in successful tripstrata, by fishing year.

Figure J.4: The proportion of qualifying trips in EN_BT_MIX, that landed zero tarakihi (left), and the effect of amalgamation to trip-strata on the number of original records per trip-stratum and the number of tows per trip-stratum, by fishing year.

J.3.3 WCNI_BT_MIX Mixed target Bottom trawl in TAR 1

There has been a large change in this fishery, with a long-term declining trend in the number of reporting trips and a strong increasing trend in nominal catch per tow in those trips (Figure J.5). The proportion of trips reporting no catch of tarakihi has declined to almost zero, and at analysis (tripstrata) resolution the trend is a also evident, declining steadily from 60% to 40% over the study period (Figure J. 6 [left panel]). The effect of improved reporting on the TCEPR form can be seen in the rollup of data to trip-stratum (Figure J. 6 [right panel]).

Figure J.5: Number of qualifying trips in WCSI_BT_MIX (dark area), the number of those trips that landed tarakihi (light area) and the simple catch rate (kg/tow) of tarakihi in successful tripstrata, by fishing year.

Figure J.6: The proportion of qualifying trips in WCSI_BT_MIX, that landed zero tarakihi (left), and the effect of amalgamation to trip-strata on the number of original records per trip-stratum and the number of tows per trip-stratum, by fishing year.

J. 4 Standardised CPUE analysis

J.4.1 Core fleet definitions

The data sets used for the standardised CPUE analysis were restricted to those vessels that participated with some consistency in the defined fishery. Core vessels were selected by specifying two variables; the number of trips that determined a qualifying year, and the number of qualifying years that each vessel participated in the fishery. The effect of these two variables on the amount of landed tarakihi retained in the dataset and on the number of core vessels, and the length of participation by the core vessels in each fishery are depicted for the BoP_BT_MIX fishery (Figure K.1), EN_BT_MIX fishery (Figure K.2), WCNI_BT_MIX fishery (Figure K.3). The core fleet was selected by choosing variable values that resulted in the fewest vessels while maintaining the largest catch of tarakihi. The selection process usually reduced the number of vessels in the dataset by about 70% while reducing the amount
of landed tarakihi by about 20\%. All three fisheries selected the core vessel fleet on the basis of a minimum of 10 trips for each of five years. The summary for the data sets with the core vessels is presented in Table K.1.

J.4.2 Model selection, diagnostics and trends in model year effects

The final models selected for standardising positive catches in each fishery are described in Table J. 1 (BoP_BT_MIX), Table J. 2 (EN_BT_MIX) and Table J. 3 (WCNI_BT_MIX). These tables include those explanatory variables that met the AIC criteria and each is not necessarily a complete list of the variables that were offered ${ }^{1}$. The variables that met the acceptance criteria based on a 1% improvement in R^{2} are indicated with asterisks in the table, along with the amount of deviance they explained.

Following each table are step-influence plots that demonstrate the progressive effect on the annual indices of each explanatory variable as it enters the model, and shows the influence of each variable on the annual coefficients in adjacent panels. These plots highlight the observation made in Bentley et al. (2011) that the variables that explain the most deviance are not necessarily the ones responsible for most of the difference between standardised and observed series of CPUE.

Diagnostic plots of the residuals from each final model fit are given from Figure K. 4 to Figure K. 15 and include implied coefficient plots for each statistical area and target species by year. These allow the comparison of the annual trends among statistical area and target species categories in each analysis, effectively serving as a proxy for an interaction analysis.

The influence of an explanatory variable is a combination of the coefficients and its distributional changes over years, and are plotted as Coefficient-Distribution-Influence (CDI) plots (Bentley et al. (2011) for each accepted explanatory variable (see Figure K. 16 to Figure K.29).

J.4.2.1 BoP_BT_MIX - TAR 1 Mixed species bottom trawl

The Weibull error distribution produced the best fit to the data set among the five distributions investigated for this model (Figure K.4). Fishing year was forced as the first variable in the model of positive catches and explained less than 1% of the variance in annual catch (Table J.1). Target species entered the model next explaining almost 30% of the annual variance and lifting a peak in the early 2000s noticeably (Figure J.7). Duration of fishing explained a further 12% of variance and continued to lift the peak in the early 2000s as well as dropping indices in the initial five years of the series, flattening the declining trend in the unstandardised series. Vessel was also accepted into the model explaining an additional 8% of variance and lowering indices in the most recent five years (Figure J.7). Area and month also entered the model with significant explanatory power but indiscernible influence on observed catches.

Diagnostic residual plots are presented for the final Weibull model in Figure K. 5 and show a good fit of the data to the error assumption with some unexplained pattern in the residuals, particularly departures at the tail of the distribution associated with smaller observed values.

Shifts in the importance of constituent bycatch fisheries, particularly the decline in catch from gemfish tows and a subsequent increase in the importance of trevally bycatch are predicted to have accounted for greater catches of tarakihi in the 1990s compared with the 2000s, but the main influence is seen in 2000-01 when a noticeable shift away from targeting snapper and tarakihi is predicted to have accounted for a drop in catches of tarakihi (Figure K.16). Adjusting for this influence lifts the peak in the early 2000s. The influence of duration on observed catches largely accounts for the shift in reporting from CELR to TCEPR forms in the mid 1990s but there was also a trend towards shorter tows from 2001-02 to 2004-05 that is predicted to have reduced catches (Figure K.17). Changes in the

[^0]distribution of vessels in the core fleet mainly affected catches after 2005-06, with a positive influence on observed catches due to some of the poorer performing vessels departing the fishery (Figure K.18). The largest catches are taken in area 010, but most of the activity in each year occurs in area 009. Fishing in area 008 is variable from year to year and the model accounts for those shifts that are without overall trend or influence (Figure K.19). Likewise there is a well determined seasonal pattern to catches of tarakihi but consistent year-round effort means that the influence of month is slight, with little effect on the annual indices (Figure K.20).

Figure J.7: Step and annual influence plot for BoP_BT_MIX. (a) CPUE index at each step in the selection of variables. The index obtained in the previous step (if any) is shown by a dotted line and for steps before that by grey lines. (b) Annual influence on observed catches arising from a combination of its GLM coefficients and its distributional changes over years, for each explanatory variable in the final model.

The effect of standardisation on catch rate in successful trips was to flatten the first half of the series (the contradictory trends in observed catch per tow and catch per stratum are an artefact of a systematic switch from reporting on CELRs to TCEPRs and were explored in earlier studies), increase the magnitude of the hump in the early 2000s (suggesting that there was some active and effective avoidance of tarakihi when abundance of tarakihi was at a peak), and lift the most recent five indices, suggesting that better targeting of tarakihi has somewhat masked the continuing decline in abundance after 2005-06 (Figure J.8). The trajectory is well-determined with relatively small error bars around
each point and trends that are sustained over consecutive years. There is reasonable agreement with the previous series presented for this fishery (Kendrick 2009), although the series was based on TCEPR format data only (Figure J.8).

Figure J.8: The effect of standardisation on the raw CPUE of tarakihi in successful trips by core vessels in the BoP_BT_MIX fishery. Broken lines are the raw CPUE (kg/tow) for all vessels and for the core fleet only, the solid line is the unstandardised CPUE (annual geometric mean), the bold line is the standardised CPUE canonical indices with ± 2 * SE error bars. Grey line is the lognormal series presented in 2009 for a similar fishery(target tows only). All series are relative to the geometric mean over the years in common.

Table J.1: Order of acceptance of variables into the Weibull model of successful catches of tarakihi for core vessels (based on the vessel selection criteria of at least 10 trips in 5 or more fishing years) in the BoP_BT_MIX fishery with the amount of explained deviance for each variable. Variables accepted into the model are marked with an *. Fishing year was forced as the first variable.

Term	DF	Log likelihood	AIC	Nagelkerke pseudo-R2	Final
fyear	23	-104935	209916	0.61	$*$
target	29	-102427	204913	30.32	$*$
poly(log(duration), 3)	32	-101003	202070	43.04	$*$
vessel	165	-99924	200178	51.12	$*$
area	167	-99700	199734	52.64	$*$
month	178	-99488	199332	54.04	$*$
poly(log(num), 3)	181	-99435	199232	54.38	

A binomial model of the probability of capture produced annual indices that are almost flat except for a slight peak in the early 2000 s which is similar to that seen in the standardised catch rates (Figure K.30).

J.4.2.2 EN_BT_MIX - TAR1 Mixed species bottom trawl

The Weibull error distribution produced the best fit to the data set among the five distributions investigated for this model (Figure K.8). Fishing year was forced as the first variable in the model of positive catches and explained less than 2% of the variance in annual catch (Table J.2). Target species entered the model next, explaining more than 31% of the annual variance and lifting a peak in 199900, but removing one of similar magnitude in 2005-06 (Figure J.9). Duration of fishing explained a further 11% of variance lowering indices in the initial four years of the series thereby flattening the declining trend in the unstandardised series. Area entered the model but its influence was largely constrained to the first half of the time series. Vessel was also accepted into the model explaining an additional 6% of variance and lowering indices in the most recent six years. Month entered the model but with indiscernible influence on observed catches (Figure J.9).

Diagnostic residual plots are presented for the final Weibull model in Figure K. 9 and show a reasonable fit by most of the data to the error assumption, although with some unexplained pattern in the residuals, and a departure from the distribution at the tails of the distribution.

Catches of tarakihi are more than threefold greater when targeted than when a bycatch of the other associated species, and although there has been a steady increase in bycatch from trevally tows and some patchiness to the contribution from the gurnard fishery, the model has largely adjusted for the sporadic nature of targeting of tarakihi itself (Figure K.21). Overall, its influence has been almost neutral, with several one-year spikes and a period of negative influence in the early 2000s when there was a noticeable shift away from targeting tarakihi. The influence of duration on observed catches largely adjusts for the shift in reporting of effort from CELR to TCEPR forms in the mid 1990s and is an artefact of the roll-up of data to effort-strata (Figure K.22). Catches are greater but also more variable in area 002 and lowest in area 006 , however most of the activity in each year occurs in areas 003 and 005 (Figure K.23). The main influence on catches of shifts among areas is attributed to the first year and the influence has otherwise been neutral to slightly negative with little effect on annual indices. Changes in the distribution of high catch rate vessels in the core fleet have mainly affected catches since 2005-06, with a positive influence on observed catches as some of the poorer performing vessels departed the fishery (Figure K.24). There is a well determined seasonal pattern to catches of tarakihi but consistent year-round effort means that the influence of month has been slight, with little effect on the annual indices (Figure K.25).

Table J.2: Order of acceptance of variables into the Weibull model of successful catches of tarakihi for core vessels (based on the vessel selection criteria of at least 10 trips in 5 or more fishing years) in the EN_BT_MIX fishery with the amount of explained deviance for each variable. Variables accepted into the model are marked with an *. Fishing year was forced as the first variable.

Term	DF	Log likelihood	AIC	Nagelkerke pseudo-R2 (\%)	Final
fyear	23	-71647	143340	1.57	$*$
target	28	-69396	138848	32.99	$*$
poly(log(duration) 3)	31	-68357	136776	43.88	$*$
area	36	-67548	135167	51.13	$*$
vessel	204	-66741	133891	57.42	$*$
month	215	-66331	133093	60.30	$*$
poly(log(num) 3)	218	-66325	133086	60.34	

The effect of standardisation on catch rate in successful trips is largely to smooth the series and to widen the peak in the middle of the series, describing a steady decline from that peak that is not so evident in the unstandardised series (Figure J.10). It changes a trajectory from one that appears cyclical, to one that declines except for a hump shaped recovery between the early 1990s and the early 2000s. The trajectory is well-determined with relatively small error bars around each point and trends that are sustained over consecutive years. There is reasonable agreement with the previous series presented for this fishery (Kendrick 2009), although that series was based on TCEPR format data only, and produced a lower peak than the series presented here (Figure J.10).

Figure J.9: Step and annual influence plot for EN_BT_MIX. (a) CPUE index at each step in the selection of variables. The index obtained in the previous step (if any) is shown by a dotted line and for steps before that by grey lines. (b) Annual influence on observed catches arising from a combination of its GLM coefficients and its distributional changes over years, for each explanatory variable in the final model.

Figure J.10: The effect of standardisation on the raw CPUE of tarakihi in successful trips by core vessels in the EN_BT_MIX fishery. Broken lines are the raw CPUE ($\mathrm{kg} / \mathrm{tow}$) for all vessels and for the core fleet only, the solid line is the unstandardised CPUE (annual geometric mean), the bold line is the standardised CPUE canonical indices with ± 2 * SE error bars. Grey line is the previous lognormal series presented in 2009 for a similar fishery. All series are relative to the geometric mean over the years in common.

A binomial model of the probability of capture produced annual indices that steadily increase over the study period, and when combined with indices from a lognormal model, the effect is to accentuate the cyclical patterns in abundance (Figure K.31).

Table J.3: Order of acceptance of variables into the lognormal model of successful catches of tarakihi for core vessels (based on the vessel selection criteria of at least 10 trips in $\mathbf{3}$ or more fishing years) in the WCNI_BT_MIX fishery with the amount of explained deviance for each variable. Variables accepted into the model are marked with an * . Fishing year was forced as the first variable.
$\left.\begin{array}{lrrrrr}\text { Term } & \text { DF } & \text { Log likelihood } & \text { AIC } & \begin{array}{r}\text { Nagelkerke } \\ \text { pseudo-R2 }\end{array} & \text { Final } \\ \text { (\%) }\end{array}\right]$

J.4.2.3 WCNI_BT_MIX - TAR 1 Mixed target bottom trawl

The Weibull error distribution produced the best fit to the data set among the five distributions investigated for this model (Figure K.12). Fishing year was forced as the first variable in the model of positive catches and explained less than 3\% of the variance in annual catch (Table J.3). Target species entered the model next explaining almost 32% of the annual variance; lifting earlier indices and lowering those in the last half of the series, and dramatically changing the overall trajectory from one
that increases to one that is flat overall with a low period in the late 1990s and early 2000s (Figure J.11). Duration of fishing explained a further 10% of variance, mainly accounting for the effect of the switch in reporting in the mid 1990s. Area entered the model explaining a further 5% of variance but with neutral influence on the overall trajectory. Vessel had less explanatory power but a positive influence on catches from the late 1990s to the mid 2000s. The model accounted for improvements in the core fleet by further lowering the indices in the late 2000s. Month was also accepted into the model with significant explanatory power but indiscernible influence on observed catches rates (Figure J.11).

Figure J.11: Step and annual influence plot for WCNI_BT_MIX. (a) CPUE index at each step in the selection of variables. The index obtained in the previous step (if any) is shown by a dotted line and for steps before that by grey lines. (b) Annual influence on observed catches arising from a combination of its GLM coefficients and its distributional changes over years, for each explanatory variable in the final model.

Figure J.12: The effect of standardisation on the raw CPUE of tarakihi in successful trips by core vessels in the WCNI_BT_MIX fishery. Broken lines are the raw CPUE ($\mathrm{kg} / \mathrm{km}$ net) for all vessels and for the core fleet only, the solid line is the unstandardised CPUE (annual geometric mean), the bold line is the standardised CPUE canonical indices with ± 2 * SE error bars. Grey line is the previous lognormal series presented in 2009 for this fishery. All series are relative to the geometric mean over the years in common.

Diagnostic residual plots are presented for the final Weibull model in Figure K. 13 and show a good fit of the data to the error assumption with some unexplained pattern in the residuals, particularly a departure at the tail of the distribution associated with smaller observed values.

A steady shift away from targeting of snapper towards more targeting of tarakihi predicted increased catches of tarakihi over the study period (Figure K.26). The coefficients for the target species categories are well determined with tight error bars and estimate a six-fold difference in catch rates between targeting tarakihi and catching tarakihi as a bycatch in the snapper or trevally fisheries. Consequently, the strong increase in unstandardised catch rates can be attributed to this shift in fishing behaviour (Figure J.11). The negative influence on catch rates of changes in fishing duration were confined to the two years in the mid 1990s when much of the fleet switched from reporting on CELRs to reporting on TCEPRs (Figure K.27). The highest catch rates are from area 047, but fishing in the other areas has been reasonably consistent over the study period with no systematic shifts driving any trend in catch rates (Figure K.28). Changes in the distribution of high catch rate vessels in the core fleet conversely have catch rates rising steadily during the 2000s, along with a strong drop in the number of qualifying vessels remaining in the fishery in the last half of the 2000s (Figure K.29).

The effect of standardisation on catch rate in successful trips was to change a strong increasing trend in observed catch rate to one that is flat, varying around around the mean and with the most recent index just above the mean for the series (Figure J.12). The agreement of this series with the previous series presented for this fishery (Kendrick 2009) is poor, possibly because that series was based only on data obtained from TCEPR forms, with that series also showing no trend but with asynchronous peaks and troughs compared to the currently estimated series (Figure J.12).

A binomial model of the probability of capture produced annual indices that are almost flat except for a slight peak in the late 1990s, providing little contrast or support for the trend in catch rate estimated by the series based on positive catches (Figure K.32).

Appendix K. Detailed diagnostics for additional tarakiri CPUE STANDARDISATIONS

Figure K.1: The total landed tarakihi [top left panel] and the number of vessels [bottom left panel] retained in the BoP_BT_MIX dataset as a function of the minimum number of qualifying years used to define core vessels. [right panel]: the number of records for each vessel in each fishing year for the selected core vessels (based on at least 10 trips in 5 or more fishing years).

Figure K.2: The total landed tarakihi [top left panel] and the number of vessels [bottom left panel] retained in the EN_BT_MIX dataset as a function of the minimum number of qualifying years used to define core vessels. [right panel]: the number of records for each vessel in each fishing year for the selected core vessels (based on a minimum of $\mathbf{1 0}$ trips in 5 or more fishing years).

Figure K.3: The total landed tarakihi [top left panel] and the number of vessels [bottom left panel] retained in the WCNI_BT_MIX dataset as a function of the minimum number of qualifying years used to define core vessels. [right panel]: the number of records for each vessel in each fishing year for the selected core vessels (based on at least $\mathbf{1 0}$ trips in $\mathbf{5}$ or more fishing years.

K. 2 Data summaries

Table K.1: Number of vessels, trips, trip strata, events, sum of catch, sum of tows (or net length) and sum of hours fishing for core vessels in the three CPUE analyses by fishing year.

K. 3 Diagnostic plots

Figure K.4: Diagnostics for alternative distributional assumptions for catch in the BoP_BT_MIX fishery. Left: quantile-quantile plot of observed catches (centred (by mean) and scaled (by standard deviation) in log space) versus maximum likelihood fit of distribution (missing panel indicates that the fit failed to converge); Middle: standardised residuals from a generalised linear model fitted using the formula catch \sim fyear + month + area + vessel + target and the distribution (missing panel indicates that the model failed to converge); Right: quantile-quantile plot of model standardised residuals against standard normal (vertical lines represent $\mathbf{0 . 1 \%}, \mathbf{1 \%}$ and 10% percentiles). NLL = negative log-likelihood; AIC = Akaike information criterion.

Figure K.5: Plots of the fit of the standardised CPUE model to successful catches of tarakihi in the BoP_BT_MIX fishery. [Upper left] histogram of the standardised residuals compared to a lognormal distribution (SDSR: standard deviation of standardised residuals. MASR: median of absolute standardised residuals); [Upper right] Standardised residuals plotted against the predicted model catch per trip; [Lower left] Q-Q plot of the standardised residuals; [Lower right] Observed catch per record plotted against the predicted catch per record.

Figure K.6: Residual implied coefficients for each area in each fishing year in the BoP_BT_MIX fishery. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year in each area. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure K.7: Residual implied coefficients for each target species in each fishing year in the BoP_BT_MIX fishery. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year for each target. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure K.9: Plots of the fit of the standardised CPUE model to successful catches of tarakihi in the EN_BT_MIX fishery. [Upper left] histogram of the standardised residuals compared to a lognormal distribution (SDSR: standard deviation of standardised residuals. MASR: median of absolute standardised residuals); [Upper right] Standardised residuals plotted against the predicted model catch per trip; [Lower left] Q-Q plot of the standardised residuals; [Lower right] Observed catch per record plotted against the predicted catch per record.

Figure K.10: Residual implied coefficients for each area in each fishing year in the EN_BT_MIX fishery. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year in each area. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure K.11: Residual implied coefficients for each target species in each fishing year in the EN_BT_MIX fishery. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year for each target. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure K.12: Diagnostics for alternative distributional assumptions for catch in the WCNI_BT_MIX fishery. Left: quantile-quantile plot of observed catches (centred (by mean) and scaled (by standard deviation) in log space) versus maximum likelihood fit of distribution (missing panel indicates that the fit failed to converge); Middle: standardised residuals from a generalised linear model fitted using the formula catch \sim fyear + month + area + vessel + target and the distribution (missing panel indicates that the model failed to converge); Right: quantile-quantile plot of model standardised residuals against standard normal (vertical lines represent $\mathbf{0 . 1 \%}, \mathbf{1 \%}$ and 10\% percentiles). NLL = negative log-likelihood; AIC = Akaike information criterion.

Figure K.13: Plots of the fit of the standardised CPUE model to successful catches of tarakihi in the WCNI_BT_MIX fishery. [Upper left] histogram of the standardised residuals compared to a lognormal distribution (SDSR: standard deviation of standardised residuals. MASR: median of absolute standardised residuals); [Upper right] Standardised residuals plotted against the predicted model catch per trip; [Lower left] Q-Q plot of the standardised residuals; [Lower right] Observed catch per record plotted against the predicted catch per record.

Figure K.14: Residual implied coefficients for each area in each fishing year in the WCNI_BT_MIX fishery. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year in each area. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure K.15: Residual implied coefficients for each target species in each fishing year in the WCNI_BT_MIX fishery. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year for each target. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

K. 4 Model coefficients

Figure K.16: Effect of target in the Weibull model for the BoP_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.17: Effect of duration in the Weibull model for the BoP_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.18: Effect of vessel in the Weibull model for the BoP_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.19: Effect of area in the Weibull model for the BoP_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.20: Effect of month in the Weibull model for the BoP_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.21: Effect of target in the Weibull model for the EN_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.22: Effect of duration in the Weibull model for the EN_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.23: Effect of area in the Weibull model for the EN_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.24: Effect of vessel in the Weibull model for the EN_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.25: Effect of month in the Weibull model for the EN_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.26: Effect of target in the Weibull model for the WCNI_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.27: Effect of duration in the Weibull model for the WCNI_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.28: Effect of area in the Weibull model for the WCNI_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure K.29: Effect of vessel in the Weibull model for the WCNI_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

K. 5 CPUE indices

Table K.2: Arithmetic indices for the total and core data sets, geometric and lognormal standardised indices and associated standard error for the core data set by fishing year for each of the three CPUE models.

	BoP BT_MIX					EN_BT_MIX					WCNI_BT_MIX				
Fishing	All				Core	All				Core	All				Core
Year	Arithmetic	Arithmetic	Geometric	Standardised	SE	Arithmetic	Arithmetic	GeometricSt	ardised	SE	Arithmetic	Arithmetic	Geometric	Standardised	SE
1990	0.420	0.518	0.694	1.014	0.064	0.576	0.637	1.502	1.965	0.082	0.358	0.304	0.753	1.039	0.105
1991	0.672	0.757	0.828	0.918	0.051	0.518	0.619	1.305	1.191	0.075	0.325	0.290	0.592	1.038	0.114
1992	0.687	0.730	0.899	0.889	0.046	0.786	1.136	1.227	1.451	0.064	0.554	0.488	0.439	1.218	0.086
1993	0.763	0.807	0.999	0.921	0.046	0.675	0.705	0.756	1.057	0.063	0.363	0.366	0.529	0.924	0.062
1994	0.854	0.804	0.900	1.044	0.044	0.930	0.801	0.897	1.004	0.062	0.416	0.416	0.538	0.986	0.065
1995	0.915	0.871	0.848	0.984	0.046	0.995	0.945	0.964	0.872	0.068	0.528	0.512	0.517	1.252	0.067
1996	1.165	1.072	0.935	1.007	0.047	1.155	1.194	0.895	0.966	0.056	0.843	0.839	0.854	1.045	0.064
1997	0.900	0.932	0.815	1.058	0.046	1.576	1.163	1.122	1.320	0.057	1.231	1.192	0.906	0.902	0.053
1998	0.917	0.999	0.994	1.010	0.047	1.271	1.088	1.028	1.277	0.054	0.861	0.836	0.468	0.815	0.049
1999	0.911	0.916	1.133	1.011	0.041	1.069	1.013	1.225	1.274	0.049	1.135	1.092	0.491	1.019	0.053
2000	0.740	0.775	0.843	0.902	0.047	1.143	1.151	1.528	1.371	0.048	1.704	1.667	1.376	1.188	0.053
2001	1.243	1.219	1.022	1.355	0.042	1.262	0.981	1.339	1.304	0.052	0.975	0.965	0.981	0.804	0.055
2002	1.663	1.677	1.378	1.546	0.038	1.266	0.998	0.922	1.214	0.055	1.283	1.294	0.715	0.807	0.057
2003	1.454	1.371	1.347	1.443	0.037	0.847	0.890	1.029	1.144	0.056	1.813	1.918	2.262	1.016	0.061
2004	1.491	1.457	1.336	1.389	0.036	1.020	0.926	0.848	1.097	0.057	1.290	1.304	1.631	0.951	0.059
2005	1.186	1.145	1.083	1.084	0.037	1.475	1.128	0.615	0.928	0.059	1.671	1.655	2.102	1.128	0.061
2006	1.061	0.923	0.978	0.891	0.040	1.636	1.561	0.965	0.730	0.059	2.099	2.123	1.915	0.934	0.075
2007	1.072	1.068	1.038	0.822	0.044	1.141	1.197	0.682	0.554	0.056	1.942	1.712	1.181	0.893	0.075
2008	1.114	1.096	0.939	0.784	0.042	0.934	1.173	0.881	0.572	0.055	1.647	1.614	1.940	1.108	0.068
2009	1.180	1.131	1.122	0.798	0.040	1.021	1.196	1.043	0.680	0.058	1.440	1.565	1.649	0.947	0.070
2010	1.390	1.337	1.376	0.858	0.039	0.811	1.008	0.959	0.674	0.056	1.455	1.897	1.781	1.012	0.098
2011	1.211	1.141	0.869	0.728	0.044	0.823	0.988	0.856	0.574	0.059	1.639	2.183	2.034	1.148	0.095

K. 6 Binomial and combined models

K.6.1 BoP_BT_MIX Mixed target Bottom trawl in TAR 1

Figure K.30: The effect of standardisation on the raw CPUE of tarakihi by core vessels in the BoP_BT_MIX fishery. Top: Binomial index of probability of capture. Middle: Lognormal index of magnitude of catch. broken line is the raw CPUE (kg / tow) the solid line is the standardised CPUE canonical indices with ± 2 * SE error bars. Bottom: The effect on the lognormal index of combining it with the Binomial index.

K.6.2 EN_BT_MIX Mixed target Bottom trawl in TAR 1

Figure K.31: The effect of standardisation on the raw CPUE of tarakihi by core vessels in the EN_BT_MIX fishery. Top: Binomial index of probability of capture. Middle: Lognormal index of magnitude of catch. broken line is the raw CPUE (kg / tow) the solid line is the standardised CPUE canonical indices with ± 2 * SE error bars. Bottom: The effect on the lognormal index of combining it with the Binomial index.

K.6.3 WCNI_BT_MIX Mixed target Bottom trawl in TAR 1

Figure K.32: The effect of standardisation on the raw CPUE of tarakihi by core vessels in the WCNI_BT_MIX fishery. Top: Binomial index of probability of capture. Middle: Lognormal index of magnitude of catch. broken line is the raw CPUE (kg/tow) the solid line is the standardised CPUE canonical indices with ± 2 * SE error bars. Bottom: The effect on the lognormal index of combining it with the Binomial index.

Appendix L. Investigation of the effects of changing stratification of REPORTING FORM TYPE

L. 1 Introduction

When the current catch reporting system was implemented in 1989, inshore fishermen operating vessels less than 28 m in length were only required to report their daily aggregated catch and effort using the Catch Effort Landing Form (CELR, Ministry of Fisheries 2010). This form was replaced by an "event-based" form for setnet vessels larger than 6 m in October 2006 and for trawl vessels larger than 6 m in October 2007 (Ministry of Fisheries 2010). An "event" was defined as a trawl shot (tow) or a single length of net set. Inshore trawlers fishing in FMA 1 and FMA 9 elected to voluntarily ${ }^{2}$ switch to an event-based form (TCEPR) in 1995-96. In other parts of the NZ EEZ, this form was primarily used by deepwater vessels larger than 28 m in length. Most of these smaller inshore operators now use the TCER form which was designed for use by smaller vessels, even those operating in FMA 1 and FMA 9.

Analysts using these data realised that the switch from daily reporting to event reporting had implications for the continuity and comparability of catch/effort data collected in each of these two reporting periods. This in turn has implications for the comparability of CPUE indices estimated during each reporting regime. A common analytic approach has been to amalgamate ("roll-up") the event-based data to mimic the previously collected daily information. This has been done for this report, although the approach followed has not been to emulate the daily data. Instead, both daily and event-based data have been "rolled-up" to the level of a complete trip, defined from the time a vessel leaves the dock, followed by fishing activity, returns to port and disposes of the catch. This Appendix presents preliminary analyses undertaken to understand the nature of the changing data forms and accompanying reporting behaviour, along with trying to determine if the change has inadvertently introduced bias into the preparation of standardised CPUE indices.

The following 7 data sets, drawn from the combined TAR 1, TAR 2, and TAR 3 data described in Section 2.3.1, have been used to describe the changes in the data caused by the form changes documented above:

Major Area grouping	Method	Code	Statistical Area definitionTarget species definition	
West coast, North Island	BT	WCNI_BT_MIX	$041-048,101-104$	TAR, SNA, TRE
				TAR, SNA, TRE, BAR, JDO,
East Northland	BT	EN_BT_MIX	$001-007,105,106$	GUR
				TAR, SNA, TRE, BAR, SKI,
Bay of Plenty	BT	BoP_BT_MIX	$008-010,107$	JDO, GUR
				TAR, SNA, BAR, SKI, WAR,
East coast, North Island	BT	TAR 2_BT_MIX	$011-016,201-206$	GUR
East coast, North Island	BT	TAR 2_BT_TAR	$011-016,201-206$	TAR
East coast, South Island	BT	TAR 3_BT_MIX	$017-026,301-303$	TAR, BAR, RCO, WAR, GUR
Kaikoura, South Island	SN	TAR 3_SN_TAR	018	TAR

L. 2 Trends in mean effort indicators

Figure L. 1 to Figure L. 5 compare the mean number of hours and the mean number of tows per day by fishing year with the same measures for each trip for each of the seven data sets described in Section L.1. The range of results from these data sets shows that it is difficult to generalise about the "formtype" effect, given the variability of responses shown by the different fisheries and data types. In general, the effect is greatest for the "hours/day" measure, with clear upward steps in the three data sets from the east coasts of the North and South Islands, without a corresponding strong increase in the "hours/trip" indicator (Figure L.2). The effect is slightly less dramatic for "tows/day" in these same

[^1]three fisheries, because there appears to be confounding with an overall increasing trend in "tows/trip" (Figure L.4). These measures are more difficult to interpret for the three more northerly fisheries (WCNI_BT_MIX, EN_BT_MIX, BoP_BT_MIX) because of the longer period using the event-based formtypes and again apparent confounding with underlying trends in the data (Figure L. 1 and Figure L.3). As for the setnet fishery (TAR 3_SN_TAR), there appears to be no "formtype" effect on net length set because it is well known that this fishery is almost exclusively a single day fishery, with most trips lasting about 24 hours (but may span more than one day). However, "hours fished", as a measure of effort, appears to be misreported in this fishery (with mean duration exceeding 50 hours for a single-day trip; Figure L.5) after the introduction of the new forms and probably should be discarded.

L. 3 Distributions of effort indicators by trip and by day over time

Box plots of the mean number of hours/trip, tows (or net_length) per trip and the equivalent measures by day, have been prepared for each of the seven data sets described in Section L.1. The purpose of these comparisons is to show that, at the level of a trip, the distributions of these effort indicators have not markedly changed with the introduction of the new level reporting stratification. This can be seen for hours/trip in the three northern NZ BT fisheries (Figure L.6) and the three east coast NZ BT fisheries (Figure L.7), as well as in the tows/trip for the same three northern NZ BT fisheries (Figure L.8) and the three east coast NZ BT fisheries (Figure L.9). The TAR 3_SN_TAR fishery appears to have misinterpreted the duration instructions when the new NCELR form was introduced ([left panel] Figure L.10), but there has been no change in the reporting of the length of net set ([right panel] Figure L.10). These plots can be contrasted with the equivalent plots for hours/day (Figure L. 11 and Figure L.12), both of which show marked distributional changes at the point of the introduction of new formtypes. Similarly, the equivalent plots for tows/day (Figure L. 13 and Figure L.14) show the same distributional shift as seen for hours/day.

L. 4 Comparison of "influence" series adjustment with trends in mean effort/day indicators

One of the diagnostic outputs from the regression analyses that result in index series of standardised CPUE are "influence" CDI plots as described by Bentley et al. (2011). These outputs show the relative compensation that is being made on every index year by any explanatory variable in the standardisation procedure. There is a strong resemblance between the influence series derived from a standardisation model fit to the data sets described in Section L. 1 and the equivalent series of mean effort by day for the effort variable with the greatest model explanatory power. A comparison of these two measures is made for the three northern NZ BT fisheries in Figure L. 15 and for the four east coast fisheries in Figure L.16, showing very close correspondence in all seven fisheries. This comparison suggests that the standardisation procedure may be compensating for the changes in reporting behaviour.

L. 5 Investigation of models incorporating an interaction term for [effort]X[formtype]

The results presented in Figure L. 15 and Figure L. 16 suggest that additional explanatory power might be achieved if the interaction between the effort explanatory variable and the formtype used to report each trip were explicitly modelled. These models were prepared for each of the data sets described in Section L.1, but will not be presented in detail. A comparison of the resulting standardised annual CPUE indices shows no effect from the addition of the interaction term in every model (Figure L.17).

L. 6 Discussion

In the future, once sufficient data have accumulated, the two formtypes can be modelled separately without concern about the change in reporting behaviour. However, this situation is not yet available
for the east coast New Zealand fisheries, with only four years of information collected under the new regime. There are sufficient years for independent modelling in the northern NZ fisheries, but there is always the desire to obtain the longest possible time series for use in stock assessment modelling. Further analyses such as those presented here are required on additional data sets to better understand the potential biases that may stem from these clearly evident changes in reporting requirements.

Fishing year

Figure L.1: Mean hours/day, mean hours/trip and mean days/trip for three North Island BT fisheries, plotted by fishing year. Also shown is the proportion of records reporting on the daily CELR form instead of an event-based form.

Fishing year

Figure L.2: Mean hours/day, mean hours/trip and mean days/trip for two North Island east coast BT fisheries and one east coast South Island BT fishery, plotted by fishing year. Also shown is the proportion of records reporting on the daily CELR form instead of an event-based form.

Fishing year

Figure L.3: Mean tows/day, mean tows/trip and mean days/trip for three North Island BT fisheries, plotted by fishing year. Also shown is the proportion of records reporting on the daily CELR form instead of an event-based form.

Figure L.4: Mean tows/day, mean tows/trip and mean days/trip for two North Island east coast BT fisheries and one east coast South Island BT fishery, plotted by fishing year. Also shown is the proportion of records reporting on the daily CELR form instead of an event-based form.

Figure L.5: [left panel]: mean hours/day, mean hours/trip and mean days/trip and [right panel] mean net length set per day, mean net length set per trip and mean number days/trip for the Kaikoura SN fishery, plotted by fishing year. Also shown is the proportion of records reporting on the daily CELR form instead of the NCELR event-based form.

Fishing year

Figure L.6: Box plots of the hours/trip for all trips for three North Island BT fisheries, plotted by fishing year. The formtype reporting changed in these fisheries about 1995-96.

Figure L.7: Box plots of hours/trip for all trips for two North Island east coast BT fisheries and one east coast South Island BT fishery, plotted by fishing year. The formtype reporting in these fisheries changed in 2007-08.

Fishing year

Figure L.8: Box plots of the tows/trip for all trips for three North Island BT fisheries, plotted by fishing year. The formtype reporting changed in these fisheries about 1995-96.

Fishing year

Figure L.9: Box plots of tows/trip for all trips for two North Island east coast BT fisheries and one east coast South Island BT fishery, plotted by fishing year. The formtype reporting in these fisheries changed in 2007-08.

Figure L.10: Box plots for [left panel] hours/trip and [right panel] net length set per trip for the Kaikoura SN fishery, plotted by fishing year. The formtype reporting in these fisheries changed in 2006-07.

Fishing year

Figure L.11: Box plots of the mean hours/day for all trips for three North Island BT fisheries, plotted by fishing year. The formtype reporting changed in these fisheries about 1995-96.

Fishing year

Figure L.12: Box plots of the mean hours/day for all trips for two North Island east coast BT fisheries and one east coast South Island BT fishery, plotted by fishing year. The formtype reporting in these fisheries changed in 2007-08.

Figure L.13: Box plots of the mean tows/day for all trips for three North Island BT fisheries, plotted by fishing year. The formtype reporting changed in these fisheries about 1995-96.

Fishing year

Figure L.14: Box plots of the mean tows/day for all trips for two North Island east coast BT fisheries and one east coast South Island BT fishery, plotted by fishing year. The formtype reporting in these fisheries changed in 2007-08.

Figure L.15: Comparison of the mean hours/day for each of three northerly TAR BT fisheries (Figure L. 1 and Figure L.3) with the "influence" series (Bentley et al. 2011) calculated for each standardised regression. Hours was the effort variable that had the most explanatory power in the standardised regression analysis.

Figure L.16: Comparison of the mean "effort"/day for each of four east coast TAR fisheries (Figure L. 2 and Figure L.5) with the "influence" series (Bentley et al. 2011) calculated for each standardised regression. Where "effort" was the effort variable that had the most explanatory power in each standardised regression analysis. The variable was "tows" for both TAR 2_BT fisheries, duration for the TAR 3_BT fisheries and net length set for the TAR 3_SN fishery.

Figure L.17: Comparison of CPUE series with and without a [formtype]X[effort] interaction term for the seven fisheries listed in Section L.1.

Appendix M. East coast North/South Island tarakini: supplementary CPUE Analyses

M. 1 Introduction

As described in Section 3 and Appendix H, three lognormal CPUE series were developed for input into a stock assessment of east coast tarakihi in TAR 2 and TAR 3 (Langley \& Starr 2012). Ultimately, that stock assessment was not accepted by the NINSWG for the management of these two tarakihi QMAs, primarily because the data were not sufficiently informative to distinguish between alternative movement/migration hypotheses. Given this uncertainty, the NINSWG requested additional analyses for the three CPUE series in Appendix H, specifically to apply the methodology described in Appendix Section J.2.2 where the CPUE data sets were analysed across a range of alternative distributional assumptions.

M. 2 Methods

M.2.1 Additional analytical methods used for standardisation

New updated analytical software (see Appendix Section J.2.2), which allowed the exploration of alternative distributional assumptions for the standardisation models, was not available at the time the analyses described in Appendix H were performed. The NINSWG requested that the three CPUE series defined in Appendix Section H.2.3 be reanalysed using the methods described in Appendix Section J.2.2.

M.2.2 Fishery definitions for CPUE analysis

The same data sets for the three fisheries defined in Appendix Section H.2.3 were used. These were:

TAR2_BT_MIX - East coast, North Island mixed species bottom trawl - The fishery is defined from bottom single trawl fishing events which fished in statistical Areas 011 to 016 inclusive, and targeted TAR, SNA, BAR, SKI, WAR, or GUR. This definition allows the use of total effort in the analysis of catch rates.

TAR3_BT_MIX - East coast, South Island mixed species bottom trawl - The fishery is defined from bottom single trawl fishing events which fished in statistical Areas 017, 018, 020, 022, 024, and 026, and targeted TAR, BAR, RCO, WAR, or GUR. This definition allows the use of total effort in the analysis of catch rates.

TAR3_SN_TAR - Kaikoura target tarakihi setnet -- The fishery is defined from set net fishing events which fished in statistical area 018, and targeted TAR. This definition allows the use of total effort in the analysis of catch rates.

M. 3 Unstandardised CPUE

See Appendix Section H.3.1 for the description of the unstandardised CPUE for TAR2_BT_MIX: East coast, North Island mixed species bottom trawl.

See Appendix Section H.3.2 for the description of the unstandardised CPUE for TAR3_BT_MIX: East coast, South Island mixed species bottom trawl.

See Appendix Section H.3.3 for the description of the unstandardised CPUE for TAR3_SN_TAR: Kaikoura target tarakihi setnet.

M. 4 Standardised CPUE analysis

M.4.1 Core fleet definitions

The core fleet definitions were unchanged and can be found in Figure I. 1 (TAR 2_BT_MIX), Figure I. 2 (TAR 3_BT_MIX) and Figure I. 3 (TAR 3_SN_TAR). The summary for the data sets with the core vessels is presented in Table I.1.

M.4.2 Model selection and trends in model year effects

M.4.2.1 TAR2_BT_MIX: East coast, North Island mixed species bottom trawl

The Weibull distribution gave the lowest negative log-likelihood for the TAR2_BT_MIX data set among the five distributional assumptions investigated (see Figure N.1). The TAR2_BT_MIX Weibull model (Table M.1) explained 61% of the variance in \log (catch), by standardising for the effect of changes in number of tows, targeting, and participation of vessels in the core fleet. Other explanatory variables were included in the model but appear to have had little effect on the final series of year indices (Figure M.1). Diagnostic residual plots are presented for the Weibull model in Figure N. 2 and show a better fit of the data for the Weibull distribution assumption compared to the equivalent lognormal assumption in Figure I.4, although there is still a strong departure from the Weibull assumption in the upper tail of the residual distribution.

Table M.1: Order of acceptance of variables into the Weibull model of successful catches of tarakihi for core vessels (based on the vessel selection criteria of at least 10 trips in 5 or more fishing years) in the TAR2_BT_MIX fishery with the amount of explained deviance for each variable. Variables accepted into the model are marked with an *. Fishing year was forced as the first variable.

Term	DF	-Log likelihood	AIC	$R^{2}(\%)$	Final
fyear	23	-227423	454892	0.6	$*$
poly(log(num), 3)	26	-222440	444932	29.5	$*$
target	31	-217660	435383	52.6	$*$
vessel	217	-214565	429564	60.0	$*$
area	222	-214190	428825	60.6	$*$
poly(log(duration), 3)	225	-213958	428366	61.0	$*$
month	236	-213901	428274	61.0	$*$

The interpretation of residual implied coefficients between year and area is the same as for the lognormal version presented in Figure I.5, showing an earlier peak in Area 011 compared to Areas 012, 013 or 014 (Figure N.3). As noted in Appendix H, this result implies some difference in the fishing year trends among the statistical areas in TAR 2, with Area 011 being an important area with respect to landed catch, and this difference in trend may reduce the utility of this index series. The residual implied coefficients for target species by year show reasonable similarity between all six species, particularly with the years of peak catch for tarakihi and gurnard (Figure N.4). However, there is departure away from the main year trend by gurnard before and after the peak years in the late 1990s and early 2000s. Additional analyses (not reported here) showed that the addition of gurnard to the analysis added information by monitoring the more shallow inshore locations which tended to catch smaller tarakihi than were present in the target fishery population.

The interpretation of the explanatory variables will be similar between the analysis presented here compared to the lognormal analysis described in Appendix Section H.4.2.2. In particular, a drop in the importance of the target tarakihi fishery and an increase in tarakihi by-catch in non-target fisheries affected the overall pattern of CPUE (Figure N.9). Coefficient distribution plots are presented for all of the variables in this model: number tows (Figure N.8), target species (Figure N.9), vessel (Figure N.10), area (Figure N.11), duration (Figure N.12) and month (Figure N.13). The effect on year coefficients and the relative influence of each model variable are presented in Figure M.1.

Figure M.1: Step and annual influence plot for the Weibull TAR2_BT_MIX analysis. (a) CPUE index at each step in the selection of variables. The index obtained in the previous step (if any) is shown by a dotted line and for steps before that by grey lines. (b) Annual influence on observed catches arising from a combination of its GLM coefficients and its distributional changes over years, for each explanatory variable in the final model.

A plot showing the year coefficients from the three of the distributional assumptions is shown in Figure M.2. The overall pattern is the same for all three distributional assumptions, except that the peak year in 2002 is a bit stronger for the lognormal series and there are minor variations between the lognormal and Weibull distributions all through the series. The year coefficients for the Weibull and gamma distributions are virtually identical.

Figure M.2: Comparison of year indices for the TAR2_BT_MIX analysis derived from three of the model distributional assumptions compared in Figure N.1. The "base" index uses the Weibull distribution as this model had the lowest negative log-likelihood.

M.4.2.2 TAR3_BT_MIX: East coast, South Island mixed species bottom trawl

The lognormal distribution gave the lowest negative log-likelihood for the TAR3_BT_MIX data set among the five distributional assumptions investigated (see Figure N.5). Consequently this model is the same as that reported in Appendix Section H.4.2.3.

M.4.2.3 TAR3_SN_MIX: Kaikoura target tarakihi setnet

The Weibull distribution gave the lowest negative log-likelihood for the TAR3_SN_TAR data set among the five distributional assumptions investigated (see Figure N.6). The TAR3_SN_TAR Weibull model (Table M.2) explained 31\% of the variance in log(catch), by standardising for the effect of changes in vessel configuration, net length, and, less importantly, month of capture and duration of set. Diagnostic residual plots are presented for the Weibull model in Figure N. 6 and show a better fit of the data for the Weibull distribution assumption compared to the equivalent lognormal assumption in Figure I.7, although there is still a strong departure from the Weibull assumption in the upper tail of the residual distribution.

Figure M.3: Step and annual influence plot for the Weibull TAR3_SN_TAR analysis. (a) CPUE index at each step in the selection of variables. The index obtained in the previous step (if any) is shown by a dotted line and for steps before that by grey lines. (b) Annual influence on observed catches arising from a combination of its GLM coefficients and its distributional changes over years, for each explanatory variable in the final model.

Table M.2: Order of acceptance of variables into the lognormal model of successful catches of tarakihi for core vessels (based on the vessel selection criteria of at least 10 trips in $\mathbf{3}$ or more fishing years) in the TAR3_SN_TAR fishery with the amount of explained deviance for each variable. Variables accepted into the model are marked with an * . Fishing year was forced as the first variable

Term	DF	-Log likelihood	AIC	R 2 (\%)	Final
fyear	23	-88442	176930	5.4	$*$
vessel	54	-86959	174026	16.4	$*$
poly(log(netlength), 3)	57	-85910	171935	23.1	$*$
month	68	-85317	170771	30.6	$*$
poly(log(duration), 3)	71	-85294	170729	31.2	$*$

The interpretation of the explanatory variables will be similar between the analysis presented here compared to the lognormal analysis for the TAR3_SN_TAR fishery described in Appendix Section H.4.2.4. Coefficient distribution plots are presented for the variables in this model: vessel (Figure N.14), net length (Figure N.15) and month (Figure N.16). The effect on year coefficients and the relative influence of each model variable are presented in Figure M.3.

Figure M.4: Comparison of year indices for the TAR3_SN_TAR analysis derived from three of the model distributional assumptions compared in Figure N.6. The "base" index uses the Weibull distribution as this model had the lowest negative log-likelihood.

A plot showing the year coefficients from three of the distributional assumptions is shown in Figure M.4. The overall pattern is the same for all three distributional assumptions, except that the peak year in 2002 is a bit stronger for the lognormal series and there are minor variations between the lognormal and Weibull distributions all through the series. The year coefficients for the Weibull and gamma distributions are virtually identical.

Appendix N. Detailed diagnostics for tarakihl (EAst coast) CPUE STANDARDISATIONS

N. 1 Diagnostic plots

Figure N.1: Diagnostics for alternative distributional assumptions for catch in the TAR 2_BT_MIX fishery. Left: quantile-quantile plot of observed catches (centred (by mean) and scaled (by standard deviation) in \log space) versus maximum likelihood fit of distribution (missing panel indicates the fit failed to converge); Middle: standardised residuals from a generalised linear model fitted using the formula catch \sim fyear + month + area + vessel + target and the distribution (missing panel indicates the model failed to converge); Right: quantile-quantile plot of model standardised residuals against standard normal (vertical lines represent $\mathbf{0 . 1 \%}$, 1% and 10% percentiles). NLL = negative log-likelihood; AIC = Akaike information criterion.

Figure N.2: Plots of the fit of the standardised Weibull CPUE model to successful catches of tarakihi in the TAR2_BT_MIX fishery. [Upper left] histogram of the standardised residuals compared to a lognormal distribution (SDSR: standard deviation of standardised residuals. MASR: median of absolute standardised residuals); [Upper right] Standardised residuals plotted against the predicted model catch per trip; [Lower left] Q-Q plot of the standardised residuals; [Lower right] Observed catch per record plotted against the predicted catch per record.

Figure N.3: Residual implied coefficients for each area in each fishing year for the Weibull TAR2_BT_MIX CPUE analysis. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year in each area. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure N.4: Residual implied coefficients for each target species in each fishing year for the Weibull TAR2_BT_MIX CPUE analysis. Implied coefficients are calculated as the sum of the fishing year coefficient plus the mean of the residuals in each fishing year for each target species. The error bars indicate one standard error of residuals. The grey line indicates the model's overall fishing year coefficients.

Figure N.5: Diagnostics for alternative distributional assumptions for catch in the TAR 3_BT_MIX fishery. Left: quantile-quantile plot of observed catches (centred (by mean) and scaled (by standard deviation) in log space) versus maximum likelihood fit of distribution (missing panel indicates the fit failed to converge); Middle: standardised residuals from a generalised linear model fitted using the formula catch \sim fyear + month + area + vessel + target and the distribution (missing panel indicates the model failed to converge); Right: quantile-quantile plot of model standardised residuals against standard normal (vertical lines represent $\mathbf{0 . 1 \%}$, 1% and 10% percentiles). NLL = negative log-likelihood; AIC = Akaike information criterion.

Figure N.6: Diagnostics for alternative distributional assumptions for catch in the TAR 3_SN_TAR fishery. Left: quantile-quantile plot of observed catches (centred (by mean) and scaled (by standard deviation) in log space) versus maximum likelihood fit of distribution (missing panel indicates the fit failed to converge); Middle: standardised residuals from a generalised linear model fitted using the formula catch ~ fyear + month + area + vessel + target and the distribution (missing panel indicates the model failed to converge); Right: quantile-quantile plot of model standardised residuals against standard normal (vertical lines represent $\mathbf{0 . 1 \%}$, 1% and 10% percentiles). NLL = negative log-likelihood; AIC = Akaike information criterion.

Figure N.7: Plots of the fit of the standardised CPUE model to successful catches of tarakihi in the Weibull TAR3_SN_MIX fishery. [Upper left] histogram of the standardised residuals compared to a lognormal distribution (SDSR: standard deviation of standardised residuals. MASR: median of absolute standardised residuals); [Upper right] Standardised residuals plotted against the predicted model catch per trip; [Lower left] Q-Q plot of the standardised residuals; [Lower right] Observed catch per record plotted against the predicted catch per record.

N. 2 Model coefficients

Figure N.8: Effect of number tows in the Weibull model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure N.9: Effect of target in the Weibull model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure N.10: Effect of vessel in the Weibull model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure N.11: Effect of area in the Weibull model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure N.12: Effect of duration in the Weibull model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure N.13: Effect of month in the Weibull model for the TAR2_BT_MIX fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure N.14: Effect of vessel in the Weibull model for the TAR3_SN_TAR fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure N.15: Effect of net length in the Weibull model for the TAR3_SN_TAR fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

Figure N.16: Effect of month in the Weibull model for the TAR3_SN_TAR fishery. Top: effect by level of variable. Bottom-left: distribution of variable by fishing year. Bottom-right: cumulative effect of variable by fishing year.

N. 3 CPUE indices

Table N.1: Arithmetic, geometric and standardised indices based on the Weibull distribution and associated standard error for the core data set by fishing year for the two CPUE models which preferred this distribution (see Figure N. 5 and Figure N.6).

Fishing	TAR 2_BT_MIX								TAR 3_SN_TAR	
	All				Core	All				Core
Year	Arithmetic	Arithmetic	Geometric	Weibull	SE	Arithmetic	Arithmetic	Geometric	Weibull	SE
1990	0.9238	0.9973	1.3399	0.9571	0.0388	0.7245	0.7149	0.6633	1.1666	0.0353
1991	0.9329	0.9846	0.9853	0.9497	0.0341	0.9329	0.9846	0.9853	1.3129	0.0338
1992	0.8220	0.8755	0.9180	0.8891	0.0298	0.8220	0.8755	0.9180	1.2842	0.0319
1993	0.9323	0.9677	1.0265	1.0617	0.0309	0.9323	0.9677	1.0265	1.2077	0.0313
1994	0.8681	0.9259	0.9551	0.8739	0.0306	0.8681	0.9259	0.9551	0.8169	0.0354
1995	0.9512	0.9469	0.9695	0.8799	0.0299	0.9512	0.9469	0.9695	1.1650	0.0358
1996	0.9469	0.9405	0.9353	0.9458	0.0322	0.9469	0.9405	0.9353	1.1260	0.0397
1997	0.9422	0.8862	0.8550	1.0000	0.0304	0.9422	0.8862	0.8550	0.9728	0.0377
1998	1.0482	1.0422	0.9551	0.9662	0.0306	1.0482	1.0422	0.9551	1.0360	0.0330
1999	1.0224	1.0360	0.9576	1.0284	0.0291	1.0224	1.0360	0.9576	1.1313	0.0349
2000	1.1281	1.1162	1.0685	1.3722	0.0298	1.1281	1.1162	1.0685	0.9047	0.0338
2001	1.1234	1.0658	1.0507	1.3590	0.0289	1.1234	1.0658	1.0507	1.4746	0.0328
2002	1.4584	1.4154	1.4438	1.5497	0.0278	1.4584	1.4154	1.4438	1.5688	0.0372
2003	1.2599	1.2706	1.2351	1.4201	0.0269	1.2599	1.2706	1.2351	1.0968	0.0351
2004	1.1743	1.1898	1.1814	1.2338	0.0285	1.1743	1.1898	1.1814	1.0335	0.0333
2005	1.0817	1.0303	1.0104	0.9351	0.0270	1.0817	1.0303	1.0104	0.8271	0.0410
2006	1.0164	0.9817	0.9717	0.8929	0.0278	1.0164	0.9817	0.9717	0.7995	0.0348
2007	0.9021	0.8952	0.9261	0.8075	0.0288	0.9021	0.8952	0.9261	0.6591	0.0371
2008	0.8919	0.9009	0.8658	0.8532	0.0274	0.8919	0.9009	0.8658	0.6546	0.0406
2009	0.9422	0.9424	0.9312	0.8647	0.0265	0.9422	0.9424	0.9312	0.8103	0.0415
2010	0.9715	0.9543	0.9634	0.8709	0.0256	0.9715	0.9543	0.9634	0.8329	0.0432
2011	0.8493	0.8521	0.8687	0.7354	0.0265	0.8493	0.8521	0.8687	0.7543	0.0454

[^0]: ${ }^{1}$ Variables which make no improvement in the AIC are ignored by the software.

[^1]: ${ }^{2}$ The actual decision was made by the two major companies working in FMA 1 and 9 at the time (Simunovitch Fisheries and Sanford Fisheries). Individual fishers elected to report using either TCEPR or CELR forms, but once the decision was made, it was enforced by statute.

