Ministry for Primary Industries Manatū Ahu Matua



# Benthic habitat classes and trawl fishing disturbance in New Zealand waters shallower than 250 m

New Zealand Aquatic Environment and Biodiversity Report No.144

S.J. Baird, J. Hewitt, B.A. Wood

ISSN 1179-6480 (online) ISBN 978-0-477-10532-3 (online)

January 2015



New Zealand Government

Growing and Protecting New Zealand

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: <u>brand@mpi.govt.nz</u> Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at: <u>http://www.mpi.govt.nz/news-resources/publications.aspx</u> <u>http://fs.fish.govt.nz</u> go to Document library/Research reports

© Crown Copyright - Ministry for Primary Industries

### Contents

| E  | XEC                             | CUTIVE SUMMARY                                                                                              | 1         |  |  |  |  |  |
|----|---------------------------------|-------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| 1. | 1. INTRODUCTION3The study area3 |                                                                                                             |           |  |  |  |  |  |
| 2. | 2.1                             | COASTAL BENTHIC HABITAT CLASSES<br>Introduction                                                             | 4<br>4    |  |  |  |  |  |
|    | 2.2                             | 2 Habitat class definitions                                                                                 | 6         |  |  |  |  |  |
|    | 2.3                             | 8 Sensitivity of the habitat to fishing disturbance                                                         | 10        |  |  |  |  |  |
| 3. | 3.1                             | SPATIAL PATTERN OF BOTTOM-CONTACTING TRAWL FISHING ACTIVITY<br>Bottom-contact trawl data                    | 11<br>12  |  |  |  |  |  |
|    | 3.2                             | 2 Spatial distribution of trawl data                                                                        | 21        |  |  |  |  |  |
|    | 3.3                             | 3 Trawl footprint within the study area                                                                     | 26        |  |  |  |  |  |
|    | 3.4                             | • Overlap of five-year trawl footprint on habitats within 250 m                                             | 32        |  |  |  |  |  |
|    | 3.5                             | GIS output from the overlay of the trawl footprint and habitat classes                                      | 37        |  |  |  |  |  |
| 4. |                                 | SUMMARY OF NON-TRAWL BOTTOM-CONTACT FISHING METHODS IN STUDY AREA                                           | THE<br>38 |  |  |  |  |  |
| 5. |                                 | DISCUSSION                                                                                                  | 39        |  |  |  |  |  |
| 6. |                                 | ACKNOWLEDGMENTS                                                                                             | 41        |  |  |  |  |  |
| 7. |                                 | REFERENCES                                                                                                  | 42        |  |  |  |  |  |
| A  | PPE                             | ENDIX 1: AREAS CLOSED TO FISHING WITHIN THE STUDY AREA                                                      | 46        |  |  |  |  |  |
| A  | PPE                             | ENDIX 2: MAPS SHOWING THE DISTRIBUTION OF THE DATA<br>INPUTS FOR THE BENTHIC HABITAT DESCRIPTORS            | 49        |  |  |  |  |  |
| A  | PPE                             | ENDIX 3: SENSITIVITY TO FISHING DISTURBANCE                                                                 | 53        |  |  |  |  |  |
| A  | PPE                             | ENDIX 4: TRAWL FISHING DATA                                                                                 | 102       |  |  |  |  |  |
| A  | PPE                             | ENDIX 5: CELL-BASED TRAWL SUMMARIES                                                                         | 129       |  |  |  |  |  |
| A  | PPE                             | ENDIX 6: TRAWL FOOTPRINT SUMMARY                                                                            | 151       |  |  |  |  |  |
| A  | PPE                             | ENDIX 7: TRAWL FOOTPRINT – HABITAT OVERLAY                                                                  | 162       |  |  |  |  |  |
| A  | PPE                             | ENDIX 8: SUMMARY OF DREDGE OYSTER AND SCALLOP<br>EFFORT DATA WITHIN 250 M, 1 OCTOBER 2007–30 SEPTEMBER 2012 | 165       |  |  |  |  |  |
| A  | PPE                             | ENDIX 9: SUMMARY OF DANISH SEINE EFFORT                                                                     | 181       |  |  |  |  |  |

#### **EXECUTIVE SUMMARY**

## Baird, S.J.; Hewitt, J.E.; Wood, B.A. (2015). Benthic habitat classes and trawl fishing disturbance in New Zealand waters shallower than 250 m.

#### New Zealand Aquatic Environment and Biodiversity Report No. 144. 184 p.

Habitat classifications provide tools to aid in managing the environment. Available information on the benthic habitats in New Zealand waters shallower than 250 m was used to identify 108 benthic habitat classes. The classes were defined by three main data sources used as GIS layers: the Benthic-optimised Marine Environment Classification (BOMEC) generated from modelling relevant distributions of environmental variables and groups of benthic organisms; a broad sediment type layer indicating areas of sand, mud, and gravels; and three depth zones to distinguish waters less than 50 m, 50–100 m, and 100–250 m. These habitat classes are presented on a 1 km<sup>2</sup> grid that represents about 232 235 km<sup>2</sup> of seafloor in the study area defined by waters shallower than 250 m around North Island, South Island, and Stewart Island. The nature of the underlying data, including the different scales at which the data were constructed and combined, means that there are very broad descriptions of these habitat classes and that they will not capture the spatial heterogeneity that is likely to exist, to varying degrees, within each one.

Testing of distributions of benthic organisms from two independent sources (biodiversity research surveys and trawl surveys) showed little support for a difference in sensitivity to, or recovery from, trawling of any of the habitat classifications trialled. Operational Taxonomic Units (OTU – a standardised unit of taxonomy across both data sources) were assigned sensitivity and recoverability scores based on relevant biological traits. Both sensitivity and recoverability were expressed as number of OTU, then tested using Two-way Permanova, SIMPER analyses and generalised linear modelling. These tests all indicated a low degree of consistency in sensitivity or recoverability between the two data sources. Subsets based on the depth zone or sediment type did not have lower variability in sensitivity levels. When the benthic habitat classes were combined with the fishery management Statistical Areas to provide a more geographic-based analysis, there was evidence of difference in sensitivity values of different BOMEC classes. Analyses of the recoverability data indicated different categorisation of habitat classes according to the source of the data. These inconsistent results may result from problems of scale, the underlying data used to generate the BOMEC, the nature of the biological data from the different collection sources, or the lack of abundance data.

Bottom-contact trawl data for five fishing years, 2008–2012, were summarised in terms of the number of tows and the area swept by the trawl gear to provide a means of determining how much of each habitat class had been fished. Trawl effort from two different data sources were used – one which had reported start and finish positions (Trawl Catch Effort Processing Returns) and one that had only tow start positions (Trawl Catch Effort Returns). For the former, the tow trackline was generated as a straight line between the start and finish. For the latter, tow endpoints were estimated using the bearing to the next tow and the distance measure calculated from the tow duration and the tow speed. Individual tow swept areas were generated from generic doorspread values and the tracklines and applied to a  $5 \times 5$  km grid to provide summary statistics of the number of tows, the aggregated swept area, and the trawl contact area (footprint) by target species, year, and fisheries management Statistical Areas. The trawl effort targeted about 48 different species or species groups and similar amounts of effort were reported each year, with little overall difference in the estimated annual swept areas. The primary target species were flatfish, tarakihi, snapper, red gurnard, jack mackerel, barracouta, trevally, and John dory.

The trawl footprint for each year and for all five years combined was created for all target species and overlaid on the habitat classes to get a measure of the coverage of habitat classes by trawl gear. The total five year trawl footprint contacted about 113 800 km<sup>2</sup>. Annual trawl footprints were in the range

of 45 000–48 000 km<sup>2</sup>, and the percentage change from year to year was generally between -4.2 and 4.9% due to a peak year in 2010, mainly as a result of an increase in effort for red gurnard.

About 48% of the area covered by all the habitat classes was contacted by the five year trawl footprint. About 59% of the seafloor in depths of less than 50 m and 50–100 m were contacted by the five year trawl footprint compared with 39% of the 100–250 m depth zone. The percentage of the sediment types covered by the footprint varied, with about 50–58% of the three main sediment types (sand, mud, and gravel) contacted over the five years, 31% of calcareous sand, and about 19% of calcareous gravel. Five of the largest BOMEC classes (with areas between 25 000 and 89 500 km<sup>2</sup> within the study area) had between 30 and 64% of their total area contacted by the five year trawl footprint.

Fishing effort for other bottom-contact fishing methods used within the study area are broadly summarised as the number of dredge tows for dredge oyster and shellfish fisheries by fishery-specific statistical areas and as the number of Danish seine sets by General Statistical Area.

Supplementary maps, tables, and GIS outputs from the work described in this report are available on request from the Ministry of Primary Industries.

#### 1. INTRODUCTION

Within the New Zealand 200 n. mile Exclusive Economic Zone (EEZ) and 12 n. mile Territorial Sea, trawling, shellfish dredging, and Danish seining are the main fishing methods that contact the seafloor when used to target a wide variety of commercial fish, squid, and shellfish species. Trawling is carried out throughout the EEZ in waters shallower than 1600 m, whereas shellfish dredging is confined to localised oyster and scallop beds, and Danish seines are used by a small number of fishers for discrete target fisheries.

Understanding the risks posed to benthic habitats in New Zealand's coastal zone from physical disturbance by mobile bottom-contact fishing gear, requires an understanding of: the type and range of benthic habitats; the taxa that exist in those habitats and knowledge of the biological traits that determine their chance of survival after disturbance; and the distribution of dredging and trawling in relation to the habitats.

To describe and understand fishing disturbance, base information that allows measures of intensity and frequency of fishing effort, by different methods, is necessary to determine the spatial and temporal distribution of the fishing effort. The effect of the fishing effort on the underlying substrates and benthic habitats, requires information on the way in which the different fishing gears modify the environment; for example, the width of the effective bottom-contact gear components and the way in which these components contact, or dig into, the seafloor substrates.

This study was designed to investigate risk to benthic habitats – through descriptions of their spatial distribution in the coastal zone; identification of key taxa or features within the habitats and ranking of their functional importance and vulnerability; and an assessment of the overlap of coastal habitats with patterns of mobile demersal fishing effort. This is reflected in the project objectives given below and the structure of this report. Although the spatial patterns of all the bottom-contacting commercial fishing methods are described, the overlap with benthic habitat classes is presented for the bottom trawl effort only. The objectives were:

- 1. To use existing information and classifications to describe the distribution of benthic habitats throughout New Zealand's coastal zone (0–250 m depth).
- 2. To rank the vulnerability to fishing disturbance of habitat classes from Objective 1.
- 3. To describe the spatial pattern of fishing using bottom trawls, Danish seine nets, and shellfish dredges and assess overlap with each of the habitat classes developed in Objective 1.

#### The study area

This extent of this work is defined by the 250 m contour – the depth generally accepted by marine geologists to represent the edge of the coastal shelf – restricted to around the main islands where the shelf is continuous: North Island, South Island, and Stewart Island (Figure 1).

The study area covers about 238 668 km<sup>2</sup>. About 24% is in depths of less than 50 m, 27% in 50–100 m, and 49% in 100–250 m. The east-west extent varies from about 240 km in a horizontal plane from the 250 m contour to the coast at about 40° S to about 620 m off the Fiordland coast at about 45° S. The study area contains most of the Territorial Sea waters which extend 12 n. miles from the coast, apart from waters where the shelf is narrow (for example, off the Fiordland coast). The Territorial Sea waters within the study area cover about 129 906 km<sup>2</sup> of the seafloor – about 24% of the study area. Fishing vessels over 46 m long are prohibited from using trawl gear in the Territorial Sea (Fisheries (Commercial Fishing) regulations 2001). Other restrictions on trawl fishing within the Territorial Sea relate to gear size or fishing season.

Areas in which trawling cannot take place within the study area include where the use of trawl gear or the take of finfish is prohibited (about 10 577.6 km<sup>2</sup>), the 14 areas closed to all fishing because of the

placement of cables and pipelines (about 1768 km<sup>2</sup>), and areas within marine reserves (475.3 km<sup>2</sup>) or where marine farms exist (229.9 km<sup>2</sup>). There is some overlap between these areas, and in total, the seafloor area that is not available to trawling is approximately 12 371.4 km<sup>2</sup>. Figures 1.1–1.3 in Appendix 1 indicate where the closures are, based on the data from the MPI NABIS website. This website provides the background regulation and description for each closure or restriction.

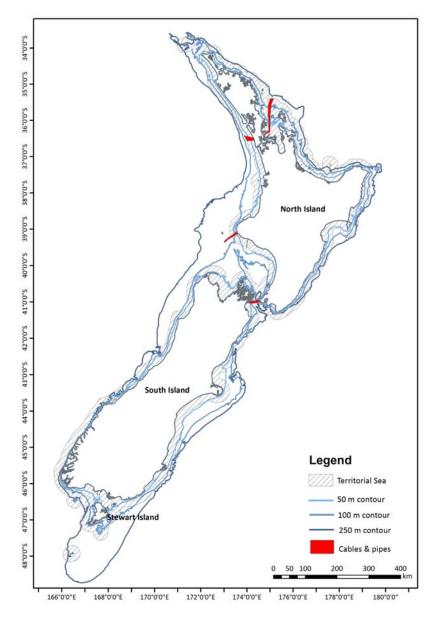



Figure 1: The study area, as defined by the 250 m contour, and its relationship with the Territorial Sea and where the existence of cables and pipelines currently prohibit any fishing.

#### 2. COASTAL BENTHIC HABITAT CLASSES

#### 2.1 Introduction

Many aspects of the coastal marine environment, both within the Territorial Sea and continental shelf waters within the 200 n. mile Exclusive Economic Zone (EEZ), have been studied (for example, see MAF 2011). In recent years there has been an emphasis on understanding communities, habitats, and ecosystems in regional coastal environments (such as the Bay of Islands, Foveaux Strait, Spirits Bay,

Tasman Bay and Golden Bay) and the effects of human activities on these environments. Research has been directed at both land-based and marine impacts on these coastal environments (e.g., Morrison et al. 2009b, Tuck & Hewitt 2013), and at identifying important habitats for many commercial fish species (Morrison et al. 2014a, 2014b)

Classification of habitat within an environment defined by area, depth, or substrate may vary according to the requirements. Usually there is a management need to identify areas of high diversity or 'essential fish habitat' which may be at risk from natural or human-based hazards. Generally a classification process uses standard terms and descriptors to define spatially-distinct habitats which can be readily displayed in a Geographic Information System (GIS); to "provide a language through which data and information regarding habitats can be communicated and managed" (see McDougall et al. 2007 in FGDC 2012). These may be based on environmental variables, substrate/sediment types, dominant communities, or more broadly by depth zones and may be at varying scales (very localised, regional, or national).

Globally, there are many classifications that describe the characteristics of benthic habitats (e.g., Brown et al. 2011, Connor et al. 2004, Greene et al. 1999, Madden et al. 2005), with most based on broad descriptions of the physical and oceanographic conditions that support and contain communities and the populations within those communities.

For New Zealand waters, several studies have been directed specifically at developing habitat classifications for defined areas. The Department of Conservation and the then Ministry of Fisheries developed a coastal classification standard with a hierarchy of five layers that classifies the physical environment (Ministry of Fisheries and Department of Conservation 2008) into biogeographic regions, estuarine or marine, depth, exposure, and substrate type. Implementation of this standard method, including a gap analysis, for waters of the Territorial Sea is described by Department of Conservation and Ministry of Fisheries (2011). This classification was developed primarily as a tool for marine reserve planning.

Three other classifications developed in recent years were more broad-scale and based primarily on modelled remote-sensed environmental data: the Marine Environment Classification (MEC, Snelder et al. 2006), a classification optimised for demersal fish (Leathwick et al. 2006), and a Benthic-Optimised Marine Environment Classification (BOMEC, Leathwick et al. 2012). The latter two classifications extended the number of environmental variables modelled for the MEC. The demersal fish classification was derived through a methodology similar to that for the MEC, tuned to discriminate patterns and variation in demersal fish classification, evident in inner harbours of central and northern North Island, the continental shelf around the North Island and off the west coast South Island, and the shelf from the southwest North Island to around the South Island (except the west coast) and isolated shallower areas near the Chatham Islands and the sub-Antarctic islands (Leathwick et al. 2006).

A more sophisticated approach — Generalised Dissimilarity Modelling which can deal with sparse data and distributions of very large numbers of species — was used for BOMEC, in which the MEC layers were supplemented with some sediment type information and distributional data for eight groups of benthic organisms (Leathwick et al. 2012).

BOMEC is commonly available at a 15-level classification throughout the EEZ to depths of 3000 m. Of the 15 BOMEC classes, 11 are represented (entirely, or in part) in shelf waters out to 250 m. Although BOMEC and its predecessors were developed from the best available data, with the environmental and biological data modelled to  $1 \text{ km}^2$  cells, the distribution of many of the biological groups was skewed by data collection from waters beyond 200 m (Leathwick et al. 2012).

After presentation of the above data sources to a meeting of the Aquatic Environment Working Group (AEWG) during June 2013, it was agreed that the best available data as input to a shelf 'benthic

habitats classification' should include the BOMEC, depth zones (0-50 m, 50-100 m, and 100-250 m), and broad sediment type (see Leathwick et al. 2012). The extent of the shelf area to be included was limited to the waters around North Island, South Island, and Stewart Island – out to the 250 m contour.

#### 2.2 Habitat class definitions

The primary GIS input for this broad-scale coastal benthic habitat classification definition was the 15class Benthic Optimised Marine Environment Classification (BOMEC, Leathwick et al. 2012). Although depth and sediment type are included within BOMEC, we explicitly considered potential effects of depth bands and sediment type that may occur across and within BOMEC classes with the inclusion of three depth zone layers representing less than 50 m, 50–100 m, and 100–250 m bands (see Figure 1), and a broad sediment type layer.

These data layers were imported as shapefiles into ArcGIS 10 with a customised Albers Conic equal area projection, with the following spatial data properties: Central Meridian: 175.00; Standard parallel\_1: -30.00; Standard parallel\_2: -50.00; Latitude of origin: -40.00; Datum: WGS84. All layers were clipped to a shared outer 250 m boundary that contained the North Island, South Island, Stewart Island, and the many small offshore islands around these main islands. Eleven BOMEC classes occur in the study area out to the 250 m contour (Figure 2.1 in Appendix 2). The broad sediment types include calcareous gravel, gravel, calcareous sand, sand, sandy mud, and mud (Figure 2.2 in Appendix 2).

A layer containing the fishery Statistical Areas (Figure 2.3 in Appendix 2) was also included to provide a spatial 'descriptor' for regional and localised habitat classes. For example, a sediment type may be present in a BOMEC class in geographically separate regions, and these regions may provide different environmental conditions that enable or restrict the presence of a taxa or community. The use of a fishery area to further delineate habitat lasses and broadly provide a 'location' for taxa also allows a direct link to the interpretation of the fishing effort distribution. The layers were overlaid and interrogated to provide summary statistics provided below.

#### 2.2.1 Coastal benthic habitat classes

The area covered by each of the 11 BOMEC classes within the study area varied greatly, as did the proportion of the depth zones and sediment types with each BOMEC class (Table 1, Figures 2–4). Of the primary inshore classes (A, B, and D), class A is the most northern shallow class, with most of its 27 377 km<sup>2</sup> around the North Island coast, including Hauraki Gulf and Hawke Bay, and along the South Island northern west coast, including Golden Bay (see Figure 5 and Table 2.1 in Appendix 2). Class A is characterised, relative to the other classes, by high values of temperature, salinity, suspended particulate matter, and dissolved organic matter, and high productivity and sediment resuspension at the seafloor (Leathwick et al. 2012). Class A is shallower than 100 m, and mostly under 50 m, and the main sediment types are gravel, sand, and mud.

BOMEC class B covers less than half the area of class A and is mainly along the western and northern South Island coasts (including Cook Strait) in depths out to 250 m (Table 1 and Table 2.1 in Appendix 2). Compared with Class A, the temperature and salinity is lower, but productivity is slightly higher and the sediments are generally finer (Leathwick et al. 2012), with mud being the predominant sediment type throughout the depth range (see Table 1).

BOMEC Class D is predominantly off the South Island east coast, south to the southernmost coast. Class D is characterised by lower water temperature and salinity values than the other inshore classes, but the sediments are generally coarser (Leathwick et al. 2012). This class is mainly in depths shallower than 50 m, and the main sediment type is sand, then gravel and calcareous gravels (see Table 1, Figures 3 and 4, and Figure 2.2).

Table 1: Coverage (km<sup>2</sup>) of the seafloor for each BOMEC class-depth zone-sediment type category, where Calc is calcareous. These categories represent 108 benthic habitat classes.

| BOMEC   | Depth<br>zone (m) | Calc<br>Gravel      | Gravel             | Calc<br>Sand       | Sand     | Sandy<br>Mud | Mud      | All       |
|---------|-------------------|---------------------|--------------------|--------------------|----------|--------------|----------|-----------|
| Class A | < 50              | 557.8               | 6 760.6            | 375.8              | 10 756.0 | 0.0          | 5 991.3  | 24 441.4  |
|         | 50-100            | 36.8                | 359.4              | 30.5               | 1 262.3  | 0.0          | 1 241.8  | 2 930.8   |
|         | 100-250           | 1.9                 | 0.0                | 0.0                | 0.3      | 0.0          | 0.8      | 3.1       |
|         | < 250             | 596.5               | 7 119.9            | 406.3              | 12 018.6 | 0.0          | 7 234.0  | 27 375.2  |
| Class B | < 50              | 6.0                 | 1 111.5            | 0.0                | 1 133.9  | 0.0          | 2 898.4  | 5 149.7   |
|         | 50-100            | 39.0                | 286.4              | 0.0                | 894.1    | 0.0          | 2 924.0  | 4 143.5   |
|         | 100-250           | 5.3                 | 12.2               | 0.0                | 115.5    | 0.0          | 2 892.5  | 3 025.5   |
|         | < 250             | 50.3                | 1 410.1            | 0.0                | 2 143.5  | 0.0          | 8 714.9  | 12 318.8  |
| Class C | < 50              | 72.2                | 403.7              | 363.9              | 1 681.4  | 0.0          | 1 656.3  | 4 177.5   |
|         | 50-100            | 711.5               | 1 240.2            | 1 583.5            | 22 749.1 | 0.0          | 10 080.0 | 36 364.3  |
|         | 100-250           | 123.6               | 352.1              | 546.6              | 21 947.0 | 0.0          | 26 049.3 | 49 018.7  |
|         | < 250             | 907.4               | 1 995.9            | 2 494.0            | 46 377.5 | 0.0          | 37 785.6 | 89 560.4  |
| Class D | < 50              | 1 261.5             | 5 341.6            | 456.3              | 7 063.6  | 0.0          | 2 459.6  | 16 582.6  |
|         | 50-100            | 156.1               | 534.6              | 46.1               | 5 336.4  | 0.0          | 1 830.0  | 7 903.1   |
|         | 100-250           | 285.6               | 22.9               | 0.0                | 476.7    | 0.0          | 242.2    | 1 027.4   |
|         | < 250             | 1 703.2             | 5 899.0            | 502.3              | 12 876.7 | 0.0          | 4 531.8  | 25 513.1  |
| Class E | < 50              | 95.9                | 15.6               | 9.2                | 79.7     | 0.0          | 1.7      | 202.1     |
|         | 50-100            | 1 054.6             | 1 021.8            | 403.7              | 8 115.1  | 0.0          | 811.3    | 11 406.6  |
|         | 100-250           | 22 930.5            | 189.5              | 2 391.4            | 8 864.6  | 182.2        | 1 019.8  | 35 578.1  |
|         | < 250             | 24 081.0            | 1 227.0            | 2 804.3            | 17 059.4 | 182.2        | 1 832.9  | 47 186.8  |
| Class F | < 50              | 1.3                 | 0.0                | 0.0                | 0.0      | 0.0          | 0.0      | 1.3       |
|         | 100-250           | 380.4               | 0.0                | 0.0                | 0.0      | 0.0          | 0.0      | 380.4     |
|         | < 250             | 381.7               | 0.0                | 0.0                | 0.0      | 0.0          | 0.0      | 381.7     |
| Class G | < 50              | 17.2                | 28.3               | 0.0                | 67.9     | 0.0          | 90.9     | 204.3     |
|         | 50-100            | 22.9                | 116.3              | 0.0                | 103.7    | 0.0          | 329.3    | 572.2     |
|         | 100-250           | 33.6                | 721.0              | 0.0                | 676.3    | 0.0          | 1 690.9  | 3 121.9   |
|         | < 250             | 73.7                | 865.7              | 0.0                | 848.0    | 0.0          | 2 111.1  | 3 898.4   |
| Class H | < 50              | 15.4                | 0.0                | 0.2                | 6.8      | 0.0          | 0.004    | 22.4      |
|         | 50-100            | 49.3                | 0.01               | 0.0                | 118.0    | 0.0          | 2.5      | 169.8     |
|         | 100-250           | 1 217.6             | 12.4               | 555.0              | 13 014.8 | 0.1          | 10 212.3 | 25 012.2  |
|         | < 250             | 1 282.2             | 12.4               | 555.2              | 13 139.6 | 0.1          | 10 214.8 | 25 204.4  |
| Class I | 50-100            | 0.0                 | 0.0                | 0.0                | 0.01     | 0.0          | 0.0      | 0.01      |
|         | 100-250           | 124.5               | 0.0                | 1.4                | 325.2    | 21.1         | 1.0      | 473.2     |
|         | 50-250            | 124.5               | 0.0                | 1.4                | 325.2    | 21.1         | 1.0      | 473.2     |
| Class J | 50-100            | 0.0                 | 0.0                | 0.0                | 0.4      | 0.0          | 3.2      | 3.6       |
|         | 100-250           | 0.1                 | 0.0                | 0.1                | 41.3     | 0.0          | 88.8     | 130.3     |
|         | 50-250            | 0.1                 | 0.0                | 0.1                | 41.7     | 0.0          | 92.0     | 133.9     |
| Class L | 100-250           | 188.9               | 0.0                | 0.0                | 0.0      | 0.0          | 0.0      | 188.9     |
|         | 100-250           | 188.9               | 0.0                | 0.0                | 0.0      | 0.0          | 0.0      | 188.9     |
| All     | < 50              | 2 027.3             | 13 661.1           | 1 205.4            | 20 789.3 | 0.0          | 13 098.2 | 50 781.3  |
|         |                   | 0 0 5 0 0           | 2 5 5 0 7          | 20620              | 38 579.1 | 0.0          | 17 222.1 | 63 493.9  |
|         | 50-100            | 2 070.2             | 3 558.7            | 2 063.8            | 36 379.1 | 0.0          | 1/222.1  | 05 475.7  |
|         | 50–100<br>100–250 | 2 070.2<br>25 292.0 | 3 558.7<br>1 310.2 | 2 003.8<br>3 494.5 | 45 461.8 | 203.4        | 42 197.8 | 117 959.8 |

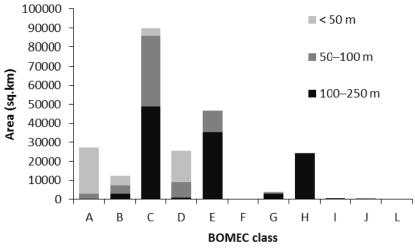



Figure 2: Total seafloor area (km<sup>2</sup>) in each BOMEC class (see Figure 1.1 in Appendix 1), within the three depth zones shown in Figure 1.

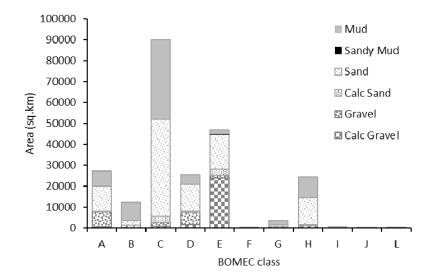



Figure 3: Total seafloor area (km<sup>2</sup>) in each BOMEC class (see Figure 1.1, Appendix 1), by dominant sediment type (Figure 1.2, Appendix 1).

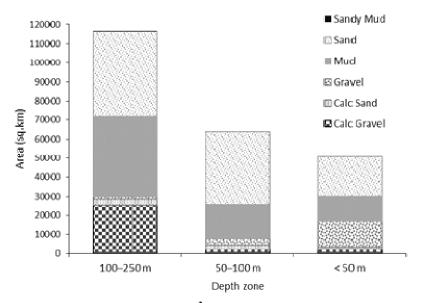



Figure 4: Total seafloor area (km<sup>2</sup>) in each depth zone (see Figure 1), by dominant sediment type.

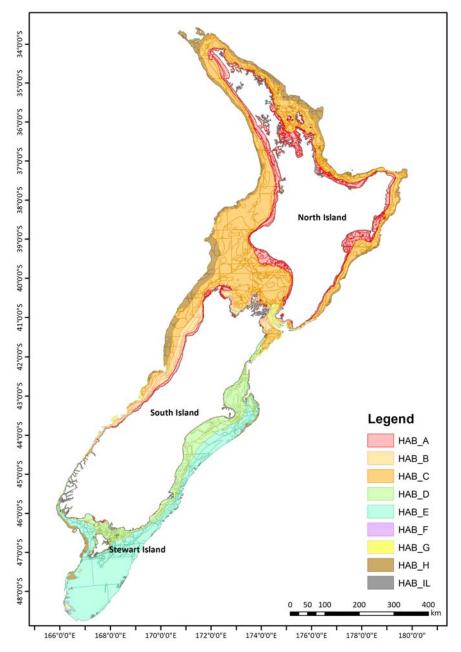



Figure 5: The broad habitat class definitions based on the BOMEC classes, with divisions indicating areas of different sediment, depth zone, and Statistical Area (see also Appendix 2).

BOMEC Class C is categorised as one of the three shelf groups from the 15-class classification, and the offshore location of this class across the shelf around the North Island and the South Island west coast is evident in Figure 5. Leathwick et al. (2012) describe this class as having moderately high temperature and salinity, relatively fine sediments, and lower seafloor resuspension, relative to more inshore classes. It is the largest class in terms of coverage and at about 90 000 km<sup>2</sup>, class C represents 39% of the whole study area. Class C primarily occupies depths between 50 m and 250 m and the sediment type is mostly sand and mud (Table 1, Figures 3 and 4).

BOMEC Class E is also more offshore and includes waters from about Banks Peninsula south to the Stewart-Snares shelf, thus encompassing the broadest shelf area south of the South Island (Figure 5). Class E is the second largest class area, at about 20% of the study area. This class is characterised by strong tidal currents and coarse sediments (Leathwick et al. 2012). Most of class E is in the deepest depth zone (100–250 m) comprised mainly of calcareous gravels, with sand present also in this zone,

as well as in the 50–100m zone where sand is the dominant sediment type (see Table 1). The geographic area of this class is very similar to that for Class D. However, the location of Class E closer to the shelf edge and the boundary of the sub-tropical and sub-Antarctic waters results in the influence of strong sea surface temperature gradients. Both classes overlap some of the same Statistical Areas.

Of the remaining BOMEC classes, F, I, J, and L occupy very small areas within the study area (see Table 1), in the deepest depth zone at the edge of the continental shelf (see Figure 5). Temperature, salinity, and productivity are generally lower in these classes because they are situated south of the Subtropical Front (Leathwick et al. 2012).

BOMEC Class G is localised to the Cook Strait region where gravel and sand are the main sediment types, and the southern parts of the South Island west coast (in the narrowest part of the study area) where mud is the main sediment type. This class is characterised by steep topography and strong tidal currents. A small area at the edge of the study area in Statistical Area 011 is also classed as Class G.

BOMEC Class H occupies the deeper waters of the study area around the west coasts and the east coast of the North Island, as well as the western edge of the Stewart-Snares shelf (Figure 5 and Table 1). This BOMEC class occurs mainly across the shallower parts of the Chatham Rise, outside the study area, and is influenced by the sub-tropical front, with moderately high temperatures and salinity (Leathwick et al. 2012). Within the study area, sand, mud, and calcareous gravels are the main sediment types in class H.

Overall, the depth zone delineated by 100 m and 250 m contours, includes about 50% of the seafloor area within the study area (Table 1 and Figure 4). Of the remaining 50%, slightly more of the seafloor area is in 50–100 m than less than 50 m. Sand and mud are the dominant sediment types (45% and 31%, respectively, of the total area).

#### 2.3 Sensitivity of the habitat to fishing disturbance

Disturbance, through bottom fishing activities such as dredging and trawling, has impacts not only on the commercially-targeted species, but also on the benthic communities and habitats, the resident biota, and on key ecosystem functions (Thrush & Dayton 2002). These effects include the modification of sedimentary characteristics through sediment removal and turnover (Guerra-García et al. 2003), and damage or destruction of many species, particularly large, habitat-forming epibenthos. These changes to habitats can cause ongoing modification of ecosystem functioning (de Juan et al. 2009). Understanding the ecological role of species or habitats, and their sensitivity to fishing disturbance, is important in understanding the risk to the ecosystem imposed by fishing activity.

An attempt was made to measure the sensitivity and recoverability of the broad benthic habitat classes described above through the use of species data (and associated knowledge on their biological traits) from two comprehensive sources: the MPI research trawl database *trawl* and NIWA's invertebrate collection database *specify*. A full description of the rationale, methods, and results is given in Appendix 3. Testing of distributions of these benthic organisms showed little support for a difference in sensitivity to, or recovery from, trawling of any of the benthic habitat classes. It is likely that the lack of a strong consistent signal from the analysis resulted largely from inadequacies of the data – both the data that contributed to the benthic habitat class descriptions as well as the underlying taxonomic data (see Appendix 3).

#### 3. Spatial pattern of bottom-contacting trawl fishing activity

Fishing effort data provide a means to determine the nature and extent of mobile bottom fishing methods and thus identify areas or habitats that are subject to different levels of modification through fishing pressure. Within the New Zealand waters less than 250 m deep, trawl nets, shellfish dredges, and Danish seine nets are the main mobile bottom fishing methods used to target fish, shellfish, and squid species. This report assesses bottom-contacting trawl fishing activity only.

Fishing effort data collection was not formalised for many species until 1989–90 with the introduction of Trawl Catch Effort Processing Returns (TCEPRs) for vessels over 28 m long and Catch Effort Landing Returns (CELRs) for smaller vessels using a variety of fishing methods. The lack of position data in the CELR data, other than assignment to broad fishery management Statistical Areas (see Figure 2.3 in Appendix 2), confined finer scale spatial analysis to TCEPR data only until October 2007 when the Trawl Catch Effort Return (TCER) was introduced for small trawlers to use instead of the CELR.

The distribution of trawl effort reported on TCEPRs has been analysed using either the number of tows or an estimate of the swept area (Baird et al. 2002, 2006, 2011, Black et al. 2013, Wood & Baird 2010), mostly on an approximate  $0.045^{\circ}$  longitude- latitude grid (about 5 km × 5 km). These effort measures show the general patterns of intensity and frequency of fishing on or near the seafloor in depths out to about 1600 m. However, they represent a small proportion of the trawl effort reported each year because they ignore the effort reported on CELRs and TCERs (see Baird et al. 2011, Baird & Wood 2012) – effort that is mainly conducted by small trawlers in inshore waters out to the edge of the continental shelf.

Integral to a spatial analysis of the nature and extent of fishing effort is both the provision of accurate and precise location data and an understanding of the gear used, including its dimensions and configuration under tow. The type of gear used for trawling, and the way in which it is rigged, determines the amount of contact the gear has with the seafloor. Bottom trawl gear is fished hard on the bottom and contacts the seafloor from the doors back to the codend, with the trawl doors, the sweeps and bridles and the groundrope gear being the primary ground contacts. Where midwater trawl gear is used to target species close to the seafloor, the points of bottom contact are from the wing-end weights possibly as far back as the codend. Variations in the extent of contact will result from differences in the way the gear is configured. Factors that affect trawl spread and full bottom contact include: the length of towing wire, the bottom depth, the warp:depth ratio, the bottom type, tow speed, currents, trawl design, rigging, vessel size, and drag forces from, for example, increasing codend diameter and decreasing sediment diameter (see Weinberg & Kotwicki 2008). Some general descriptions of trawl gear used in New Zealand are provided by Baird et al. (2002, 2011) and Clement & Associates Limited (2008), but the reality is that much of this kind of descriptive information is not available.

The commercial fishing effort data for trawls on or near the seafloor are limited in their application in spatial analyses, which restricts the results of this study to indicative, rather than absolute, measures of effort. The resolution of the start and finish positions are to one minute of arc at best, which is equivalent to about 1.852 km, and these positions represent the location of the fishing vessel when the net reaches fishing depth, rather than the location of the net. Thus, the effort measures are based on the precision and resolution of the available data, the choice of analysis cell size, and broad assumptions about the gear used and the configuration of each tow.

Unlike trawl gear, dredge gear used to target dredge oysters (*Ostrea chilensis*) or scallops (*Pecten novaezelandiae*) is designed to dig into the seafloor. Within New Zealand waters, various kinds of dredge gear are used, depending on the target species and the substrate (see Baird et al. 2002, Beentjes & Baird 2004). Dredge data are generally reported by fishery-specific Statistical Area. Dredge fisheries tend to target discrete beds (see for example Cryer & Parkinson 2006, Michael 2008), and

the actual location of these beds cannot usually be identified within the Statistical Areas, when using commercial fishing data. Danish seine effort is also recorded at the resolution of Statistical Area.

This section provides results based on the analysis of the bottom-contacting trawl effort, based on data collected on TCERs and TCEPRs. It covers five fishing years (1 October to 30 September), from 2007–08 (2008) to 2011–12 (2012), for which there are finer scale position data. The first sub-section describes the methods used to summarise the TCER and TCEPR data within the study area. The second sub-section presents the methodology used for the spatial analysis of seafloor contact by trawl vessels, with a summary of the resulting trends and patterns using indicative measures of swept area derived from generic doorspread values. Through the use of relational databases and Geographic Information Systems to generate polygons of individual trawl tows this current study provides a representation of the seafloor area fished by each trawl, for estimation of both the annual aggregate swept area and the coverage swept area which defines the footprint of the trawl effort. The third subsection reports on the trawl coverage (footprint) within the study area, and the fourth sub-section presents the final overlay of the trawl footprint with the benthic habitat classes described in Section 2.

A final sub-section provides a broad summary for other bottom-contact fishing effort in the study area, during 2007–08 and 2011–12: dredge effort for oysters and scallops and Danish seine effort for a variety of inshore species. These summaries are based on the number of dredge tows or Danish seine sets only; no attempt is made to get a measure of the area swept by these methods.

#### 3.1 Bottom-contact trawl data

The methods below describe the trawl database development, data exploration and grooming, and preparation of the data for spatial analysis. For a description of the analysis area and the spatial fishing restrictions and management areas relevant to the study area, see Section 1 and Appendix 1. Note that this initial data description includes all the bottom and midwater trawl data for the study area.

The Ministry for Primary Industries (MPI) provided a data extract of fishing activity during fishing years 2008–12 that used bottom-contact fishing methods of trawls (bottom trawls, bottom pair trawls, and midwater trawls within 1 m of the seafloor) in waters over the continental shelf in the study area. These data are based on commercial fishing returns briefly described in Table 2. A second extract provided vessel information, including unique identifier key for each vessel, vessel nationality, length overall (m), and power (kW).

| Table 2: Main variables for the commercial fishing effort forms for trawl effort relevant to the study area |
|-------------------------------------------------------------------------------------------------------------|
| and fishing years (1 October-30 September) 2007–08 to 2011–12.                                              |

| Form name                                  | Code  | Vessel<br>length | Main characteristics relevant to contact with seafloor                                                                                                                                                           |
|--------------------------------------------|-------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trawl Catch<br>Effort Return               | TCER  | 6–28 m           | Introduced 1 October 2007 to replace CELR for small trawlers. Tow-<br>by-tow data: start position; start and finish date and time; duration of<br>fishing; tow speed; target species; gear type; number of nets. |
| Trawl Catch<br>Effort Processing<br>Return | TCEPR | > 28 m           | Introduced 1 October 1989. Tow-by-tow data: start and finish positions; start and finish date and time; tow speed; target species; gear type; number of nets.                                                    |

#### 3.1.1 Trawl TCER and TCEPR data

Data from TCERs and TCEPRs for fishing years 2008–12 provided the initial *trawl* dataset (n = 436756 tows), 56% from TCERs and 44% from TCEPRs. The data were subjected to grooming routines using the *R* Statistical package following the methods used by Baird et al. (2011). Emphasis was placed on the primary variables necessary for determining the extent of the swept area of trawl gear for a tow. Data for each of the main variables were explored to isolate records with invalid codes

or values and any obvious transcription or recording errors and to determine the distribution of variables used to characterise the effort (see Baird et al. 2011).

Previous work indicated that vessels of the same (or similar) nationality target certain species, fish in certain depths and geographic locations, and use similar gear in a similar manner; and that vessels of similar sizes use similar gear for a target species. Vessels were assigned to four size categories, based on regulations and prior knowledge of the general distribution of vessels by size in New Zealand fisheries: A, under 28 m; B, 28–46 m; C, 46–80m; and D, over 80 m in overall length. Thus, in the error checking and data exploration we based our approach on the premise that fishing effort would be characterised by the nationality of the vessel and the fishing gear used, species targeted, and the size of the vessel.

The following assumptions were made with respect to grooming the dataset.

- All dates were accepted as reported.
- All gear type data were used as reported: thus "BT" represented use of bottom trawl gear, "BPT" for a bottom pair trawl, and "MW" for midwater trawl net.
- All vessel keys and trip numbers were accepted as accurate.
- Target species were generally accepted as reported, except those that were considered to be typographical errors or those that showed obvious inconsistencies; for example, "SNA" tows in southern waters where "SWA" was the target in tows of the same trip.
- Start latitude and longitude data were used as reported in the initial grooming stages, other than obvious errors. Statistical Area codes (assigned by MPI, based on the start latitude and longitude data) were accepted as provided; although for obvious position errors, the given Statistical Areas were corrected to represent the amended position data, if necessary.

Where possible, any errors were amended. No data were deleted, other than duplicated records, and new fields were created to accommodate changed and new (derived) values. The grooming process was iterative, with 'corrections' made to one field at a time. Data within a defined range of values for each variable were retained as reported and those outside the range were assigned a median value determined from the data. For most variables, changes were made to less than 5% of the data.

The recorded target species code may represent either the species being targeted on a tow, the species which constituted the largest proportion of the catch on a tow, or a generic code for a group of species. There were at least 48 (sensible) target species or broad species groups (for example, flatfish species for which the effort is often reported under the generic code of FLA rather than individual species codes). Thus, all target species codes that represented the different flatfish species were combined into a single code "FLA"; similarly, for oreo species into "OEO"; hapuku/bass as "HPB"; and jack mackerels as "JMA" (see Table 3).

Trip numbers associated with each tow are assigned by MPI. These trip numbers are based on the landing forms completed by fishers; if there is no landing form associated with the effort form, the trip number field on the TCER or TCEPR will be null (M. Vignaux, MPI, pers.comm.). About 1.6% of the total of 243 367 TCER records had no trip number assigned; these tows represented effort by 185 of the 210 vessels which had effort reported on TCERs. About 46% of these tows targeted flatfish species, 14% tarakihi, 12% red gurnard, and 18% targeted red cod, stargazer, trevally, rig, snapper, and John dory. These tows were dropped from the analysis because of the dependency on 'trip' in the spatial analysis (see later section). Another 0.1% of TCER tows were ignored because they had no reported target species.

Another 0.15% TCER records had no start position data and were dropped from the analysis to give a total of 239 227 TCER tows. About 1% of TCERs and 1% of TCEPRs had no Statistical Area code due to start positions being on the boundary of Statistical Areas or on land. Of the 193 389 TCEPR tows, 262 tows were dropped because they had no trip number.

All TCER and TCEPR tow data were matched to the vessel data and loaded into ArcGIS (using the Albers equal area projection) to identify tows within the 250 m contour, based on their start latitude and longitude. The resulting dataset consisted of 289 742 tows (77.7% TCER tows and 22.3% TCEPR tows). Twelve vessels reported effort as 'BPT'. This effort was tabulated and plotted to match the paired vessels and data were retained for the vessel with the highest number of tows reported for that target species, Statistical Area, and fishing year for five of the vessel pairs; this resulted in 2286 BPT tows being dropped from the dataset. The effort by the remaining two vessels could not be readily matched and this effort was retained as 'BT'.

The final analysis dataset of 287 456 tows consisted of 222 787 TCER tows (100% vessel A category) and 64 669 TCEPR tows (43% vessel A; 20% vessel B; 13% vessel C; and 24% vessel D). Vessels in size categories A and B were all from New Zealand. For the size category C vessels, about 86.5% of tows were by Korean vessels, 10.5% by New Zealand vessels, and 3% by Japanese vessels. Ukrainian vessels and Polish vessels accounted for 98.5% and 1.5% of tows by size category D vessels. Fishing effort for at least 48 target species was reported during 2007–08 to 2011–12 (Table 3).

Of the total of 33 834 TCER trips in the dataset (range of 6348–7397 trips per fishing year), 11.3% had 1 tow, 20.4% had 2 tows, and 9.8% had 3 tows (Figure 6, Table 4.1 in Appendix 4). Thus, 41.5% of TCER trips had fewer than 4 tows per trip, compared with 16% of the 3984 TCEPR trips. The maximum number of tows per TCER trip was 146 tows, with effort spread over 3 months and 8 Statistical Areas, and with 11 target species reported. Because trip numbers are allocated on the basis of landings, TCER trip numbers with a large number of tows may represent the effort of a number of actual trips (M. Vignaux, MPI, pers. comm.). The maximum number of tows for TCEPR trips was 121 tows, with one species targeted in one month in 6 Statistical Areas.

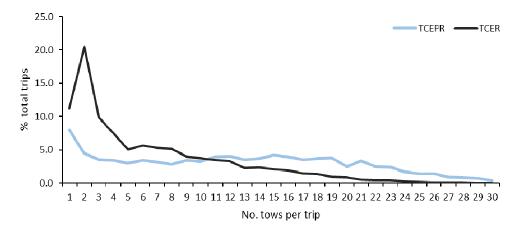



Figure 6: Percentage of TCEPR and TCER trips based on the number of tows per trip, over the five fishing years, where the maximum number of tows per trip shown is 30 tows. The data shown here represent 91.2% of TCEPR trips and 99.9% TCER trips.

#### 3.1.2 Additional variables for spatial analysis

The resolution of the start and finish position data is to the nearest minute  $(0.01667^{\circ})$  (see Penney 2011). Thus, in an attempt to better represent the spatial distribution of the trawl tracks, particularly in places where fishers may repeat trawl lines, the reported longitude and latitude values were randomly jittered using an offset of  $\pm 0.5$  minute and stored as new fields in the dataset.

| Table 3: Target species, listed alphabetically by common name, and the number of bottom trawl and |
|---------------------------------------------------------------------------------------------------|
| midwater trawl tows reported from the study area on TCER and TCEPR forms, 2007–08 to 2011–12.     |

| Common name            | Scientific name                                                         | Code | TCER    | TCEPR       |
|------------------------|-------------------------------------------------------------------------|------|---------|-------------|
| Alfonsino              | Beryx splendens, B. decadactylus                                        | BYX  | 2       | 23          |
| Arrow squid            | Nototodarus sloanii, N. gouldi                                          | SQU  | 643     | 9 401       |
| Barracouta             | Thyrsites atun                                                          | BAR  | 7 080   | 4 2 1 0     |
| Black cardinalfish     | Epigonus telescopus                                                     | CDL  | 0       | 9           |
| Blue cod               | Parapercis colias                                                       | BCO  | 30      | 0           |
| Blue mackerel          | Scomber australasicus                                                   | EMA  | 0       | 136         |
| Blue warehou           | Seriolella brama                                                        | WAR  | 4 804   | 730         |
| Bluenose               | Hyperoglyphe antarctica                                                 | BNS  | 3       | 18          |
| Elephant fish          | Callorhinus millii                                                      | ELE  | 3 451   | 147         |
| Flatfish               | Rhombosolea retiaria, R. plebeia, R. tapirina,<br>Pelotretis flavilatus | FLA  | 83 316  | 3           |
| Frostfish              | Lepidopus caudatus                                                      | FRO  | 0       | 1           |
| Gemfish                | Rexea solandri                                                          | SKI  | 165     | 115         |
| Ghost shark            | Hydrolagus novaezealandiae, H. bemisi                                   | GSH  | 2 710   | 7           |
| Hake                   | Merluccius australis                                                    | HAK  | 1       | 13          |
| Hapuku/bass            | Polyprion oxygeneios, P. americanus                                     | HPB  | 164     | 1           |
| Hoki                   | Macruronus novaezelandiae                                               | HOK  | 555     | 1 943       |
| Jack mackerels         | Trachurus declivis, T. murphyi, T.                                      | JMA  | 23      | 10 296      |
| John dory              | Zeus faber                                                              | JDO  | 6 1 3 0 | 2 930       |
| Kahawai                | Arripis trutta                                                          | KAH  | 18      | 2 ) 50<br>4 |
| Kingfish               | Seriola lalandi                                                         | KIN  | 0       | 4           |
| Leatherjacket          | Parika scaber                                                           | LEA  | 792     | 60          |
| Ling                   | Genypterus blacodes                                                     | LIN  | 425     | 00<br>74    |
| Lookdown dory          | Cyttus traversi                                                         | LDO  | 423     | /4<br>0     |
| Mirror dory            | Zenopsis nebulosus                                                      | MDO  | 1       | 0           |
| Moki                   | Latridopsis ciliaris                                                    | MOK  | 425     | 10          |
| Oreos                  | Allocytus niger, Neocyttus rhomboidalis,                                | OEO  | 423     | 10          |
|                        | Pseudocyttus maculatus                                                  |      | -       |             |
| Orange roughy          | Hoplostethus atlanticus                                                 | ORH  | 2       | 6           |
| Paddle crab            | Ovalipes catharus                                                       | PAD  | 119     | 0           |
| Queen scallop          | Zygochlamys delicatula                                                  | QSC  | 456     | 0           |
| Red cod                | Pseudophycis bachus                                                     | RCO  | 13 253  | 282         |
| Red gurnard            | Chelidonichthys kumu                                                    | GUR  | 26 638  | 2 567       |
| Red snapper            | Centroberyx affinis                                                     | RSN  | 3       | 0           |
| Redbait                | Emmelichthys nitidus                                                    | RBT  | 0       | 85          |
| Rig                    | Mustelus lenticulatus                                                   | SPO  | 483     | 1           |
| Rough skate            | Zearaja nasuta                                                          | RSK  | 171     | 0           |
| Ruby fish              | Plagiogeneion rubiginosum                                               | RBY  | 8       | 35          |
| Scampi                 | Metanephrops challengeri                                                | SCI  | 0       | 102         |
| School shark           | Galeorhinus galeus                                                      | SCH  | 376     | 65          |
| Sea perch              | Helicolenus spp.                                                        | SPE  | 354     | 9           |
| Silver dory            | Cyttus novaezealandiae                                                  | SDO  | 1       | 0           |
| Silver warehou         | Seriolella punctata                                                     | SWA  | 302     | 800         |
| Snapper                | Pagrus auratus                                                          | SNA  | 10 711  | 9 307       |
| Spiny dogfish          | Squalus acanthias                                                       | SPD  | 1 302   | 29          |
| Spotted stargazer      | Genyagnus monopterygius                                                 | SPZ  | 4       | 0           |
| Stargazer              | Kathetostoma giganteum                                                  | STA  | 7 661   | 64          |
| Tarakihi               | Nemadactylus macropterus                                                | TAR  | 44 515  | 12 297      |
| Trevally               | Pseudocaranx dentex                                                     | TRE  | 5 682   | 8 875       |
| White warehou          | Seriolella caerulea                                                     | WWA  | 1       | 9           |
| Total (including 1 unk | nown target TCER tow)                                                   |      | 222 787 | 64 669      |

The TCEPR data provide both the start and finish latitude and longitude position data. These position data allow the estimation of several measures of fishing effort (see Baird et al. 2011). One such measure is the area of the seafloor contacted by the trawl gear (the swept area). This can be generated from a distance measure and the width of the gear where it contacts the seafloor, where the distance can be the straight-line measure between the start and finish tow positions (trackline) or it can be a value derived from the reported values for tow duration and tow speed. Here, we assume that the vessel has towed the net in a straight line and that the start and end positions in the dataset represent where the net started to fish and where it ended fishing.

The TCER data lack information that describes the finish location. Although a measure of swept area can be calculated, based on the duration of the tow and tow speed, the swept area cannot be spatially represented, other than as a circle centred on the start position.

The following methods were used in an attempt to place the TCER trawl effort in space. These were applied to both TCER and TCEPR data to provide a comparison between those with a reported end position, and those with a generated end position, using the jittered position data. This allowed an assessment (by eye) of the plotted tracklines for each target species and form type to judge the appropriateness of the method.

- 1. For each trip combination, generate a tow direction from the bearing between the start position of a tow and the following tow.
- 2. For the TCEPR trips, generate the bearing between the start and finish positions of each tow.
- 3. Calculate the distance (km) between the start of one tow and the start of the next consecutive tow *tows distance*.
- 4. Calculate the distance (km) between reported start and finish positions *fishing distance* (possible for TCEPR data only).
- 5. Calculate the duration-speed distance (km).
- 6. Generate finish co-ordinates based on the estimated bearing and duration-speed distance *endpoints.*
- 7. Identify tows that are *last tows* or *only tows* of a trip; i.e., tows that have no following tow in a trip.
  - a. Firstly, for each of these tows, estimate a bearing based on the median estimated bearing values from other tows by the same vessel for the same target species within  $1/30^{\text{th}}$  of a degree north/south or east/west, using a minimum number of 2 tows.
  - b. Then, generate finish co-ordinates for these tows from the estimated bearing and the duration-speed distance *last\_tow\_end\_longitude\_2*, *last\_tow\_end\_latitude\_2*.
  - c. Secondly, repeat 7 (a) but use tows from all vessels with the same target species, with start positions within 1/30<sup>th</sup> of a degree north/south or east/west, using a minimum number of 2 tows *last\_tow\_end\_longitude\_targ*, *last\_tow\_end\_latitude\_targ*.

Additional columns were created within the dataset to provide four columns of start and finish positions (*lons\_fin, lats\_fin, lonf\_fin, latf\_fin*) for use in the final spatial analysis. For TCEPR data, the jittered start and finish positions were used to populate these fields. For TCER data, the jittered start positions were used for the start positions of all tows; and the estimated end longitude and latitude values were used for the finish positions of all tows, except for the last and only tows of a trip. For the latter group, the latitudes and longitudes derived in 7(c) above were used for the finish positions (*lonf\_targ, latf\_targ*). The TCER data represented 33 834 trips and 3810 of these trips had one one tow (*only tow*) and the remainder all had a *last tow*. Thus, the 33 834 TCER tows with no consecutive tow (in the same trip) accounted for 15.2% of the total TCER tows.

#### 3.1.3 Description of the primary effort variables by main species

Many of the smaller vessels that fish around the North Island have used TCEPR forms since the mid-1990s (see Baird et al. 2011); whereas the vessels fishing around the South Island were more likely to report effort on CELRs and thus their effort is now represented on TCERs. Figures 4.1 and 4.2 in Appendix 4 show the start positions of the tows for the main target species reported on TCERs and TCEPRs. Figure 4.3 in Appendix 4 shows the distribution of the effort reported by form type and Statistical Area. Effort for tarakihi, barracouta and red gurnard are the most widespread, with the TCEPR effort generally in deeper waters. The species with more southern effort distributions include flatfish, elephantfish, red cod, rig, sea perch, arrow squid, giant stargazer, and blue warehou. Species with northern distributions include John dory, snapper, and trevally. Jack mackerel effort was mainly off the west coast of both islands (reported on TCEPRs only), and effort for leatherjacket was primarily in the southern Taranaki Bight and Golden Bay-Tasman Bay.

#### TCER data

Between about 41 900 and 48 800 tows were reported on TCERs in each fishing year, and annual effort for most target species was reasonably stable during the period 2007–08 to 2011–12 (see Table 4.2 in Appendix 4). Overall, about 38% of the TCER tows targeted flatfish species, 20% tarakihi, and 12% red gurnard. Red cod tows accounted for 6%, snapper for 5%, and giant stargazer, barracouta, and John dory each accounted for about 3% of the tows. In total, 14 target species or species groups accounted for 98% of all the TCER tows. The distribution of this effort by Statistical Area is shown in Figures 4.1 and 4.3 in Appendix 4. Effort reported on TCERs was greatest off the east coast North Island in Statistical Areas 013 and 014; the east coast South Island in 020, 022, 024, and 026; the southern South Island (030); west coast South Island (034); and Golden Bay-Tasman Bay (038) (Table 4.4 in Appendix 4).

The distributions of the groomed values of interest for an estimation of swept area are shown for the main TCER target species in Appendix 4 in Figure 4.4a–4.4g. Over the five fishing years, 208 vessels reported effort on TCERs. All TCER tows were by vessels between 6 and 28m long; the smaller vessels (about 15 m) generally targeted dark ghost shark, elephantfish, flatfish, red gurnard, John dory, and snapper. Most of the remaining top target species were usually targeted by vessels about 20 m long.

Flatfish and elephantfish were targeted in the shallowest depths, with median depth values of about 30 m. Snapper, trevally, red gurnard, leatherjacket, and red cod were targeted in waters about 50 m depth, though red cod effort was deeper in the later years. The main species targeted in 50–100 m were barracouta, John dory, spiny dogfish, and blue warehou. Tarakihi were targeted in about 100 m, and dark ghost shark and giant stargazer in 100–150 m.

Tows were generally about 4 hours in duration, though tows targeting flatfish, dark ghost shark, snapper, and spiny dogfish were more usually about 3 hours long. Trawls were generally towed at about 2.7–3.0 kn.; the slowest tows (about 2.5 kn.) were flatfish and giant stargazer tows and the fastest tows (about 3.5 kn.) were trevally tows. The distance towed, based on the reported duration and speed variables indicated that flatfish, snapper, and spiny dogfish tows were generally about 15 km long; elephantfish, red cod, John dory, giant stargazer were 16–19 km long; and tarakihi, trevally, blue warehou, and barracouta just over 20 km long.

#### **TCEPR** data

Effort reported on TCEPRs represented about 22.4% of all the tow records in the study area during the period 2007–08 to 2011–12, with between 12 055 and 13 898 tows reported per fishing year (Table 4.3 in Appendix 4). Tarakihi (19% of all TCEPR tows), jack mackerel (16%), arrow squid (14.5%), snapper (14%), and trevally (13.7%) were the main target species. These target species, with

the addition of barracouta, John dory, red gurnard, and hoki together accounted for 95% of the TCEPR tows. As with the TCER target species, the annual effort for each species was reasonably stable.

A total of 71 vessels reported effort on TCEPRs. Of these 22 were small New Zealand vessels (category A, 6–28 m), 17 were New Zealand category B (28–46 m), 23 were category C (46–80 m), and 9 were category D (over 80 m). Category C comprised 13 Korean vessels, 9 New Zealand vessels, and 1 Japanese vessel. Category D comprised 7 Ukrainian and 2 Polish vessels. The primary targets of the category A vessels were snapper, tarakihi, trevally, John dory, red gurnard, barracouta. For category B vessels, most effort was for tarakihi, trevally, hoki, red gurnard, and snapper. The main targets for category C vessels included arrow squid, barracouta, silver warehou, blue warehou, and jack mackerel. Category D vessels mainly targeted jack mackerel, arrow squid, and barracouta.

Most TCEPR tows were in Statistical Areas 005 and 006 off the east coast North Island and the Bay of Plenty (009 and 010) where John dory, red gurnard, snapper, tarakihi, and trevally were targeted; the north Taranaki Bight (041) for jack mackerel; south Canterbury Bight (022) for barracouta; and the southern edge of the Stewart-Snares shelf where squid, jack mackerel, barracouta, and silver warehou were targeted (Table 4.5 in Appendix 4, Figure 4.2).

The distributions of the groomed values of interest for an estimation of swept area are shown for the main TCEPR target species in Figure 4.5a–4.5g in Appendix 4. Of the main target species, red gurnard, John dory, snapper, and trevally were mainly targeted in waters of about 50 m depth. Blue warehou tows were slightly deeper at about 100 m and barracouta, jack mackerel (midwater trawl gear), and tarakihi tows were mainly in the 100–150 m depth range. Red cod tows showed the widest distribution (100–200 m), and the deeper targets were arrow squid and hoki in 150–200 m and silver warehou in over 200 m.

Tows for red gurnard, John dory, snapper and trevally were generally about 3 h long. In a comparison of duration data based on form types, New Zealand vessels under 28 m completing TCERs appeared to tow for longer than those completing TCEPRs (Table 4.6 in Appendix 4). For the other main TCEPR target species tow lengths were about 4–5 h, with longer durations for silver warehou and blue warehou.

Speeds were generally close to 3 kn., apart from the targets in deeper waters such as arrow squid, barracouta, silver warehou and blue warehou, with the fastest speeds used to pull the midwater jack mackerel nets. Few differences were evident in speed data from the small vessels using the different form types.

The distance fished, as calculated from the duration and speed records, indicated that TCEPR tows for hoki, John dory, and snapper were generally about 10 km; tows for red gurnard, red cod, tarakihi, and trevally were about 20 km; barracouta about 20–30 km; and the longest tows were for jack mackerel and arrow squid (30–40 km) and silver warehou (over 40 km) (Figure 4.5c). Distances based on reported start and finish positions were generally shorter than the duration-speed distances for target species such as barracouta, squid, and warehou species (Figure 4.5g).

#### 3.1.4 Differences in the distance measures for the tow trackline

There are two considerations with regard to the distance and spatial placement of a tow in this study. The first is a comparison of the main two methods used to derive a tow distance: the distance between the start and fishing positions, assuming a straight line (only applicable to TCEPR data) and the distance derived from the reported tow duration and tow speed (values available for both data types). The second relates to the generation of the TCER tow endpoint based on the reported start longitude and latitude using the duration-speed distance and an estimated direction.

Firstly, for the small vessels, the longer duration of TCER tows for some species such as red gurnard, John dory, and snapper resulted in substantially longer tow distances than calculated for TCEPR small vessel effort for those species (see Table 4.6 in Appendix 4, Figure 7). However, some of these differences may be artefacts of the disparity in the relative amounts of data: the number of tows for TCER and TCEPR small vessels targeting snapper are similar, over the five year period, but the vessel A TCEPR tows represent less than 50% of the number of TCER tows for John dory, and about 5% of the number of TCER tows for red gurnard.

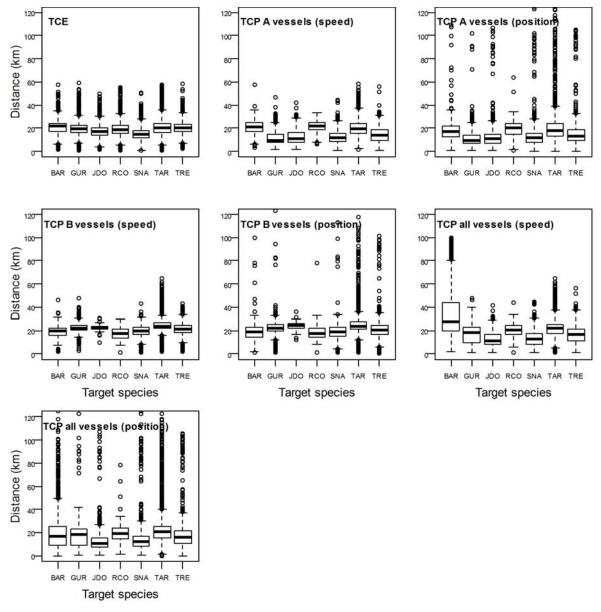



Figure 7: Distribution of duration-speed derived distances for TCER main species and duration-speed (speed) and the position-based (position) distances from TCEPR 'A' vessels, 'B' vessels, and all TCEPR vessels, for the five year period. Target species codes are given in Table 3. Table 4 gives relative numbers of tows for each of the datasets shown above.

The spread of outliers is greater for the TCEPR reported position distances compared with that for the TCEPR duration-speed distances. In a comparison of the two distance measures for some of the main species targeted by category A vessels (vessels of a similar size to those that report on TCERs), the differences are most obvious for barracouta, hoki, arrow squid, and jack mackerel (Figure 4.6 in Appendix 4).

Table 4: Number of tows for each target species by form type and vessel category, 2008–2012.

| Form, vessel | BAR     | GUR    | JDO     | RCO    | SNA    | TAR    | TRE    | Total   |
|--------------|---------|--------|---------|--------|--------|--------|--------|---------|
| TCER, 'A'    | 7 080   | 26 638 | 6 1 3 0 | 13 253 | 10 711 | 44 515 | 5 682  | 114 009 |
| TCEPR, 'A'   | 1 241   | 1 249  | 2 866   | 218    | 8 041  | 7 909  | 5 792  | 27 316  |
| TCEPR, 'B'   | 169     | 1 318  | 64      | 63     | 1 265  | 4 388  | 3 083  | 10 350  |
| TCEPR, total | 4 2 1 0 | 2 567  | 2 930   | 282    | 9 307  | 12 297 | 8 875  | 40 468  |
| TCER&TCEPR   | 11 290  | 29 205 | 9 060   | 13 535 | 20 018 | 56 812 | 14 557 | 154 577 |

Secondly, for the generation of TCER tracklines for tows with no following tow, the direction was estimated from appropriate nearby tows – based on the vessel and the target species, or on the target species alone. The bearing values based on the target species alone were based on a larger set of available nearby tows than the more restricted set for the vessel-target derived values. Comparison of the tow lines generated by these estimated directions for the *last tows* and *only tows* indicated that the target-derived bearing appeared to provide a more sensible tow line, whereas the vessel-target derived bearing for the *last tows* and *only tows* tended to put tows at contrary bearings to the mass of tows for a target species (Figure 8 showing tarakihi target effort). The use of the target-based estimate of direction was applied to the TCEPR data and appeared to 'tidy' tows that may have had incorrect position data (Figure 9).

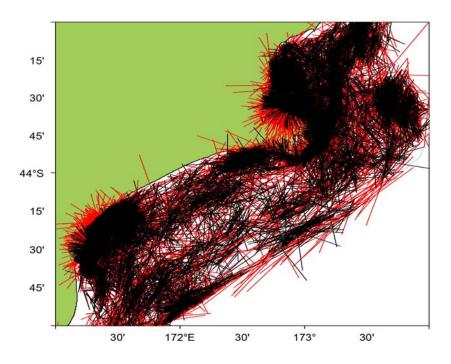



Figure 8: Comparison between the TCER tarakihi tows designated as *last tows* or *only tows* based on the vessel-target estimated bearing (red) and the target estimated bearing (black).

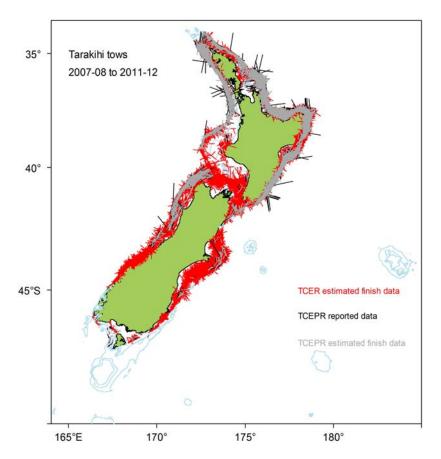



Figure 9: Tracklines for tarakihi effort reported on TCEPR forms, using the reported start and finish position data (black) and the reported start and derived finish positions for TCEPR data (grey) and for TCER data (red).

#### 3.2 Spatial distribution of trawl data

The finalised dataset of 287 456 TCER and TCEPR records, with the generated endpoints and associated information, was imported into an open source PostGIS/PostgreSQL object relational database with Open GIS Consortium compliant spatial data types and query capability. This system was used to develop the dataset with the addition of new fields for spatial analysis, with an associated graphical GIS package with provision to query and display data (QuantumGIS). The spatial aspect of the database was built using a WGS1984 Albers Equal Area projection with the central meridian at 175° E, standard parallels at 30° S and 50° S, and latitude of origin at 40° S.

#### Additional data layers

Spatial layers were created within ArcGIS and imported into the trawl effort database for spatial overlay analysis to create the footprint area within the study area. These included:

- the area from the coastline to the 250 m contour (*shelf*)
- the New Zealand land area (*land*)
- the areas closed to fishing because of the location of cables and pipelines (*cable*)

The *land* and *cable* layers were buffered by 25 m to cater for overlap that may occur with the trawl effort because of the resolution of the tow position data.

#### Spatial analysis attributes

New columns were created in readiness for the spatial analysis: for *startpoints* and *endpoints* based on the final reported/estimated position data; distance between the startpoints and endpoints (trackline); estimated doorspread values; geometries representing the area for tows (based on the tracklines); and flags for where effort started or ended on the buffered *land*, buffered *cable*, or outside the *shelf*.

Startpoints and endpoints that were identified as being on *land* or in the *cable* areas were moved to the edge of the *land* and *cable* buffers. Tracklines were then generated between the start and endpoints for each tow, and the distance of each trackline was calculated (as a straight line measured in kilometres). Separate tracklines were generated for the TCER tows that were the only or the last tow of the trip using the target derived finish latitudes and longitudes (*lonf\_targ, latf\_targ*).

Estimated doorspread values were used, based on form type use, vessel category, and reported target species (after Baird et al. 2011). All tows by category A vessels and scampi tows were assigned doorspread values of 70 m; tows by category B vessels were assigned values of 90 m; and tows by category C and D vessels were assigned doorspreads of 150 m, except that the category D vessel tows targeting hoki were assigned 200 m doorspreads.

Swept areas were generated from the doorspread and tracklines and stored as polygons representing each trawl. For those tows with only a start point (that is, tows for which there were no following or nearby tows that could be used to generate bearings, n = 572 tows), the swept area was created as a circle around the start point. Trawl polygons that were outside the *shelf* were flagged as 'outside', and those partly inside and outside the *shelf* were clipped to the boundary of the *shelf*. Trawl polygons that were partly inside and outside the *cable* areas were treated similarly. The length of these clipped polygons was calculated and stored as a new distance value.

#### 3.2.1 Measures used to summarise the TCER and TCEPR data

As measures of the fishing intensity, this study used the reported number of tows for TCER and TCEPR data and the estimated swept area for each tow (trawl polygons) for the TCER and TCEPR data (in square kilometres), hereafter referred to as the *swept area*.

- 1. *Position swept area* is the area (km<sup>2</sup>) derived from the tow distance as measured between start and finish positions and the assigned doorspread. This measure was used to summarise the effort and the total for each fishing year is referred to as the *aggregated swept area*.
- 2. *Speed-time swept area* is the area (km<sup>2</sup>) derived from the tow duration as measured between start and finish times, the tow speed, and the assigned doorspread.
- 3. *Coverage area (footprint)* is the area (km<sup>2</sup>) that represents the seafloor area estimated to have been contacted by trawl gear.

#### Assignment of tow data to a cell grid

To aid in the categorisation and analysis of the data, a grid of approximately  $25 \text{ km}^2$  cells was created in another database table. The use of a 5×5 km cell size was agreed to by the Aquatic Environment Working Group to maintain consistency with the EEZ-wide trawl footprint analyses of TCEPR data (Baird et al. 2011, Black et al. 2013). This grid was generated in the same Albers Conic Equal Area Projection and re-projected to latitude and longitude degrees to overlay with trawl effort data as a basis for spatial analysis.

The cell grid table was joined to the effort data table to create a new database table to enable the spatial overlay of the grid with the trawl polygons of swept area. Thus, the effort could be analysed by grid cell to identify and quantify the amount of effort per cell over time and to generate an indicative "footprint" of trawl effort on the seafloor.

For area-based calculations, the data were reprojected to the Albers Conic Equal Area projection to minimise distortions caused by converging lines of longitude with increasing latitude using degrees as the co-ordinate units. For each cell, the sum of the area of all the portions of the estimated doorspread polygons that lie within that cell can be calculated. Thus, a cell in any given fishing year may have an aggregated swept area of 0 (unfished) or 25 km<sup>2</sup> (swept area is similar to the cell size), or perhaps 100 km<sup>2</sup>, suggesting that for that year, the swept area was 4 times the cell area.

Further database tables were created and populated to store:

- the number of events per cell and the cell footprint (that is, the area of each cell that was contacted by trawl gear) based on trawl polygons in the entire dataset (for the 2007–08 to 2011–12 fishing years), from which summaries can be generated for different species and years;
- the annual number of events and footprint per cell for all target species;
- the total number of events and the footprint per cell for the five fishing years combined.

For each of these cell coverage areas in these tables, the cell geometries were converted to cell swept areas  $(km^2)$  using the equal area projection.

#### 3.2.2 TCER and TCEPR fishing effort: number of tows and aggregated swept area

The final dataset included only those tows considered to have bottom contact – that is, all "BT" tows, and "MW" tows for which the effort depth field value was within 1 m of the bottom depth value. From the total of 282 833 tows, 78.6% were reported on TCERs and the remainder on TCEPRs. These tows represented a total of 368 983 km<sup>2</sup> (69.7% of which was estimated from TCERs). The annual numbers of tows and the estimated aggregated swept areas by target species are given for the two different form types in Tables 5.1-5.4 in Appendix 5. Similar information is given by vessel size in Tables 5.5 and 5.6, and by Statistical Area in Tables 5.7-5.10.

The spatial distribution of these data, by form type and vessel size category, are shown in Figure 10. The TCER form was used more in the inshore waters around the South Island and off the east coast of the North Island (where fishers mainly continued to use CELR forms rather than change to using TCEPRs) from the mid-1990s on (Baird et al. 2011)). In total, the TCER and TCEPR effort reported by category A vessels (6–28 m) accounted for 87.4% of the numbers of tows and 72.6% of the estimated swept area.

Both form types were used to report most target species in the same Statistical Areas, but the proportion of effort by form type may vary in each area. For example, although about 54% of the snapper tows (and the aggregated swept area) is from TCERs, the proportion from TCERs varies depending on where the fishing took place. Tables 5 and 6 illustrate this point for snapper and tarakihi, with a subset of data for the main Statistical Areas where snapper and tarakihi effort was reported on both form types. Tables 5.11–5.14 show these data for all target species and Statistical Areas.

For red gurnard, a species mainly reported on TCERs, over 88% of effort in the main red gurnard target areas (Statistical Areas 012, 013, and 014 off the lower east coast North Island) was reported on TCERs, as was most effort off the west coast North Island (Statistical Areas 041 and 042); but the relatively small amount of effort off the northern east coast Statistical Areas 003–006 was mainly from TCEPRs. For trevally, which was mainly targeted in Statistical Area 009, the TCER effort accounted for 41% of the 2862 tows and 64% of the estimated 2356.5 km<sup>2</sup> swept area. For barracouta, most effort on both forms was in Statistical Area 022 off the east coast of the South Island: here, TCER data accounted for about 50% of the 3850 tows made during 2007–08 to 2011–12, and 39% of the estimated swept area.

| Table 5: Number of tows that targeted snapper and the estimated swept area for the main snapper Statistical |
|-------------------------------------------------------------------------------------------------------------|
| Areas around the North Island and the percentage represented by TCER data, 2007–08 to 2011–12.              |
| Statistical Areas are shown in Figure 2.3 in Appendix 2. See Tables 5.11–5.14.                              |

| Statistical |            | Snapper tows | Snapper estimated | swept area (km <sup>2</sup> ) |
|-------------|------------|--------------|-------------------|-------------------------------|
| Area        | Total tows | % TCER       | Total             | % TCER                        |
| 003         | 1 867      | 88.2         | 1 976.4           | 85.9                          |
| 005         | 3 259      | 52.7         | 2 910.6           | 53.5                          |
| 006         | 3 707      | 40.7         | 2 462.8           | 37.0                          |
| 008         | 1 358      | 41.8         | 1 501.7           | 40.2                          |
| 009         | 1 828      | 30.5         | 1 543.2           | 40.0                          |
| 010         | 2 172      | 32.5         | 1 902.3           | 36.6                          |
| 042         | 562        | 23.7         | 854.6             | 21.8                          |
| 045         | 736        | 18.2         | 986.1             | 15.4                          |

Table 6: Number of tows that targeted tarakihi and the estimated swept area for the main tarakihi Statistical Areas and the percentage represented by TCER data, 2007–08 to 2011–12. Statistical Areas are shown in Figure 2.3. See Tables 5.11–5.14.

| Statistical |            | Tarakihi tows | Tarakihi estimated sw | rept area (km <sup>2</sup> ) |
|-------------|------------|---------------|-----------------------|------------------------------|
| Area        | Total tows | % TCER        | Total                 | % TCER                       |
| 002         | 868        | 83.4          | 1 326.2               | 81.7                         |
| 003         | 950        | 75.1          | 1 309.1               | 73.7                         |
| 004         | 391        | 11.0          | 722.6                 | 11.5                         |
| 008         | 1 116      | 18.3          | 1 772.5               | 20.4                         |
| 009         | 1 970      | 33.2          | 2 223.1               | 39.8                         |
| 010         | 2 870      | 45.1          | 3 399.8               | 51.9                         |
| 011         | 4 4 3 4    | 66.9          | 4 687.6               | 71.4                         |
| 012         | 4 920      | 72.9          | 6 611.4               | 73.2                         |
| 013         | 8 906      | 93.2          | 11 355.1              | 90.1                         |
| 014         | 4 2 3 7    | 61.6          | 7 300.6               | 53.6                         |
| 015         | 1 124      | 56.5          | 1 809.9               | 46.5                         |
| 016         | 1 184      | 99.2          | 1 119.9               | 99.2                         |
| 017         | 1 053      | 98.7          | 1 151.3               | 98.3                         |
| 018         | 1 647      | 97.4          | 1 912.7               | 98.0                         |
| 020         | 3 002      | 99.0          | 4 862.5               | 99.2                         |
| 022         | 2 655      | 99.2          | 4 383.4               | 98.9                         |
| 033         | 2 671      | 99.9          | 3 251.5               | 99.9                         |
| 034         | 2 488      | 96.4          | 3 743.3               | 95.0                         |
| 035         | 821        | 83.7          | 1 497.6               | 79.5                         |
| 036         | 1 680      | 83.6          | 3 021.3               | 79.5                         |
| 037         | 918        | 94.6          | 1 475.3               | 92.6                         |
| 038         | 198        | 99.5          | 242.9                 | 97.1                         |
| 039         | 1 306      | 99.5          | 1 826.5               | 99.4                         |
| 040         | 209        | 97.6          | 338.4                 | 97.0                         |
| 041         | 564        | 57.6          | 993.7                 | 55.0                         |
| 042         | 123        | 9.8           | 259.9                 | 8.5                          |
| 045         | 469        | 40.5          | 1 099.9               | 35.1                         |
| 046         | 375        | 50.1          | 860.5                 | 45.2                         |
| 047         | 1 120      | 53.9          | 2 326.5               | 47.6                         |

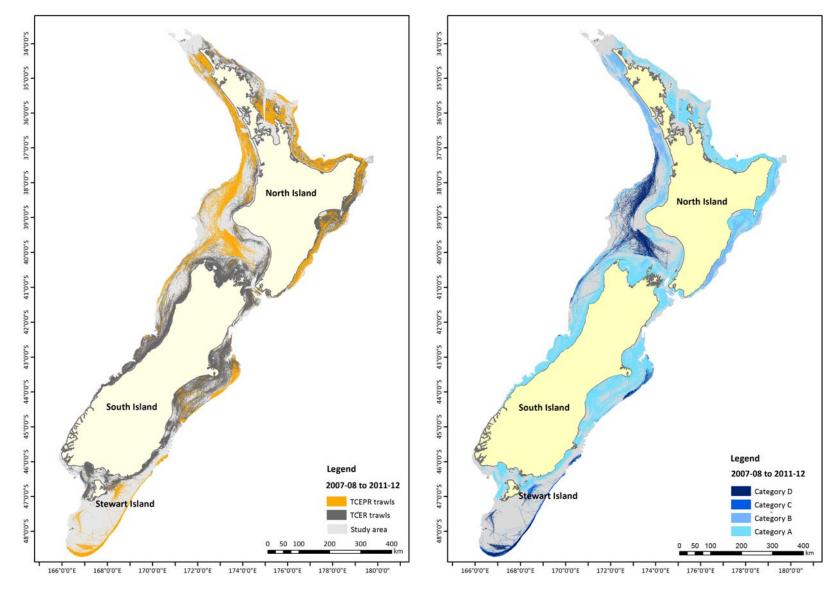



Figure 10: The distribution of trawl effort by form type (left) and by vessel size category (right) within the study area (out to 250 m).

Figure 5.1 in Appendix 5 summarises the annual number of tows and aggregated swept area for the main target species and species groups, by form type. For some target species shown in Figure 5.1, the effort will be on the periphery of a larger fishery that operated beyond 250 m (for example, squid), whereas others should contain most of the target fishing for that species (for example, snapper). Five years is a short period in which to measure a trend in effort, and for most species there is little variation over the five year period, except when the number of tows is relatively low (as for dark ghost shark or hoki, for example). Species that are often fished by the same vessels, such as John dory, red gurnard, snapper, tarakihi, and trevally indicated some differences, with a slight rise overall for tarakihi and red gurnard, little change for snapper, and an apparent decrease in effort for John dory, red cod, and trevally.

The relationship between the number of tows and the aggregated swept area appears to have changed little over the five year period for most species when reported on either form type.

The target species with trawl contact in the greatest number of cells over the five year period are tarakihi, barracouta, red gurnard, and flatfish species. The number of cells contacted by trawl gear for the different target species is influenced by the number of tows for that target species, the extent to which the target species effort is localised, and the relative length of the tow distances for the target species.

#### 3.3 Trawl footprint within the study area

Over the five fishing years, 2007–08 to 2011–12, trawl gear towed by TCER and TCEPR vessels contacted about 113 779.4 km<sup>2</sup> of seafloor (based on the total cell footprint shown in Figure 11). The seafloor area defined by the 250 m contour (the study area) covers approximately 238 668 km<sup>2</sup>. Thus the five year footprint contacts about 47.7% of the study area seafloor.

Within the study area, about 12 371.4 km<sup>2</sup> of seafloor area are closed to trawling (see Section 1); this leaves a seafloor area of 226 296.6 km<sup>2</sup> potentially available to trawling. The five year trawl footprint area represents about 50.3% of the seafloor area available to trawling.

The area contacted in each of the five fishing years varied little and ranged between 45 350 km<sup>2</sup> and 48 323 km<sup>2</sup> (Table 6.1 in Appendix 6), with the annual footprint coverage being equal to about 20% of the available seafloor within the study area. The annual footprints are shown in Figure 12.

Of the 10 283 cells with contact by trawl gear (within the study area during 2008–12), 72.9% were contacted by trawl gear in each of the 5 fishing years, 8.9% in 4 fishing years, 5.9% in 3 years, 5.6% in 2 years, and 6.7% had trawl contact in one year only (Table 7, see Figure 12). For cells with trawl contact in one year only, the maximum number of tows was 9, compared with a maximum of 74 for cells with trawl contact in three years, and the 2884 maximum for cells that had trawl contact in each of the five years. There were few differences in the minimum number of tows, based on the number of years a cell had been contacted (1–5 tows), and the very small areas represented by these tows indicates that they may represent an end of a tow or where a tow crosses a small part of a cell boundary.

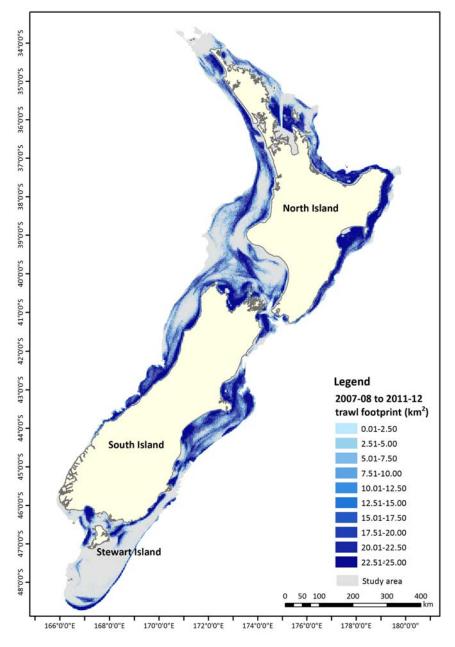



Figure 11: Total five year trawl cell-based footprint for 2007–08 to 2011–12 combined.

| No.   |       |      |      |      | Fishing | years | No. tows per   | Footprint area (km <sup>2</sup> ) | Area      |
|-------|-------|------|------|------|---------|-------|----------------|-----------------------------------|-----------|
| years | 2008  | 2009 | 2010 | 2011 | 2012    | All   | min-max (mean) | min-max (mean)                    | $(km^2)$  |
| 1     | 158   | 157  | 131  | 121  | 124     | 691   | 1-9(1)         | < 0.0001-2.90 (0.30)              | 212.6     |
| 2     | 249   | 153  | 106  | 64   |         | 572   | 2-22 (3)       | < 0.0001-4.40 (0.70)              | 418.5     |
| 3     | 338   | 184  | 89   |      |         | 611   | 3-74 (7)       | 0.0002-13.10 (1.60)               | 953.9     |
| 4     | 727   | 187  |      |      |         | 914   | 4-170 (16)     | 0.0002-19.60 (3.20)               | 2 959.7   |
| 5     | 7 495 |      |      |      |         | 7 49  | 5-2884 (205)   | 0.0028-25.00 (14.60)              | 109 234.5 |
| All   |       |      |      |      | 1       | 0 283 | 1-2884 (152)   | 0.0001-25.00 (11.06)              | 113 779.4 |

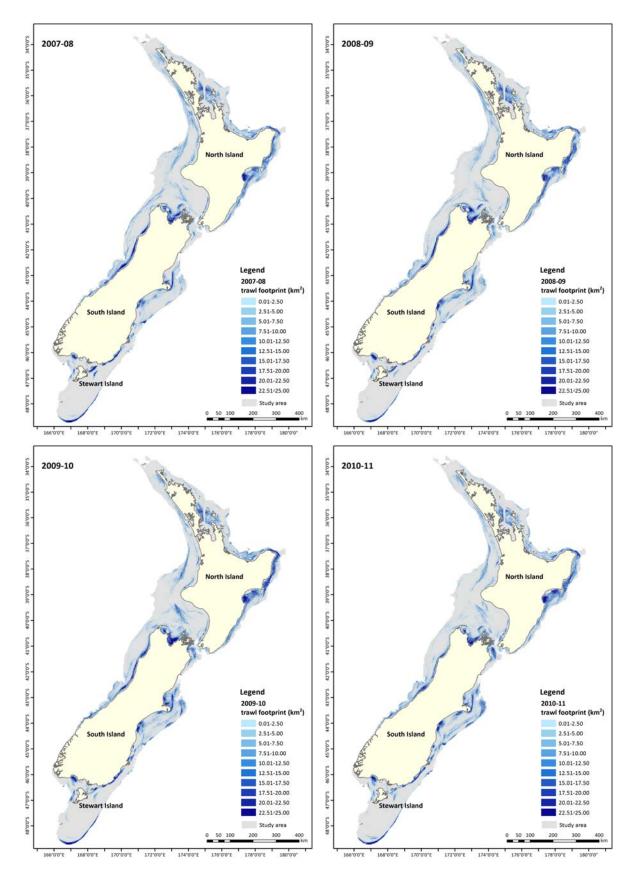



Figure 12: Annual cell trawl footprint for fishing years 2007–08 to 2011–12 and the number of years each cell was contacted by trawl gear.

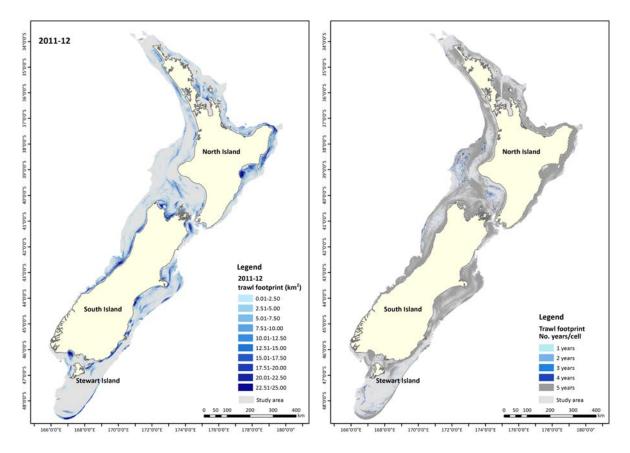



Figure 12 continued.

#### **Target fisheries**

Most of each annual footprint was from effort that targeted tarakihi, jack mackerel, flatfish species, red gurnard, barracouta, snapper, trevally, and red cod, as well as arrow squid, John dory, giant stargazer, blue warehou, and elephant fish (Table 6.1 in Appendix 6). The more concentrated effort for some inshore species is evident in the comparison of the numbers of cells contacted in a year with the extent of the footprint area for a year, for a given target species (Figure 13). This concentrated effort may be because these target species have shorter tows or a more limited range of fishing location. Distribution maps of the total footprint (2007–08 to 2011–12) are given in Figure 6.1 of Appendix 6 for the main target species. Figure 6.2 shows the annual distribution of the number of tows and footprint area for each of the main target species.

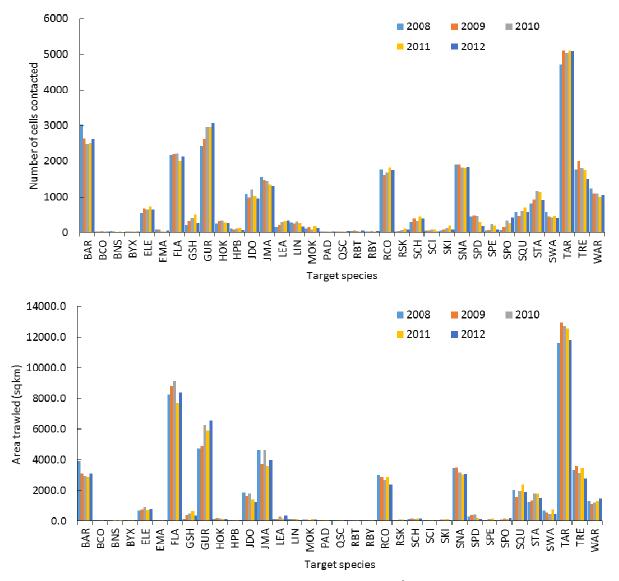



Figure 13: Number of  $5 \times 5$  km cells (upper) and the footprint area (km<sup>2</sup>) (lower) contacted by trawl gear, by the main target species (see Table 3 for the target species code definitions and Tables 5.15 and 6.1 for the annual data).

The maximum number of tows per cell for the total footprint was 2884 tows, but the interquartile range was between 14 and 184 tows per cell, with a median of 68 tows. The maximum footprint coverage within a cell is 25 km<sup>2</sup> (the actual area of the cell), and the interquartile range was between 2.2 and 19.4 km<sup>2</sup>, with a median of 10.3 km<sup>2</sup>. Figures 14 and 15 show the distribution of these total tow numbers and footprint data. Small changes were evident in the total footprint areas between years. There was a 0.4% increase between fishing years 2008 and 2009, 4.9% increase between 2009 and 2010, 4.2% decrease between 2010 and 2011, and a 2.1% decrease between 2011 and 2012 (Table 6.2 in Appendix 6). These changes are shown in Figure 16 for target species with total footprint areas of over 900 km<sup>2</sup>. Most changes are less than 25% except for where those species where the effort (number of tows) is relatively small and the target fishing activity appears to be more sporadic.

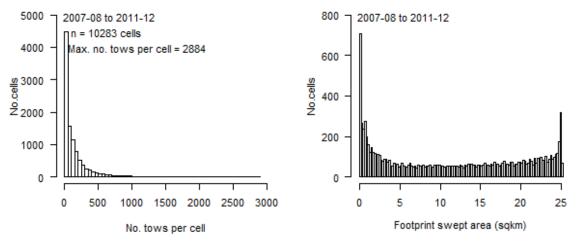



Figure 14: Distribution of the total number of tows per cell and the five year footprint per cell.

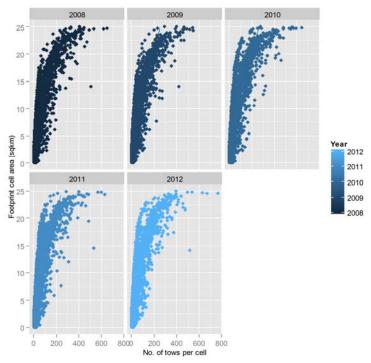



Figure 15: The relationship between the annual cell footprint areas and the number of tows for each cell, for all target species combined.

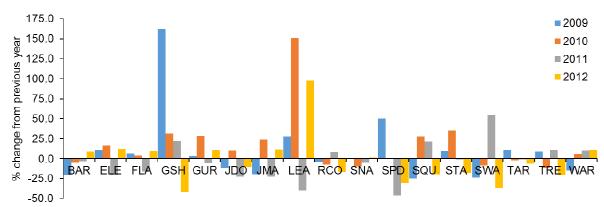



Figure 16: The percentage change between the fishing years in the area of the total footprint for the target species with at least 900 km<sup>2</sup> total footprint (all target data are given in Table 6.2 in Appendix 6). Target species codes are given in Table 3.

#### 3.4 Overlap of five-year trawl footprint on habitats within 250 m

#### 3.4.1 GIS overlay

The shapefile of the habitat classes was imported into the database and linked to the cell grid table containing the number of tows and footprint values for each of the 10 283 cells with trawl contact to create a new database table containing the intersection of the footprint and the habitat classes for each cell. The area ( $km^2$ ) of each habitat class and footprint combination per cell, and the percentage of each habitat class in a cell that was contacted by the total cell footprint, were calculated and stored.

The study area (0–250 m contour) covered about 238 668 km<sup>2</sup>. The habitat layer covered 232 235 km<sup>2</sup> (see Table 1) and includes areas where trawling is prohibited (see section 1). The habitat class layer coverage is less due to the finer resolution of the  $1 \times 1$  km cell-based analysis that generated the BOMEC classes. Figure 17 shows an example of the edge effect created by the habitat class layer.

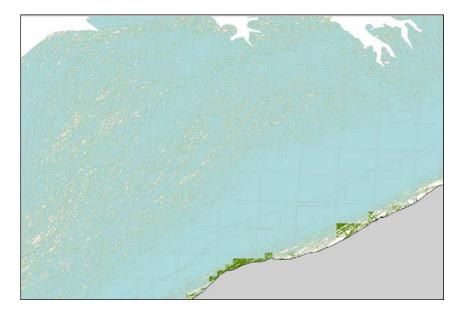



Figure 17: A snapshot of the edge effect created by the habitat class layer resolution of 1 km<sup>2</sup> cells. The cell footprint (green) overlaid by the cell footprint intersection with the habitat class layer (blue), the habitat class layer (fawn), alongside an area of the west coast South Island (grey).

#### 3.4.2 Summary statistics from the overlay of the trawl footprint and habitats

The habitat class layer was overlaid with the trawl footprint (for all fishing years combined and for each fishing year) to provide a combined layer, and this overlay effectively excluded the areas closed to trawling. Based on the 11 BOMEC classes, the three depth zones, and the six sediment types, 108 habitat classes were identified within the study area. The distribution of the footprint by BOMEC class, depth zone, and sediment type is shown in Figure 18.

When the habitat class layer was overlaid by the  $5 \times 5$  km cell-based footprint, it was reduced by 0.5% to 231 031 km<sup>2</sup>. However, in this summary the habitat class area measures used are those given in Table 1. The largest BOMEC classes, by area, were C, E, and A, D, and H (Table 8). About 50% of the habitat class area is in 100–250 m and 45% is covered by sand.

After the overlay, the total footprint coverage was reduced by 1.2% to 112 422.5 km<sup>2</sup>. At the scale of the BOMEC classification, the five year trawl footprint contacted at least 30%, and as much as 64.4%, of the area of the largest classes (see Table 8). The annual variation of the trawl footprint coverage of each habitat class is shown in Figure 19 (see Table 7.1 in Appendix 7 for the underlying data of the overlay of the annual trawl footprints on each habitat class).

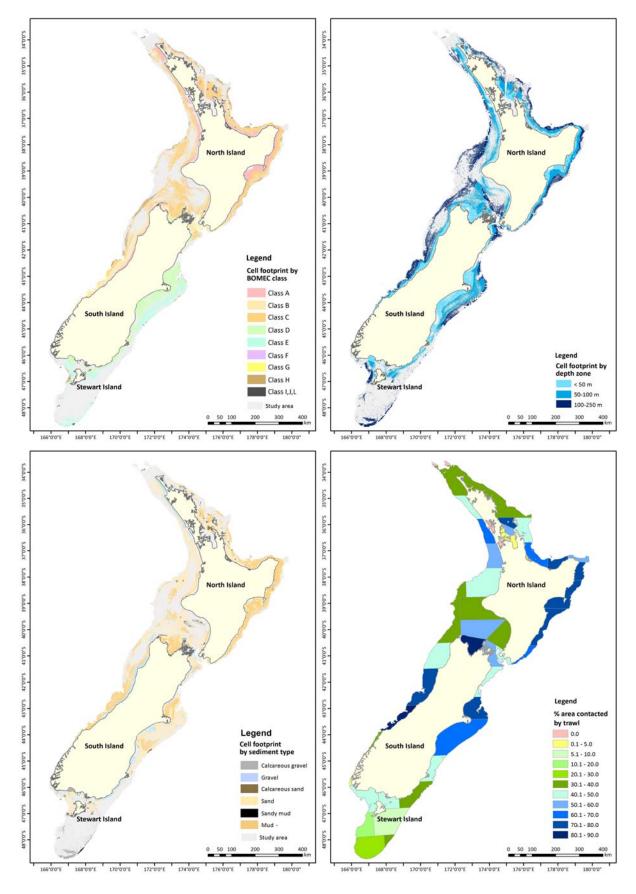



Figure 18: Distribution of the five year trawl footprint by BOMEC class (upper left), depth zone (upper right), and sediment type (lower left) and percentage of each Statistical Area (or part of, within the study area) contacted by trawl gear during 2007–08 to 2011–12.

Where classes included in the study area are represented by a relatively small area – often as patches of seafloor – the trawl footprint may cover a higher proportion of the available area, such as with classes I and L, or a lesser proportion, as with classes F and J. All these classes are on the deeper edge of the study area.

| Table 8: Areas* of the separate habitat classes and areas† of the five year trawl footprint in each habitat |
|-------------------------------------------------------------------------------------------------------------|
| class, for the BOMEC classes, depth zones, and sediment types, and the percentage of the five year trawl    |
| footprint in each class.                                                                                    |

| Habitat class<br>descriptors<br>BOMEC class | Habitat class<br>area (km <sup>2</sup> ) | Total footprint (km <sup>2</sup> ) | % area with trawl contact |
|---------------------------------------------|------------------------------------------|------------------------------------|---------------------------|
| А                                           | 27 375.2                                 | 14 047.1                           | 52.1                      |
| В                                           | 12 318.8                                 | 9 322.3                            | 75.7                      |
| С                                           | 89 560.4                                 | 47 120.0                           | 52.6                      |
| D                                           | 25 513.1                                 | 16 344.7                           | 64.4                      |
| E                                           | 47 186.8                                 | 13 890.6                           | 29.6                      |
| F                                           | 381.7                                    | 73.2                               | 21.1                      |
| G                                           | 3 898.4                                  | 1 902.9                            | 50.8                      |
| Н                                           | 25 204.4                                 | 9 228.1                            | 36.8                      |
| Ι                                           | 473.2                                    | 340.8                              | 72.0                      |
| J                                           | 133.9                                    | 31.3                               | 30.0                      |
| L                                           | 188.9                                    | 121.5                              | 67.6                      |
| Depth zone                                  |                                          |                                    |                           |
| < 50 m                                      | 50 781.3                                 | 29 529.4                           | 58.8                      |
| 50–100 m                                    | 63 493.9                                 | 37 375.2                           | 59.1                      |
| 100–250 m                                   | 117 959.8                                | 45 517.9                           | 38.7                      |
| Sediment type                               |                                          |                                    |                           |
| Sand                                        | 104 830.2                                | 54 851.9                           | 52.4                      |
| Mud                                         | 72 518.1                                 | 41 001.8                           | 57.0                      |
| Gravel                                      | 18 530.0                                 | 9 339.3                            | 50.6                      |
| Sandy mud                                   | 203.4                                    | 203.4                              | 99.98                     |
| Calcareous sand                             | 6 763.7                                  | 2 080.7                            | 31.3                      |
| Calcareous gravel                           | 29 389.5                                 | 4 945.4                            | 17.0                      |
| All                                         | 232 235.0                                | 112 422.5                          | 48.4                      |

\* The area measures for the habitat classes are from Table 1 (i.e., they include any seafloor closed to trawling).

<sup>†</sup> The area measures for the five year footprint are from the overlay and represent 98.8% of the total footprint.

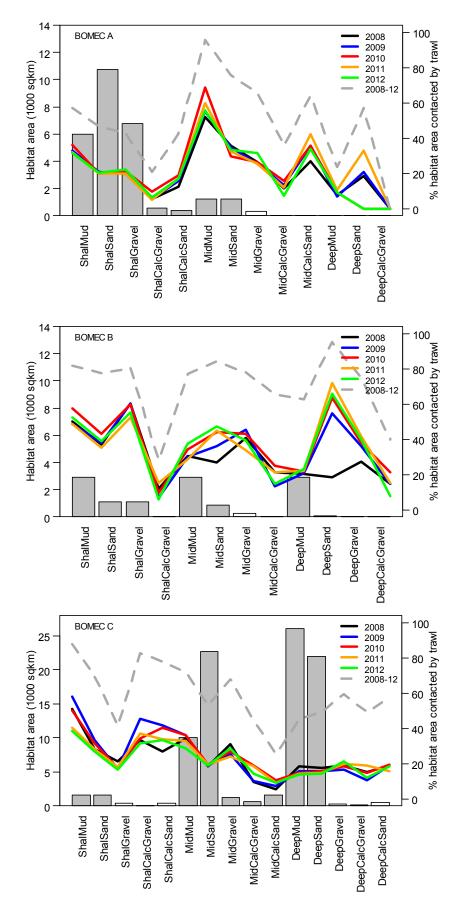
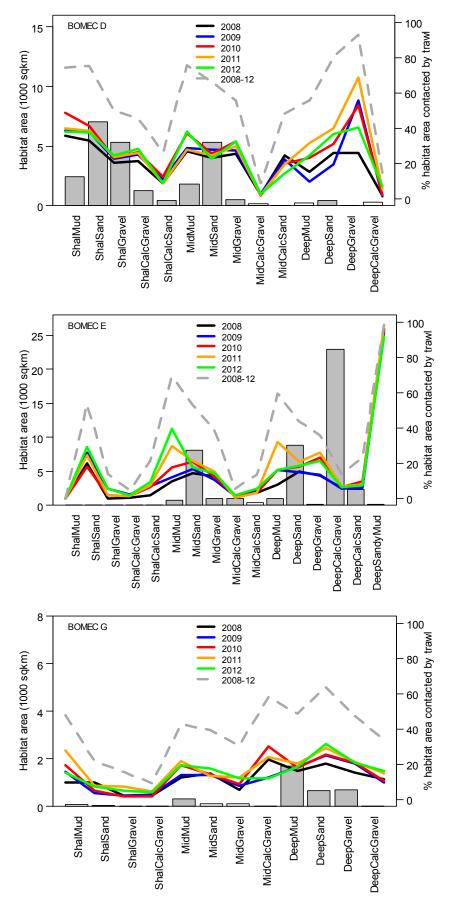
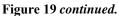





Figure 19: The habitat class (depth zone-sediment type) area of each BOMEC class (bars) and the percentage of each class contacted by the trawl footprint, by fishing year and for all years combined.





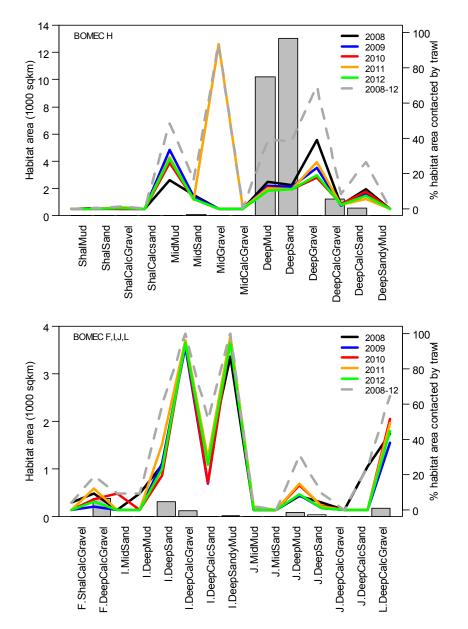



Figure 19 *continued*. Note that in the lower figure the BOMEC classes F, I, J, and L are displayed on the same figure.

## 3.5 GIS output from the overlay of the trawl footprint and habitat classes

This section describes the GIS outputs requested by MPI. These outputs are available on DVD. To request these outputs, please email: science.officer@mpi.govt.nz.

## **Disk contents**

The files on this disk are provided as part of the output of the MPI project BEN2012-01 completed by NIWA. The files represent the GIS output from the bottom-contact trawl fishing effort for the 2007–08 and 2011–12 fishing years described in previous sections. These outputs are stored in three sub-directories.

1. **Figures** contains high resolution annotated maps using an equal area projection showing  $5 \times 5$  km cells coloured by the number of fishing events in each cell. The colour bands are assigned equal numbers of cells per band, with the top 10 cells highlighted with a red circle.

The filename comprises the three letter species code (or "ALL" for all species combined), followed by an underscore, followed by the fishing year (or "ALL" for all years combined), followed by an underscore, followed by "fig.png". The maps are also annotated with the species code (see Table 3) and year. The 0–250m shelf region is plotted as a green layer, so any unfished cells will show as green. Green polygons representing various areas closed to trawling are included.

- 2. **Maps** contains similar images as contained in **Figures**, and a 'world file' for each image, which is used by mapping and GIS software to determine the geographic extent of the image and place it correctly on an interactive map. This process enables the maps to be displayed and used in GIS software, such as ArcGIS or QGIS, along with other data layers, such as fishery reporting areas, etc. The naming convention is as described above, but with "map" instead of "fig". To provide a tidier visual map layer, there is less annotation than the figures. The images are rendered in a Cartesian latitude/longitude grid, which will be correctly rendered on screen as a map by GIS software.
- 3. **Shapefiles** contains zipped shapefiles, with a similar naming scheme to that described above, ending in "\_shp.zip". Each feature in the shapefile is a cell footprint, representing the estimated area swept within each cell, by fishing events for each target species and fishing year. These can be unzipped and opened in a mapping or GIS tool for display and use.

For users of these data who do not already have GIS software to display the GIS map images and shapefiles, a copy of the Open Source GIS application, QGIS is included. You will need administrator rights on your Windows PC to run the QGIS standalone installer. Version 2.2 is provided. For those users desiring a later version of the software, or who want to install a non-Windows version, see the QGIS web site at http://www.qgis.org.

# 4. SUMMARY OF NON-TRAWL BOTTOM-CONTACT FISHING METHODS IN THE STUDY AREA

Summaries of dredge oyster and scallop fisheries and Danish seine fisheries, within the study area, are given in Appendix 8 and Appendix 9, respectively. These summaries are preliminary and are based on limited grooming of the effort data, for the same time period as the trawl summary: 1 October 2007 to 30 September 2012. All these fisheries are subject to fishing area and gear restrictions which are not summarised in this report.

The dredge oyster data include both the Foveaux Strait fishery and the Challenger fishery. Scallop data are for the Challenger fishery, and the northern Coromandel and Northland fisheries (see Appendix 8).

The Danish seine data represent effort around the North and South islands, for target species such as snapper (36% of sets), red gurnard (21%), flatfish species (19%), tarakihi (8%), red cod (6%), John dory (6%), and rig (2%). About 5000–5500 sets were reported each year, and most effort was in eastern waters in Statistical Areas 003, 005, 006, 008, 009, 020, and 022, as well as 038 and 047 (areas are shown in Figure 2.3). Summaries are given in Appendix 9.

## 5. DISCUSSION

The 108 benthic habitat classes identified and described in this study were defined by three main data sources used as GIS layers: a subset of the BOMEC generated from modelling relevant distributions of environmental variables and groups of benthic organisms; a broad sediment type layer indicating areas of sand, mud, and gravels; and three depth zones to distinguish waters less than 50 m, 50–100 m, and 100–250 m deep. Presented on a 1 km<sup>2</sup> grid, these classes represented about 232 235 km<sup>2</sup> of seafloor in the study area defined by waters shallower than 250 m around North Island, South Island, and Stewart Island.

The overlap of bottom-contact trawl effort with these benthic habitat classes was assessed in terms of the number of tows and the area swept by the trawl gear, based on trawl data records from the 2007– 08 to the 2011–12 fishing years. Trawl effort from two different data sources were used – one which had reported start and finish positions (Trawl Catch Effort Processing Returns) and one that had only tow start positions (Trawl Catch Effort Returns). For the former, the tow trackline was generated as a straight line between the start and finish. For the latter, tow endpoints were estimated using the bearing to the next tow and the distance measure calculated from the reported tow duration and the tow speed. Where there was no next tow (that is, the tow was the ony tow or the last tow of a trip), the bearing was estimated from other nearby tows with the same target species. Swept area estimates were generated from generic doorspread values and the tracklines and applied to a  $5 \times 5$  km grid to provide summary statistics of the number of tows, the aggregated swept area, and the trawl contact area (footprint) by target species, year, and Statistical Area. This trawl effort targeted about 48 different species or species groups and similar amounts of effort were reported each year, with little overall difference in the estimated annual swept areas. The primary target species were flatfish, tarakihi, snapper, red gurnard, jack mackerel, barracouta, trevally, and John dory.

The trawl footprint for each year and for all five years combined was created for all target species and overlaid on the habitat classes to get a measure of the coverage of habitat classes by trawl gear. The total five year trawl footprint contacted about 113 800 km<sup>2</sup>. Annual trawl footprints were in the range of 45 000–48 000 km<sup>2</sup>, and the percentage change from year to year was generally between -4.2 and 4.9% due to a peak year in 2010 mainly as a result of an increase in effort for red gurnard.

This development of a trawl footprint for the inshore fishing effort provides a base on which to develop a footprint for the combined Territorial Sea and EEZ waters to encompass all bottom-contact trawl fishing effort. Currently, there is a 'deepwater' trawl footprint that includes TCEPR data only, with records from both the Territorial Sea and the EEZ, summarised by 400 m depth zones to a maximum of 1600 m (Black et al. 2013). The estimated annual 'deepwater' trawl footprints for three fishing years, 2007–08 to 2009–10 (that are also represented in this report), are between about 60 000 and 50 000 km<sup>2</sup> (from figure 34, Black et al. 2013). For the same fishing years, the 250 m study area annual trawl footprints (which is likely to include shallow TCEPR data of the 'deepwater' footprint) were about 46 000–48 000 km<sup>2</sup>.

About 48% of the area covered by all the habitat classes was contacted by the five year trawl footprint. About 59% of the seafloor in depths of less than 50 m and 50–100 m were contacted by the five year trawl footprint compared with 39% of the 100–250 m depth zone. The percentage of the sediment types covered by the footprint varied, with about 50–58% of the three main sediment types (sand, mud, and gravel) contacted over the five years, 31% of calcareous sand, and about 19% of calcareous gravel. Five of the largest BOMEC classes (those with areas between 25 000 and 89 500 km<sup>2</sup> within the study area) had between 30 and 64% of their total area contacted by the five year trawl footprint.

The attempt to test how the benthic habitat classes might be affected by the physical contact from bottom trawling, through measures of sensitivity of benthic organisms, provided inconsistent results. Tests of the distributions of the benthic organisms from two independent sources showed little support for a difference in sensitivity to, or recovery from trawling of any of the habitat classifications trialled.

All the tests indicated a low degree of consistency in sensitivity or recoverability between the two data sources. Neither depth or sediment type created discrete sensitive habitat classes within the BOMEC classes, and subsets based on the depth zone or sediment type did not have lower variability in sensitivity levels. When the benthic habitat classes were combined with the Statistical Areas to provide a more geographic-based analysis, there was evidence of difference in sensitivity values of different BOMEC classes. Analyses of the recoverability data indicated different categorisation of habitat classes according to the source of the data.

## Limitations and recommendations

The 'best available' data sources used in this attempt to provide some definition of the benthic habitat classes within the 250 m were ill-suited for the task. The development of the 15-class BOMEC, with respect to conditions favourable to benthic organisms and communities, relied heavily on use of biological data from research surveys beyond the 250 m contour, from deeper water areas of varying topography and substrates and under the influence of large oceanographic movements. The outer depth extent of the BOMEC (to 3000 m depths) and thus the influence of some of the environmental variables limited the value in describing the coastal waters at a meaningful scale for inshore habitats. The sediment layers were relatively coarse in their description and resolution.

The depth variable was the major influence in the development of 15-class BOMEC (Leathwick et al. 2012); however, the additional spatial separation by the three depth zones in this study provided some way in which to classify the BOMEC-sediment classes that was relevant to the depth ranges of many of the main target species represented in the fishing effort data. Attempting to define 'habitats' for this area of the continental shelf over a relatively large latitudinal gradient is also problematic, particularly with respect to identifying communities that may exist in different benthic habitat classes.

As new information is made available through current habitat and sediment studies, there may be opportunities to define benthic habitats, particularly those more sensitive to modification by fishing gears. In their recent review of biogenic habitats in New Zealand waters, Morrison et al. (2014a) suggest several areas of research to enable a better understanding of the links between marine species and seafloor habitats. These include improved habitat modelling and a better understanding of threats and stressors.

Certainly, a new environmental classification focussed on relevant (and more localised) variables, including a finer definition of the underlying geomorphology and biological data that are most relevant to the coastal continental shelf environments, could be the next step to better define the seafloor habitats affected by inshore commercial fisheries. However, consideration must also be given to the management objectives within a process designed to define a marine classification. For example, the use here of existing and available data to 'describe' benthic habitat classes resulted in a large number of 'habitat' classes within the study area. Whatever methodology and descriptors are used to define benthic habitat, there will always be a problem of scale for an area as large as this study area. Environmental data need to be modelled at a scale more relevant to that of the data collection of the biological data, and perhaps habitat classes need to be derived at more regional or local scales.

The extent to which sensitivity of organisms to fishing disturbance can be determined is dependent on the input data - on which organisms exist within which habitats, on what is known or understood about the organisms in terms of their life history and biological traits, and what is known or understood about the way in which, and how often, the fishing gear modifies the environment. Again, the scale of the input data will vary hugely for each data source.

The development of the trawl fishing footprint relies on certain assumptions (see Baird et al. 2011). The analysis presented here makes use of the TCER data for the first time in the development of an 'inshore' footprint. These TCER data represent the majority (78.6%) of the total trawl effort over the five year period, but the use of the form varies by area (Figure 20). The parameters that are used to determine the spatial placement of each tow in the TCER data are in part provided by the data and in

part determined from assumed fishing behaviour. However, these estimated trawl tracks do show similarity in placement to that of the TCEPR data for any given target species effort. Although there may be more uncertainty in the spatial placement of the estimated swept areas for TCER tows, compared with that for the TCEPR tows (where a finish position is reported, there is room for greater uncertainty in all the estimates given the underlying assumptions used to develop a trackline (for example, assume a straight line and generic values for gear width) and the resolution of the start and finish position data.

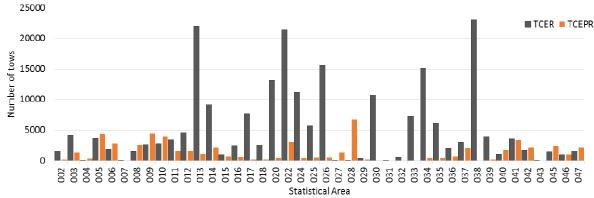
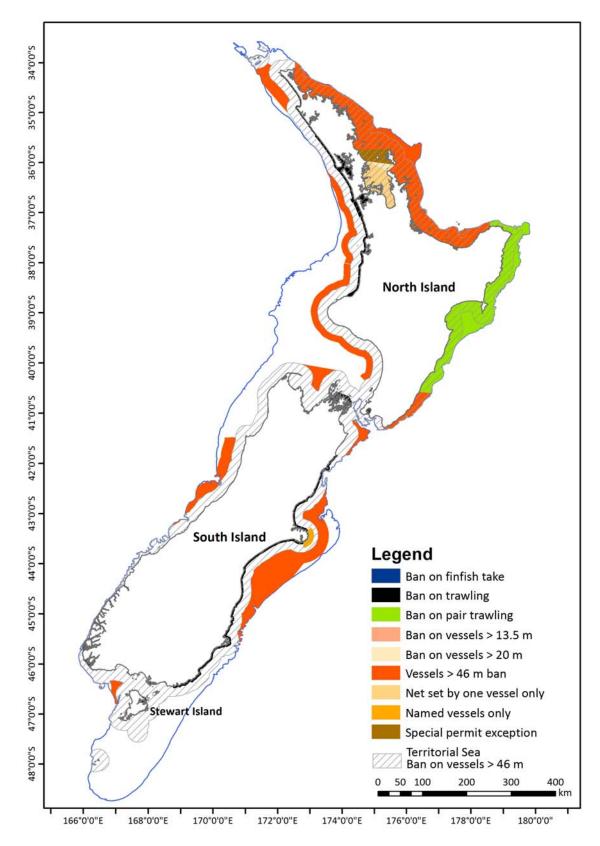



Figure 20: The number of TCER and TCEPR tows reported by Statistical Area, 2007–08 to 2011–12.

This measure of the area swept by trawl gear does not include other bottom-contact commercial fishing gears. The shellfish dredge and Danish seine effort is not available at the level of an individual event and has simply been summarised as the number of tows or sets within fishery-specific Statistical Areas. In some areas where shellfish dredging or Danish seining occurred, it is possible that the seafloor was contacted by trawl gear as well as dredge or seine gear. The trawl effort presented here represents about 52% of the total bottom-contact effort within the study area, in terms of the number of trawl tows, dredge tows, and Danish seine sets during 2007–08 to 2011–12 (about 545 195 tows and sets).

## 6. ACKNOWLEDGMENTS

This work was funded by the Ministry for Primary Industries under project BEN2012-01. Thanks to Richard Ford and Martin Cryer (MPI) and Ian Tuck (NIWA) for their discussions on methodology and also to Neil Bagley (NIWA) for expert knowledge and experience. Thanks to the Department of Conservation for the provision of habitat layers initially considered for this work and to MPI for the use of the BOMEC layers. Thanks also to the MPI RDM for provision of the trawl effort data, the benthic *trawl* data, and the GIS layers relating to fisheries management, and to NIWA for the provision of the *specify* data. Many thanks also to Ian Tuck (NIWA) and Richard Ford and Marianne Vignaux (MPI) for their helpful comments and reviews of this report.


## 7. REFERENCES

- Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of variance. *Austral Ecology* 26: 32–46.
- Astles, K.L.; Holloway, M.G.; Steffe, A.; Green, M.; Ganassin, C.; Gibbs, P.J. (2006). An ecological method for qualitative risk assessment and its use in the management of fisheries in New South Wales, Australia. *Fisheries Research* 82: 290–303.
- Bagley, N.W.; Hurst, R.J. (1996). Trawl survey of middle depth and inshore bottom species off Southland, February-March 1996 (TAN9604). New Zealand Fisheries Data Report 77. 51 p.
- Baird, S.J.; Bagley, N.W.; Wood, B.A.; Dunn, A.; Beentjes, M. (2002). The spatial extent and nature of mobile bottom fishing methods within the New Zealand EEZ, 1989–90 to 1998–99.
  [Draft final research report prepared for the Ministry of Fisheries as completion of ENV2000/05.] 36 p. plus appendices.
- Baird, S.J.; Wood, B.A.; Bagley, N.W. (2011). Nature and extent of commercial fishing effort on or near the seafloor within the New Zealand 200 n. mile Exclusive Economic Zone, 1989–90 to 2004–05. New Zealand Aquatic Environmental and Biodiversity Report No. 73. 48 p. plus appendices.
- Baird, S.J.; Wood, B.A.; Clark, M.R.; Bagley, N.W.; McKenzie, A. (2006). Description of the spatial extent and nature of disturbances by bottom trawls in Chatham Rise and Southern Plateau fisheries. [Draft final research report prepared for the Ministry of Fisheries as completion of ENV2000/05.] 139 p.
- Baird, S.J.; Wood, B.A. (2012). Extent of coverage of 15 environmental classes within the New Zealand EEZ by commercial trawling with seafloor contact. *New Zealand Aquatic Environment and Biodiversity Report No.* 89. 43 p.
- Beentjes, M.P.; Baird, S.J. (2004). Review of dredge fishing technologies and practice for application in New Zealand. *New Zealand Fisheries Assessment Report 2004/37*. 40 p.
- Beentjes, M.P.; MacGibbon, D.J.; Lyon, W.S. (2013). Inshore trawl survey of Canterbury Bight and Pegasus Bay, April–June 2012, (KAH1207). New Zealand Fisheries Assessment Report 2013/36.
- Black, J.; Wood, R.; Berthelsen, T; Tilney, R. (2013). Monitoring New Zealand's trawl footprint for deepwater fisheries: 1989–1990 to 2009–2010. New Zealand Aquatic Environment and Biodiversity Report No. 110. 57 p.
- Brown, C.J.; Smith, S.J.; Lawton, P.; Anderson, J.T. (2011). Benthic habitat mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. *Estuarine, Coastal and Shelf Science* 92: 502–520
- Campbell, M.L.; Gallagher, C. (2007). Assessing the relative effects of fishing on the New Zealand marine environment through risk analysis. *ICES Journal of Marine Science* 64: 256–270.
- Clark, M.R.; Stokes, K.; Baird, S.J. (in revision). Review of ecological risk assessment approaches relevant to New Zealand deepwater fisheries. Draft Aquatic Environment and Biodiversity report prepared for Ministry for Primary Industries under project DEE2010-04.
- Clark, M.R.; Williams, A.; Rowden, A.A.; Hobday, A.J.; Consalvey, M. (2011). Development of seamount risk assessment: application of the ERAEF approach to Chatham Rise seamounts. *New Zealand Aquatic Environment and Biodiversity Report No.* 74. 18 p.
- Clarke, K.R.; Gorley, R.N. (2006). PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.
- Clement & Associates Limited (2008): New Zealand inshore trawl gear and operations survey. Report prepared for Seafood Innovations Limited and the New Zealand Seafood Industry Council Limited. Available online at http://www.seafoodinnovations.co.nz. 31 p.
- Collie, J.S.; Escanero, G.A.; Valentine, P.C. (1997). Effects of bottom fishing on the benthic megafauna of Georges Bank. *Marine Ecology Progress Series* 155:159–172.

- Connor, D.W.; Allen, J.H.; Golding, N.; Howell, K.L.; Lieberknecht, L.M.; Northen, K.O; Reker, J.B. (2004). The Marine Habitat Classification for Britain and Ireland. Version 04.05 JNCC, Peterborough. Available online at http://jncc.defra.gov.uk/MarineHabitatClassification.
- Cryer, M.; Parkinson, D.M. (2006). Biomass surveys and stock assessments for the Coromandel and Northland scallop fisheries, 2005. New Zealand Fisheries Assessment Report 2006/34. 53 p.
- Cutter, S.L. (1996). Vulnerability to environmental hazards. *Progress in Human Geography 20 (4)*: 529–539.
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. (2003). Social vulnerability to environmental hazards. *Social Science Quarterly* 84(2): 242–261.
- de Grave, S.; Whitaker, A. (1999). Benthic community re-adjustment following dredging of a muddymaerl matrix. *Marine Pollution Bulletin 38*: 102–108.
- de Juan, S.; Demestre, M.; Thrush, S. (2009). Defining ecological indicators of trawling disturbance when everywhere that can be fished is fished: A Mediterranean case study. *Marine Policy* 33: 472–478.
- Department of Conservation and Ministry of Fisheries (2011). Coastal marine habitats and marine protected areas in the New Zealand Territorial Sea: a broad scale gap analysis. Volume 1 (Appendices 1–6), Volume 2 (Appendix 7), and Volume 3 (Appendix 8). Available online at www.doc.govt.nz.
- FDGC (2012). Coastal and Marine ecological classification standard. Federal Geographic Data Committee Report FGDC-STD-018-2012. 343 p.
- Fletcher, W.J. (2005). The application of qualitative risk assessment methodology to prioritise issues for fisheries management. *ICES Journal of Marine Science* 62: 1576–1587.
- Francis, R.I.C.C.; Shotton, R. (1997). 'Risk' in fisheries management: a review. *Canadian Journal of Fisheries and Aquatic Sciences* 54: 1699–1715.
- Greene, H.G.; Yoklavich, M.M.; Starr, R.M.; O'Connell, V.M.; Wakefield, W.W.; Sullivan, D.E.; McRea, J.E. Jr.; Cailliet, G.M. (1999). A classification scheme for deep seafloor habitats. *Oceanologica Acta. Vol 22(6)*: 663–678.
- Guerra-Garcia, J.M.; Corzo, J.; Garcia-Gomez, J.C. (2003). Short-term benthic re-colonisation after dredging in the harbour of Ceuta, North Africa. *P.S.Z.N.:Marine Ecology* 24(3): 217–229.
- Hartill, B.; Williams, J.R. (2014). Characterisation of the Northland Scallop fishery (SCA 1), 1989–90 to 2010–11. *New Zealand Fisheries Assessment Report 2014/26*. 43 p.
- Hewitt, J.E.; Julian, K.; Bone, E.K. (2011). Chatham–Challenger Ocean Survey 20/20 Post-Voyage Analyses: Objective 10 – Biotic habitats and their sensitivity to physical disturbance. New Zealand Aquatic Environment and Biodiversity Report 81. 35 p.
- Hewitt, J.E.; Thrush, S.F.; Dayton, P.D. (2008). Habitat variation, species diversity and ecological functioning in a marine system. *Journal of Experimental Marine Biology and Ecology* 366: 116–122.
- Hiscock, K.; Tyler-Walters, H. (2006). Assessing the Sensitivity of Seabed Species and Biotopes–The Marine Life Information Network (MarLIN). *Hydrobiologia* 555(1): 309–320.
- Hobday, A.J.; Smith, A.D.M.; Stobutzki, I.C.; Bulman, C.; Daley, R.; Dambacher, J.M.; Deng, R.A.; Dowdney, J.; Fuller, M.; Furlani, D.; Griffiths, S.P.; Johnson, D.; Kenyon, R.; Knuckey, I.A.; Ling, S.D.; Pitcher, R.; Sainsbury, K.J.; Sporcic, M.; Smith, T.; Turnbull, C.; Walker, T.I.; Wayte, S.E.; Webb, H.; Williams, A.; Wise, B.S.; Zhou, S. (2011). Ecological risk assessment for the effects of fishing. *Fish and Fisheries 108*: 372–384.
- Kaiser, M.J.; Clarke, K.R.; Hinz, H.; Austen, M.C.V.; Somerfield, P.J.; Karakassis, I. (2006). Global analysis of response and recovery of benthic biota to fishing. *Marine Ecology Progress Series 311*: 1–14.
- Kasperson, J.X.; Kasperson, R.E.; Turner, B.L. II (Eds.) (1995). Regions at Risk: Comparisons of Threatened Environments. United Nations University Press, Tokyo.

- Leathwick, J.; Dey, K.; Julian, K. (2006). Development of an environmental classification optimised for demersal fish. NIWA Client Report: HAM2006-063. 20p. Available online at http://www.doc.govt.nz/upload/documents/conservation/marine-and-coastal/marineprotected-areas/MCU1.pdf
- Leathwick, J.R.; Rowden, A.; Nodder, S.; Gorman, R.; Bardsley, S.; Pinkerton, M.; Baird, S.J.; Hadfield, M.; Currie, K.; Goh, A. (2012). A benthic-optimised marine environment classification (BOMEC) for New Zealand waters. *New Zealand Aquatic Environment and Biodiversity Report No.* 88. 54 p.
- Madden, C.J.; Grossman, D.H.; Goodin, K.L. (2005). Coastal and Marine Systems of North America: Framework for an Ecological Classification Standard: Version II. NatureServe, Arlington, VA. 48 p.
- McDougall, P.T.; Janowicz, M.; Taylor, R.F. (2007). Habitat Classification in the Gulf of Maine: A Review of Schemes and a Discussion of Related Regional Issues. Gulf of Maine Council on the Marine Environment.
- MarLIN, 2005. Marine Life Information Network. Biology and Sensitivity Key Information Reviews. Marine Biological Association of the United Kingdom: Plymouth. Available online at www.marlin.ac.uk.
- MAF (2011). Aquatic environment and biodiversity annual review 2011. Ministry of Agriculture and Fisheries, Wellington. 199 p.
- Michael, K. (2008). The Foveaux Strait ecosystem and effects of oyster dredging. *NIWA Information Series No.* 68. Available online at: http://webcat.niwa.co.nz/documents/NIWAis68.pdf
- Ministry of Fisheries and Department of Conservation (2008). Marine Protected Areas: Classification, Protection Standard and Implementation Guidelines. Wellington, NZ: Ministry of Fisheries and Department of Conservation. Available at: <u>http://www.biodiversity.govt.nz/p</u> <u>dfs/seas/MPA-classification-protection-standard.pdf.</u>
- Ministry for Primary Industries (2013). Fisheries Assessment Plenary, Volume 1, November 2013: stock assessments and yield estimates. Compiled by the Fisheries Science Group, Ministry for Primary Industries, Wellington, New Zealand. 611 p.
- Mitchell, J.S.; Shipboard Party. (2009). Ocean Survey 20/20 Bay of Islands Coastal Project Phase 1 Factual Voyage Report TAN0906. WLG2009–56. [NIWA Client Report prepared for LINZ available online at: <u>http://www.os2020.org.nz.</u>] 85 p.
- Morrison, M.; Bagley, N.; Beaumont, J.; Nodder, S. (2009a). Ocean Survey 20/20 Bay of Islands Coastal Project – Phase 2 Factual Voyage Report KAH0907. WLG2009–80. [NIWA Client Report prepared for LINZ available online at: http://www.os2020.org.nz.] 62 p.
- Morrison, M.A.; Jones, E.G.; Consalvey, M.; Berkenbusch, K. (2014a). Linking marine fisheries species to biogenic habitats in New Zealand: a review and synthesis of knowledge. *New Zealand Aquatic Environment and Biodiversity Report No. 130.* 156 p.
- Morrison, M.A.; Jones, E.G.; Parsons, D.M.; Grant, C.M. (2014b). Habitats and areas of particular significance for coastal finfish fisheries management in New Zealand: a review of concepts and life history knowledge, and suggestions for future research. *New Zealand Aquatic Environment and Biodiversity Report No. 125.* 202 p.
- Morrison, M.A.; Lowe, M.L.; Parsons, D.M.; Usmar, N.R.; McLeod, I.M. (2009b). A review of landbased effects on coastal fisheries and supporting biodiversity in New Zealand. *New Zealand Aquatic Environment and Biodiversity Report No. 37*. 100 p.
- Penney, A. (2011). Mapping of High Seas bottom fishing effort data: Purposes, problems and proposals. Paper SP-10-DW-02 Rev1, 10th Meeting of the SPRFMO Scientific Working Group, Vanuatu, September 2011. 19 p. Available http://www.southpacificrfmo.org/tenthswg-meeting.

- Przeslawski, R.; Currie, D.R.; Sorokin, S.J.; Ward, T.M.; Althaus, F.; Williams, A. (2011). Utility of a spatial habitat classification system as a surrogate of a marine benthic community structure for the Australian margin. *ICES Journal of Marine Science* 68(9): 1954–1962.
- Queirós, A.M.; Hiddink, J.G.; Kaiser, M.J.; Hinz, H. (2006). Effects of chronic bottom trawling disturbance on benthic biomass, production and size spectra in different habitats. *Journal of Experimental Marine Biology and Ecology 335*: 91–104.
- Richard, Y.; Abraham, E. (2013). Risk of commercial fisheries to New Zealand seabird populations. *New Zealand Aquatic Environment and Biodiversity Report No. 109.* 58p.
- Rijnsdorp, A.D.; Buys, A.M.; Storbeck, F.; Visser, E.G. (1998). Micro-scale distribution of beam trawl effort in the southern North Sea between 1993 and 1996 in relation to the trawling frequency of the sea bed and the impact on benthic organisms. *ICES Journal of Marine Science* 55: 403–419.
- Roff, J.C.; Taylor, M.E. (2000). National frameworks for marine conservation a hierarchical geophysical approach. *Aquatic Conservation: Marine and Freshwater Ecosystems* 19: 209–223.
- Snelder, T.H.; Leathwick, J.R.; Dey, K.L.; Rowden, A.A.; Weatherhead, M.A.; Fenwick, G.D.; Francis, M.P.; Gorman, R.M.; Grieve, J.M.; Hadfield, M.G.; Hewitt, J.E.; Richardson, K.M.; Uddstrom, M.J.; Zeldis, J.R. (2006). Development of an ecological marine classification in the New Zealand region. *Environmental Management 39*: 12–29.
- Stark, J.D.; Maxted, J.R. (2007). A biotic index for New Zealand's soft-bottomed streams. *New Zealand Journal of Marine and Freshwater Research 41*: 43–61.
- Thrush, S.; Dayton, P. (2002). Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. *Annual Review of Ecology and Systematics* 33: 449–473.
- Thrush, S.F.; Hewitt, J.E.; Cummings, V.J.; Dayton, P.K.; Cryer, M.; Turner, S.J.; Funnell, G.A.; Budd, R.G.; Milburn, C.J.; Wilkinson, M.R. (1998). Disturbance of the marine benthic habitat by commercial fishing: impacts at the scale of the fishery. *Ecological Applications* 8(3): 866–879
- Tuck, I.; Drury, J.; Kelly, M.; Gerring, P. (2010). Designing a programme to monitor the recovery of the benthic community between North Cape and Cape Reinga. New Zealand Aquatic Environment and Biodiversity Report No. 53. 78 p.
- Tuck, I.; Hewitt, J. (2013). Monitoring change in benthic communities in Spirits Bay. New Zealand Aquatic Environment and Biodiversity Report No. 111. 52 p.
- Tyler-Walters, H.; Rogers, S.I.; Marshall, C.E.; Hiscock, K. (2009). A method to assess the sensitivity of sedimentary communities to fishing activities. *Aquatic Conservation: Marine and Freshwater Ecosystems* 19: 285–300.
- U.S. Environmental Protection Agency (2003). EPA'S Draft report on the Environment Technical Document. EPA 600-R-03-050. Available online at www.epa.gov/indicators/. 457 p.
- Villnäs, A.; Norkko, J.; Lukkari, K.; Hewitt, J.; Norkko, A. (2012). Consequences of increasing hypoxic disturbance on benthic communities and Ecosystem Functioning. *PLoS ONE* 7:e44920.
- Weinberg, K.L.; Kotwicki, S. (2008). Factors influencing net spread and sea floor contact of a survey bottom trawl. *Fisheries Research* 93: 265–279.
- Williams, J.R.; Hartill, B.; Bian, R.; Williams, C.L. (2014). Review of the Southern scallop fishery (SCA 7). *New Zealand Fisheries Assessment Report 2014/07*. 71 p.
- Wood, B.; Baird, S.J. (2010). Mapping bottom-trawl fishing activity in the New Zealand EEZ. *In*: Nishida, T.; Caton, A.E. (Eds), GIS/Spatial Analyses in Fishery and Aquatic Sciences Vol. 4, pp. 443–450. International Fishery GIS Society, Saitama, Japan. 579 p.



## APPENDIX 1: AREAS CLOSED TO FISHING WITHIN THE STUDY AREA

Figure 1.1: Areas showing where trawling is prohibited and other relevant restrictions apply. Note the area shown as "Ban on pair trawling" also is closed to vessels > 46 m.

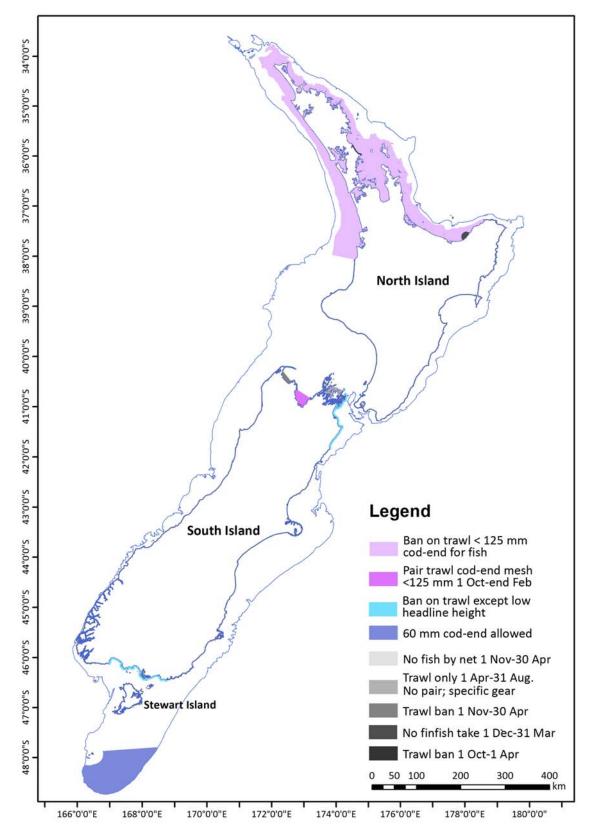



Figure 1.2: Areas where gear and seasonal restrictions apply to the use of trawl gear, within the study area.

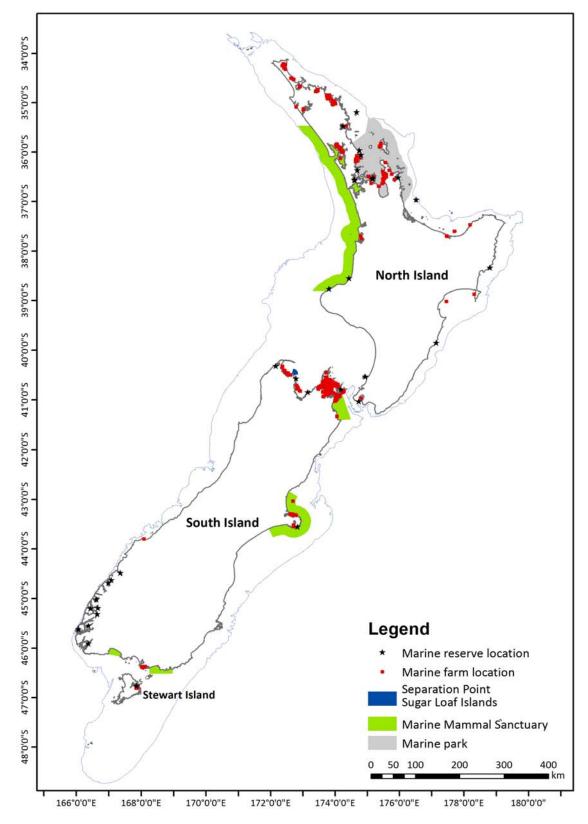



Figure 1.3: Points indicative of locations of marine reserves and marine farms, Separation Point and Sugar Loaf Islands closed areas, marine mammal sanctuaries, and marine parks, within the study area.

## APPENDIX 2: MAPS SHOWING THE DISTRIBUTION OF THE DATA INPUTS FOR THE BENTHIC HABITAT DESCRIPTORS

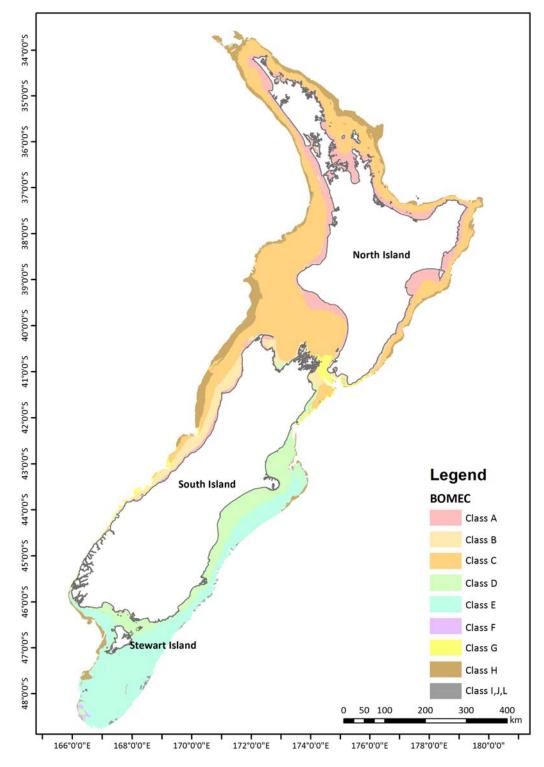



Figure 2.1: Distribution of BOMEC classes (see Leathwick et al. 2012) within the 250 m contour.

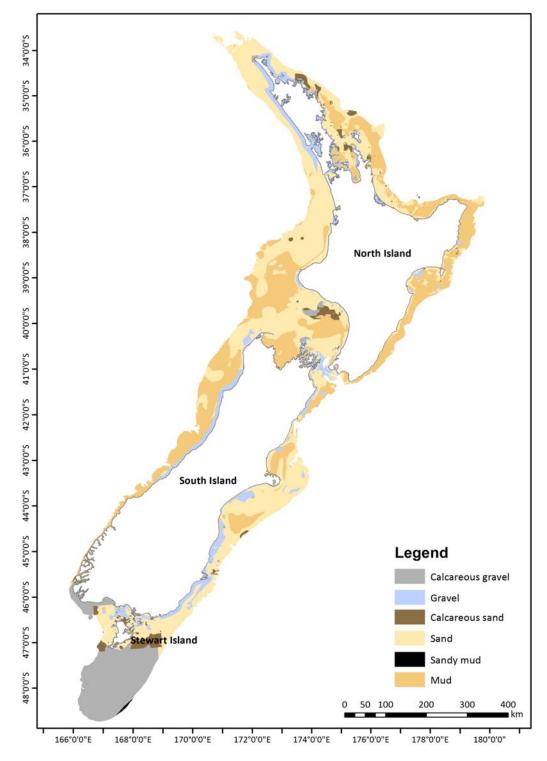



Figure 2.2: Distribution of broad sediment type (see appendix A in Leathwick et al. 2012) for derivation of this layer) within the 250 m contour.

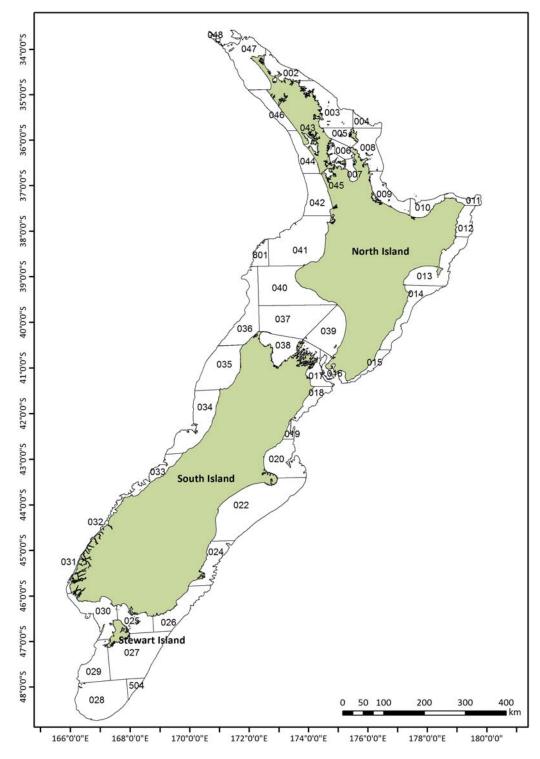



Figure 2.3: Statistical Areas within the 250 m contour.

Table 2.1: Coverage (km<sup>2</sup>) of the seafloor for each BOMEC class by Statistical Area (Area code) and general region, where ecni is east coast North Island, ckst is Cook Strait, ecsi is east coast South Island, stew is Stewart-Snares shelf, wcsi is west coast South Island, tbgb is Tasman Bay-Golden Bay, and wcni is west coast North Island.

| Region       | Area       |              | P      | G            | P      | F      |        | G      |              |        | Ţ      |        | 4.11           |
|--------------|------------|--------------|--------|--------------|--------|--------|--------|--------|--------------|--------|--------|--------|----------------|
| code         | code       | A            | В      | C            | D      | E      | F      | G      | H            | I      | J      | L      | All            |
| ecni         | 002        | 555<br>722   | 0      | 1 872        | 0      | 0      | 0      | 0      | 1 058        | 0      | 0      | 0      | 3 484<br>6 985 |
| ecni         | 003<br>004 | 723          | 0<br>0 | 4 234<br>352 | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 2 028<br>953 | 0<br>0 | 0<br>0 | 0<br>0 | 1 305          |
| ecni<br>ecni | 004        | 0<br>443     | 0      | 1 834        | 0<br>0 | 0      | 0      | 0      | 933          | 0      | 0      | 0      | 1 303<br>2 277 |
|              | 005        | 801          | 0      | 606          | 0      | 0      | 0      | 0      | 0            | 0      | 0      | 0      | 1 406          |
| ecni<br>ecni | 000        | 2 070        | 0      | 1            | 0      | 0      | 0      | 0      | 0            | 0      | 0      | 0      | 2 071          |
| ecni         | 007        | 2 070<br>610 | 0      | 3 231        | 0      | 0      | 0      | 0      | 1 415        | 0      | 0      | 0      | 5 256          |
| ecni         | 008        | 1 405        | 0      | 2 301        | 0      | 0      | 0      | 0      | 338          | 0      | 0      | 0      | 4 043          |
| ecni         | 010        | 890          | 0      | 1 277        | 0      | 0      | 0      | 0      | 320          | 0      | 0      | 0      | 2 487          |
| ecni         | 010        | 189          | 0      | 834          | 0      | 0      | 0      | 10     | 320          | 0      | <0.1   | 0      | 1 354          |
| ecni         | 012        | 719          | 0      | 1 471        | 0      | 0      | 0      | 0      | 410          | 0      | <0.1   | 0      | 2 599          |
| ecni         | 012        | 3 768        | 0      | 2 721        | 0      | 0      | 0      | 1      | 389          | 0      | 1      | 0      | 6 879          |
| ecni         | 014        | 967          | 106    | 3 149        | 0      | 0      | 0      | 1      | 916          | 0      | < 0.1  | 0      | 5 139          |
| ecni         | 015        | 201          | 204    | 574          | 25     | 0      | 0      | 324    | 213          | 0      | 1      | 0      | 1 542          |
| ckst         | 015        | 54           | 296    | 173          | 120    | 0      | 0      | 987    | 41           | 0      | 3      | 0      | 1 674          |
| ckst         | 017        | 66           | 1 563  | 989          | 210    | 0      | 0      | 674    | 5            | 0      | 0      | 0      | 3 506          |
| ecsi         | 018        | 24           | 0      | 1 057        | 1 311  | 20     | 0      | 554    | 115          | 0      | 32     | 0      | 3 112          |
| ecsi         | 019        | 0            | 0      | 0            | 0      | 20     | 0      | 0      | 0            | 0      | < 0.1  | 0      | <0.1           |
| ecsi         | 020        | 1            | 2      | 0            | 5 284  | 940    | 0      | 9      | 446          | 2      | 2      | 0      | 6 686          |
| ecsi         | 020        | 0            | 0      | 0            | 8 689  | 8 182  | 0      | 2      | 464          | 24     | 0      | 0      | 17 361         |
| ecsi         | 022        | 0            | 0      | 0            | 0 000  | 0 102  | 0      | 0      | 1            | 0      | 0      | 0      | 1, 501         |
| ecsi         | 024        | 6            | 0      | ů<br>0       | 2 426  | 1 934  | 0      | 0      | 0            | 101    | ů<br>0 | 0      | 4 466          |
| stew         | 025        | 44           | 2      | 0            | 3 113  | 910    | 0      | 0      | 0            | 0      | 0      | 0      | 4 069          |
| ecsi         | 026        | 17           | 0      | 0            | 1 386  | 4 384  | 0      | 0      | 0            | 200    | ů<br>0 | 0      | 5 986          |
| stew         | 027        | 7            | 0      | 0            | 107    | 12 169 | 0      | 0      | 11           | 12     | 0      | 104    | 12 410         |
| stew         | 028        | 0            | 0      | 0            | 195    | 9 556  | 380    | 0      | 123          | 106    | 0      | 20     | 10 379         |
| stew         | 029        | 6            | 0      | 0            | 111    | 4 628  | 1      | 0      | 736          | 0      | < 0.1  | 3      | 5 485          |
| stew         | 030        | 44           | 2      | 15           | 1 694  | 3 201  | 0      | 10     | 1 058        | 0      | 0      | 0      | 6 024          |
| wcsi         | 031        | 6            | 4      | 8            | 185    | 112    | 0      | 148    | 68           | 0      | 5      | 0      | 535            |
| wcsi         | 032        | 6            | 214    | 76           | 121    | 2      | 0      | 207    | 1            | 0      | 4      | 0      | 631            |
| wcsi         | 033        | 362          | 1 855  | 186          | 16     | 0      | 0      | 720    | 8            | 0      | 5      | 0      | 3 152          |
| wcsi         | 034        | 908          | 3 747  | 2 075        | 0      | 0      | 0      | 150    | 1 717        | 0      | 0      | 0      | 8 596          |
| wcsi         | 035        | 442          | 2 371  | 4 006        | 1      | 0      | 0      | 0      | 2 053        | 0      | 0      | 0      | 8 873          |
| wcsi         | 036        | 295          | 165    | 3 092        | 9      | 0      | 0      | 2      | 4 201        | 0      | 0      | 0      | 7 763          |
| wcsi         | 037        | 463          | 58     | 11 004       | 17     | 0      | 0      | 3      | 0            | 0      | 0      | 0      | 11 545         |
| tbgb         | 038        | 408          | 1 393  | 2 433        | 407    | 0      | 0      | 16     | 0            | 0      | 0      | 0      | 4 658          |
| wcni         | 039        | 754          | 87     | 6 163        | 18     | 13     | 0      | 79     | 0            | 0      | 0      | 0      | 7 114          |
| wcni         | 040        | 2 070        | 54     | 9 679        | 15     | 0      | 0      | 2      | 72           | 0      | 0      | 0      | 11 892         |
| wcni         | 041        | 1 541        | 80     | 11 462       | 53     | 0      | 0      | 0      | 803          | 0      | 26     | 0      | 13 965         |
| wcni         | 042        | 1 702        | 95     | 3 252        | 2      | 0      | 0      | 0      | 570          | 0      | 27     | 0      | 5 648          |
| wcni         | 043        | 274          | 0      | 0            | 0      | 0      | 0      | 0      | 0            | 0      | 0      | 0      | 274            |
| wcni         | 044        | 460          | 0      | 8            | 0      | 0      | 0      | 0      | 0            | 0      | 0      | 0      | 468            |
| wcni         | 045        | 1 584        | 23     | 1 517        | 0      | 0      | 0      | 0      | 419          | 0      | 0      | 0      | 3 543          |
| wcni         | 046        | 614          | 0      | 1 752        | 0      | 0      | 0      | 0      | 868          | 0      | 0      | 0      | 3 2 3 3        |
| wcni         | 047        | 1 880        | 0      | 4 472        | 0      | 51     | 0      | 0      | 2 236        | 0      | < 0.1  | 0      | 8 639          |
| wcni         | 048        | 0            | 0      | 0            | 0      | 0      | 0      | 0      | 432          | 0      | 25     | 0      | 457            |
| wcni         | 204        | 0            | 0      | 0            | 0      | 0      | 0      | 0      | 19           | 0      | 0      | 0      | 19             |
| wcni         | 504        | 0            | 0      | 0            | 0      | 1 085  | 0      | 0      | 0            | 29     | 0      | 62     | 1 176          |
| weni         | 801        | 0            | 0      | 1 687        | 0      | 0      | 0      | 0      | 380          | 0      | 1      | 0      | 2 068          |
| All          | All        | 27 375       | 12 319 | 89 560       | 25 513 | 47 187 | 382    | 3 898  | 25 204       | 473    | 134    | 189    | 232 235        |

## **APPENDIX 3: SENSITIVITY TO FISHING DISTURBANCE**

## Introduction

#### Definitions of vulnerability and sensitivity

The terms sensitivity, vulnerability and risk do not exist in a vacuum, instead they are threat and location-dependent. In risk assessment, the term threat (or "hazard") is used to describe an event that could cause an undesirable change in some response variable (e.g., value, service, organism, etc). The point at which the change occurs, or the magnitude of the change, is generally variable between organisms and the term *sensitivity* is often used to capture this variation. That is, organisms that exhibit greater response to a perturbation are more sensitive to it. A variety of definitions of vulnerability are used in the risk and natural hazards literature. In general terms, vulnerability is defined as the potential for harm or loss (Cutter et al. 2003) and is an interaction of the threat and the ability of the organism to respond.

The US EPA Framework for Cumulative Risk Assessment defines four properties of vulnerability, based on Kasperson et al. (1995). These are exposure, susceptibility, preparedness, and responsiveness. They define exposure as the threat and susceptibility (or sensitivity) as the differential likelihood of individuals, populations, or communities to respond adversely. Preparedness includes mechanisms or resources that can minimize harm at the time of exposure, and responsiveness is defined as the ability to recover from a response (equivalent to resilience (U.S. Environmental Protection Agency 2003)). Previous definitions of vulnerability include (Cutter 1996) the combination of (1) exposure, (2) response (sensitivity), and (3) location-specific components (these affect preparedness and responsiveness).

Within the framework of fisheries management, the topics of risk assessment and risk management are increasing in importance (Francis & Shotton 1997). Tuck et al. (2010) and Clark et al. (in revision) list a number of New Zealand and Australian studies (Fletcher 2005, Astles et al. 2006, Campbell & Gallagher 2007, Clark et al. 2011, Hobday et al. 2011, Richard & Abraham 2013), and similar approaches have also been developed elsewhere (e.g., Hiscock & Tyler-Walters 2006). These approaches generally focus on vulnerability (defined as "the susceptibility of a habitat, community or species to damage, or death (from an external factor)") and recoverability (defined as "the ability of a habitat, community or species to return to a state close to that which existed before the activity or event caused change" (Hiscock & Tyler-Walters 2006). An additional factor often considered in these assessments is representativeness and uniqueness: events affecting unique features or an area considered to represent a particular set of environments might be considered more serious than otherwise.

Due to difficutlies in gaining a consensus on the meaning of 'vulnerability' amongst stakeholders at an AEWG meeting (August 2013) and a further workshop, it was decided to focus this report on assessing sensitivity only, specifically in relation to bottom fishing by mobile gear. Sensitivity is defined as the susceptibility of an organism to damage, or death (from an external factor). Unlike Tuck et al. (2010), recoverability is not included in the definition for three reasons. Firstly, recoverability is highly location and threat extent dependent, driven by local hydrodynamics and the extent of the area under threat. Secondly, it is essentially a population level statistic rather than being associated with an organism. Thirdly, the biological traits that influence recoverability are generally not well known (reproductive cycle, dispersal mechanisms, and duration of larval viability). For this reason, it was decided to assess recoverability separately, by focussing on traits that would promote faster recovery.

Most mobile fishing activity occurs over sand and mud habitats (to avoid damage to fishing gear) and although, at first glance, these habitats may appear homogeneous, habitat-engineering activities of the organisms found there often make these systems highly heterogeneous and rich in species. Many of the habitat-forming species, as well as others that serve important functional roles in these seafloor ecosystems, are sensitive to physical disturbance because of biological traits associated with their

morphology, life style, and ability to recolonise disturbed areas. Factors affecting sensitivity to disturbance include mobility (less mobile, more sensitive), body size (larger being more sensitive), and location (erect epifauna being more sensitive than infauna) (Thrush et al. 1998, Thrush & Dayton 2002, Tuck & Hewitt 2013). Biological trait analysis is increasingly used not only to assess sensitivity of an organism (e.g., de Juan et al 2009), but also to assess their importance to ecosystem functioning (Hewitt et al. 2008, Queirós et al. 2006, Villnäs et al. 2012). Within this report, sensitivity was defined by a set of biological traits reflecting best available knowledge of their response to disturbance following de Juan et al. (2009) and Hewitt et al. (2011) (see methods).

## Methods

## Habitat definitions

Initially it was hoped to be able to utilise information on the distribution of specific biogenic habitats and the recent coastal and marine classification developed by MPI and Department of Conservation (Ministry of Fisheries & Department of Conservation 2008). Highly structured, biogenic habitats are recognised as being very sensitive to disturbance by fishing gear, and some of these structuring taxa are also very slow to recover from disturbance. Sponges, corals, gorgonians, bryozoans, tube-worms, horse mussels, and sea grasses are all known to be sensitive to disturbance, but increasingly we are becoming aware of their importance as a focus for biodiversity and production, and as a nursery habitat for highly valued species of fish like snapper, tarakihi, and trevally (see Morrison et al. 2014a, 2014b). However these habitats, and the MPI/DOC classification, were considered at an AEWG meeting to be too subjective in definition to be used with confidence.

## Species information and sensitivity assessment

Species data from two comprehensive sources were utilised: the MPI research trawl database *trawl* and NIWA's invertebrate collection database *specify*. For this study, each record represents the presence of a species; there is no measure of abundance. There are distinct differences in these records: differences in the methods of data collection, resolution of the location data, and taxonomic resolution.

Records from *trawl* represent catch during research trawl surveys primarily on RV *Kaharoa* and RV *Tangaroa* using several different types of bottom trawl gear (for example, see Bagley & Hurst 1996, Beentjes et al. 2013) that are used to target a group of fish species in defined depth zones at randomly stratified stations. Thus, such gear represent a non-specific method of catching benthic organisms over a trawl track of about 3 km length, over the seafloor where the ground gear and net can traverse without getting snagged or stuck on the seafloor. The location data of the *trawl* records are the start position co-ordinates for the vessel at the time when the net reaches the seafloor and starts fishing. Any invertebrate catch retained by the net is likely to only include part or whole organisms that are trapped in amongst the fish catch and thus retained in the cod-end, or caught up in netting. This catch is identified to the lowest taxonomic level possible by the survey science staff, weighed, and recorded. Some specimens are retained onboard and returned to NIWA for verification of identification or further taxonomic resolution. During the years covered by this subset of the *trawl* database, there have been many improvements in the knowledge of science staff and this has resulted in better information being captured in more recent years.

Records from *specify* come from targeted sampling during biodiversity trips using gear such as shipek (bottom) grabs and small epibenthic sleds (for example, see Mitchell et al. 2009, Morrison et al. 2009a). The location data for each *specify* record represent the vessel location of where each sampling gear type is deployed. These gears may either take a grab from the sea floor or sample a small area of sea floor. The gear is designed to sample without too much damage to any organisms present. Once landed each specimen is identified to the highest taxonomic level and may be stored for the NIWA invertebrate collection or for further identification by experts.

Taxonomic resolution varies within and between each database, so from now the abbreviation OTU (operational taxonomic unit) will be used. There were 141 OTUs in the *trawl* database and 717 in *specify*, with 52 being in common.

Summary data for the two database sources are given in Table 3.1. [The full dataset is given at the end of this section in Appendix 3a.] The spatial distribution of the database records is shown in Figure 3.1. Records from both databases span the full extent of the shelf waters around the main islands, with *specify* records in higher numbers to north-east New Zealand and Hawke Bay, Cook Strait, and Foveaux Strait. *Trawl* records were generally towards the shelf edge where present near the North Island and across the shelf waters of the South Island with greater density of records off the west and east coasts and in Tasman Bay-Golden Bay.

OTU sensitivities were assessed in two ways. Firstly, New Zealand and international information on species/taxonomic groups was collated. International information came from the Marine Life Information Network MarLIN database (MarLIN 2005, Hiscock & Tyler-Walters 2006). MarLIN lists many potential effects of trawling and dredging, namely abrasion and physical disturbance, changes in nutrient levels, changes in oxygenation, smothering, displacement, selective extraction of non-target and target species, and substratum loss. To be conservative, we did not use information on sensitivity related to changes in nutrient levels, changes in oxygenation, smothering, or selective extraction of non-target and target species. Selective extraction of target species is of course highly location dependent and any taxa reported in the *trawl* database could be considered to be highly sensitive.

| Number                              | Specify                          | trawl                            |
|-------------------------------------|----------------------------------|----------------------------------|
| Records                             | 2 720                            | 3 921                            |
| Class                               | 33                               | 19                               |
| Order                               | 92                               | 48                               |
| Family                              | 292                              | 80                               |
| Genus                               | 447                              | 91                               |
| Species                             | 423                              | 80                               |
| < 50 m                              | 944                              | 621                              |
| 50–100 m                            | 820                              | 639                              |
| 100–250 m                           | 956                              | 2661                             |
| Min., max. year                     | 1947–2010                        | 1961–2013                        |
| Latitude extent<br>Longitude extent | 33.9°–48.9° S<br>166.3°–179.0° E | 34.3°–48.8° S<br>166.3°–178.8° E |

| Table 3.1: Number of records used, number of different taxonomic levels represented, number of records  |
|---------------------------------------------------------------------------------------------------------|
| per depth zone, earliest and most recent year sampled, and the geographic extent, for each data source. |

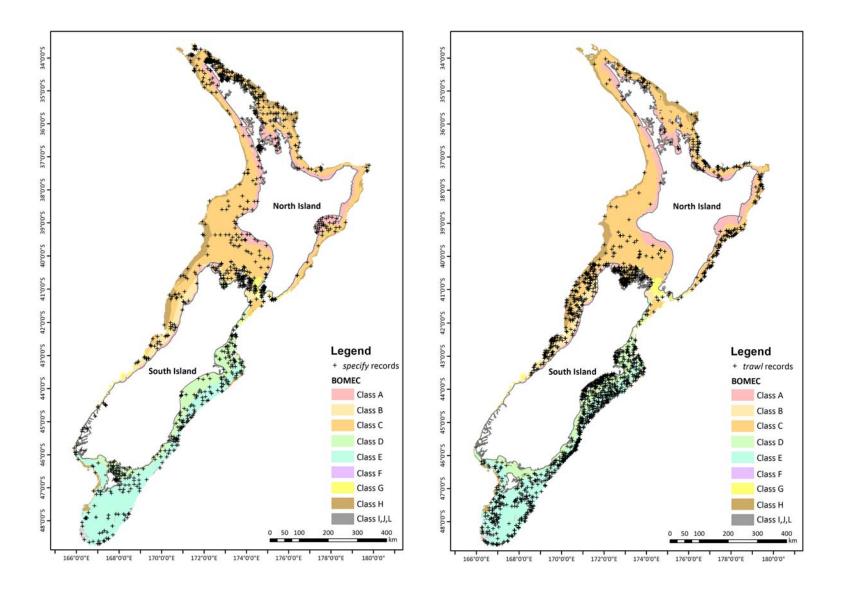



Figure 3.1: Locations of *specify* data records (left) and *trawl* data records (right) in relation to the 11 BOMEC classes within the 250 m contour.

Secondly, biological traits of species (and other levels of OTU) that drive sensitivity to mobile bottom fishing activities were determined. The set of traits used were determined from the literature of fishing impacts and are given in Table 3.2. After Hewitt et al. (2011), the traits used are an abbreviated list. Many functionally important attributes such as size, age, rarity, and density are not included, for a number of reasons: (a) information on these attributes was very limited; (b) the information would need to be spatially explicit and thus not fit into a general framework; or (c) they were more related to recoverability than sensitivity.

| Table 3.2: Biological traits used to assess sensitivity to a bottom trawl or dredge. Note that potential |
|----------------------------------------------------------------------------------------------------------|
| problems with imprecision in definitions is dealt with by use of probabilities.                          |

| Category        | Trait                                          | Definition                                                                                                                                                                 |
|-----------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Living position | Erect<br>Surface<br>Top 2 cm<br>> 2 cm deep    | Protrudes above the sediment surface > 4 cm<br>On the sediment surface, but not protruding<br>Lives in the sediment down to 2 cm deep<br>Lives > 2 cm deep in the sediment |
| Fragility       | Very fragile<br>Moderately<br>Robust           | Breaks easily into many pieces<br>Harder to break, may be torn out<br>Does not break or get torn up by passage of something rolling                                        |
| Mobility        | Sedentary<br>Limited Mobility<br>Highly mobile | Does not move<br>Crawls small distances across or through the sediment<br>Crawls large distances across the sediment surface or swims                                      |

The traits used by Hewitt et al. (2011) form a set that correspond to the likely sensitivity of species to bottom trawling. Because depth of disturbance is crucial to the sensitivity of many organisms, in this study we used three levels of sensitivity.

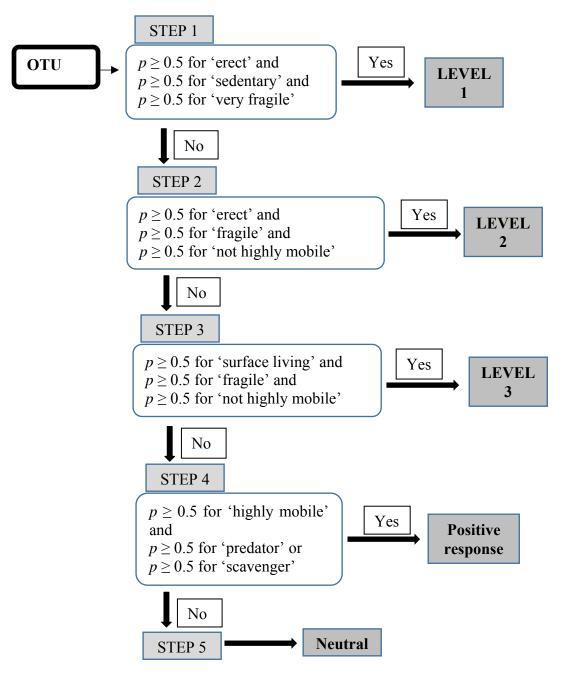
- 1. Level 1 is sensitive to trawling that does not scrape the surface of the seafloor and this level comprises erect species that are sedentary and very fragile.
- 2. Level 2 sensitivity will be moderately affected by trawling and comprises species living on the seafloor that are very or moderately fragile with limited or no mobility.
- 3. Level 3 sensitivity has low sensitivity to trawling, but will be affected by dredging. This level comprises species that live very close to the surface of the seafloor (though not on it), are not robust, and have limited mobility.

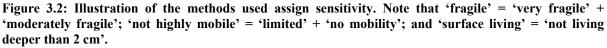
Dredging (for example, scallop dredging) will affect all three levels. This reasoning is supported by a meta-analysis of fishing impacts which found the most severe impacts occurring in biogenic habitats in response to scallop dredging (Kaiser et al. 2006).

To determine habitat class composition, a category of those that may respond positively is also included. For instance, if the scale of the fishing activity is less than the distance mobile predators and scavengers can readily move, these species can move into the disturbed area and take advantage of the short term increase in food resources provided by damaged organisms (Collie et al. 1997, de Grave & Whitaker 1999). All others not classified as sensitive or responding positively were considered neutral in response.

Some simplifying assumptions were made. The area disturbed at any one time was considered to be small enough to allow mobile predators to migrate into the area to utilise a new food resource and the rate of disturbance propagation across the surface of the seafloor was slow enough to allow highly mobile fauna to escape. We did not consider far-field effects associated with the production of sediment plumes that affect the feeding activity of organisms beyond the immediate area of impact because this will be highly location- and activity-dependent.

When information for the OTU was unknown, the OTU was assigned an equal probability of displaying all behaviour types. For example, if the mobility was unknown, the OTU was equally allotted to limited and high mobility categories (see Hewitt et al. 2008). If feeding mechanism or habit was unknown, the OTU was equally allotted to all possible traits. Some species also automatically fall into a number of categories. For example, tube worms may be erect, living on the sediment surface, or deeper in the sediment. For this situation, we also allot equal probabilities to all behaviour. Finally, marine species are also often plastic in their behaviour; that is, they can exhibit different behaviours depending on environmental conditions. For example, deposit feeders may also be suspension feeders or scavengers. For this situation, the probabilities allotted reflect the frequency with which they have been observed using the different behaviours. Imprecision in the trait definitions are also dealt with in this way. The likely effect of incorrect allocation of organisms to traits is not explicitly tested here, but it is generally low (Hewitt et al. 2008, Hewitt et al. 2011).


## Habitat class sensitivity


Although manipulative experiments provide the most direct examination of sensitivity of areas to disturbances, such studies have only been conducted in a limited number of areas and are difficult to conduct in meaningful ways for large-scale or repetitive disturbances. Recently, ecologists have focussed on linking biological traits of species to characteristics of specific disturbances as a method of assessing sensitivity. Such methods are applicable across a wide range of habitats and regions where detailed species-specific knowledge or experimental data are not available (de Juan et al. 2009, Tyler-Walters et al. 2009).

The techniques considered to assess habitat sensitivity were based on the Chatham/Challenger Oceans Survey 2020 study, which used three methods to assess sensitivity (Hewitt et al. 2011).

- 1. Habitat sensitivity as defined by Tyler-Walters et al. 2009. The sensitivity of a site is defined as the sensitivity of the most sensitive taxa that characterise the habitat class that the site belongs to (called the "worst-case scenario"). Hewitt et al. (2011) observed this technique to lack the ability to discriminate between habitat classes on the Chatham Rise and Challenger Plateau.
- 2. Site sensitivity depending on the average sensitivity of individuals in a sample. Average sensitivity was calculated by multiplying the rank sensitivity value of a taxon by the abundance of each taxon at a given site and summing these values over all taxa at the site (e.g., Stark & Maxted 2007). Using this method, Hewitt et al. (2011) then calculated a weighted average for that site by dividing that sum by the number of taxa found at that site. This technique was not appropriate for the data used in this study because the data were not truly quantitative and only presence/absence information was available.
- 3. Number of taxa observed at a station within each of the five sensitivity levels. This was derived by summing the probability of each taxon exhibiting behaviour that placed it within each level. Habitat sensitivity thus becomes the average sensitivity of all the stations for which we had information within that habitat class.

For this study, because there was limited information on abundance, we used technique 3. For each site, we calculated the number of OTUs occurring in the three levels of sensitivity, the neutral, and the positive categories. For each site, each OTU was assigned to one of the five categories, in the following hierarchical way (Figure 3.2).





Assessment of variability (or uncertainty) associated with the sensitivity value assigned to each habitat class is derived from two sources (i) the number of stations in each habitat class, with an increasing number of stations lowering the uncertainty, and (ii) the variability around the mean value for each habitat class. A further assessment could be based on the differences between ranks assigned by using *specify* data compared with *trawl* data to define sensitivity.

#### **Recoverability assessment**

Assessment of recoverability was based on biological traits associated with dispersal and reproductive frequency as representative of the potential for species to recolonize areas given appropriate hydrodynamics. Three traits of reproductive frequency were used: semelparous; iteroparous; and semi-continuous. Obviously a species that has semi-continuous reproduction has a greater chance of recolonising an area than one that only produces for a short time period most years (iteroparous) and

one that only reproduces once in its life (semelparous). Development type is also important. Species that reproduce by fragmentation or by larvae that can feed in the water column (planktotrophic) are more likely to colonise an area than those that produce planktonic larvae that cannot feed (lecithotrophes) or those that are direct brooders. However, many species can also disperse as juveniles by swimming, rafting, or drifting. Finally, species that are highly mobile as adults are most likely to be able to recolonise a disturbed area. OTUs were allocated to six recovery categories as follows:

- 1. Recovery 5 (high): adults highly mobile;
- 2. Recovery 4: semi-continuous reproduction with planktotrophic larvae (note only one OTU fitted this category);
- 3. Recovery 3: semi-continuous reproduction with lecithotrophic larvae;
- 4. Recovery 2: iteroparous reproduction with planktotrophic or lecithotrophic larvae, or highly mobile juveniles;
- 5. Recovery 1: juveniles or adults able to crawl;
- 6. Recovery 0: not in any of the above categories; sessile adults and juveniles, with reproduction by brooding.

This information was gathered from a number of different sources, but in most cases species level information was not available, so an index of uncertainty was developed using information from other taxonomic levels. Information from another species in the same genus was considered to be "certain"; from within a family or order was considered "certain" if a number of species had all been described with the same characteristics; and information from within a class was always considered "uncertain". There were also a number of OTUs for which we could not find the relevant information.

For 44% of the OTUs we knew that adult mobility was high, for 13% we had "certain" knowledge of other characteristics, for 35% this knowledge was "uncertain", and for 7% there was no information (Table 3.3). Of the OTUs found in both databases, 31 were OTUs with highly mobile adults, 4 we were "certain" of the other characteristics, 13 we were "uncertain" of, and 4 we had no information about. Of the OTUs found in only the *specify* database, 285 were OTUs with highly mobile adults, 93 we were "certain" of the other characteristics, 247 we were "uncertain" of, and 41 we had no information about. Of the OTU found in only in the *trawl* database, 46 were OTUs with highly mobile adults, 7 we were "certain" of the other characteristics, 29 we were "uncertain" of, and 16 we had no information about.

|                         | OTU in both<br>All OTUs databases |       |     | spec  | cify only | trawl only |     |       |
|-------------------------|-----------------------------------|-------|-----|-------|-----------|------------|-----|-------|
|                         | No.                               | Prop. | No. | Prop. | No.       | Prop.      | No. | Prop. |
| Certain                 | 359                               | 0.44  | 31  | 0.60  | 285       | 0.43       | 46  | 0.47  |
| Knowledge of other      |                                   |       |     |       |           |            |     |       |
| species characteristics | 106                               | 0.13  | 4   | 0.08  | 93        | 0.14       | 7   | 0.07  |
| Uncertain               | 286                               | 0.35  | 13  | 0.25  | 247       | 0.37       | 29  | 0.30  |
| No information          | 57                                | 0.07  | 4   | 0.08  | 41        | 0.06       | 16  | 0.16  |

Table 3.3: Summary of the state of knowledge for the OTUs in the two databases giving the number and proportion of OTUs in each information category.

## Statistical analyses

## Database differences

The first step in the analysis was to establish whether the sensitivity determined for the habitat classes differed between the two record types (*specify* and *trawl*) because the two database sources contained data collected by very different methods, particularly in terms of spatial scale. For this, the number of taxa in each sensitivity level across all stations was analysed using multivariate ordination. A two-way

Permanova (Anderson 2001) in Primer E (Clarke & Gorley 2006) based on Bray-Curtis similarities was run, using a fixed factor ("habitat" as represented by BOMEC class) with "database" nested within "habitat".

## Species-based characterisation of habitats

The Primer E software SIMPER (Clarke & Gorley 2006) was then used to determine the species that characterised different habitat classes, again based on Bray-Curtis similarities. A separate SIMPER was run for *specify* records and for *trawl* records.

## Sensitivity-based characterisation of habitats

SIMPER was also used to determine the sensitivity levels that characterised different habitat classes/s, again based on Bray-Curtis similarities. A separate SIMPER was run for *specify* records and for *trawl* records.

#### Differences in sensitivity between habitats

The significance of differences between habitats in sensitivity level was determined using Generalised Linear Modelling, based on a Poisson distribution and a log-link function. Where over or under dispersion occurred, a quasi-likelihood function was used. For each response variable (high, medium, and low sensitivity) the following models were run:

- 1. One-way fixed factor (BOMEC class) for all stations in the two database types separately.
- 2. One-way fixed factor (depth band) for each of three BOMEC classes which had more than 10 stations in two or more depth bands in the two database types separately.
- 3. One-way fixed factor (sediment type) for each of three BOMEC classes which had more than 10 stations in four or more sediment types in the two database types separately.
- 4. One-way fixed factor (BOMEC class) for each of four statistical reporting areas which had more than 10 stations in two or more BOMEC classes in the two database types separately.

The second and third analyses were run to investigate whether there was any consistency in sensitivity within BOMEC class related to depth or sediment type. The final analysis investigated whether there were likely to be differences associated with habitats, defined as BOMEC classes, within statistical reporting areas. For all these analyses, when significant results (probability of achieving a result as extreme by chance was less than 0.05) were detected, the magnitude of the difference was calculated as the difference between averages.

5. Finally, there were 108 different BOMEC class, depth band, sediment type combinations. Of these, 23 combinations had more than 10 sites sampled from both the *specify* and *trawl* databases (Table 3.4). For these combinations we tested whether there were differences in the proportion of OTUs: sensitive to a disturbance that comes occasionally in contact with the seafloor (Level 1 sensitivity); sensitive to a disturbance that drags across the seafloor (Levels 1 and 2); and a dredge type disturbance (Levels 1, 2, and 3).

#### Differences in recovery between habitats

Because of the limited certainty related to the estimates of recovery, only the equivalent of the analysis detailed in 5 above was run. Differences in the proportions of high recovery (recovery 5), moderate recovery (recovery 2 and 3), and low to no recovery (recovery 0 and 1) from the different BOMEC class/depth zone/sediment type combinations were analysed using a one-way fixed factor Generalised Linear Model.

|             |            |               | No. sampling stations | s per database |
|-------------|------------|---------------|-----------------------|----------------|
| BOMEC class | Depth zone | Sediment type | specify               | trawl          |
| А           | shallow    | Gravel        | 99                    | 13             |
|             | shallow    | Mud           | 33                    | 13             |
|             | shallow    | Sand          | 72                    | 21             |
| В           | deep       | Mud           | 13                    | 22             |
|             | shallow    | Gravel        | 20                    | 22             |
|             | shallow    | Mud           | 33                    | 60             |
|             | shallow    | Sand          | 12                    | 15             |
| С           | deep       | Mud           | 45                    | 151            |
|             | deep       | Sand          | 62                    | 50             |
|             | mid        | Mud           | 36                    | 34             |
|             | mid        | Sand          | 104                   | 33             |
| D           | mid        | Mud           | 10                    | 18             |
|             | mid        | Sand          | 19                    | 61             |
|             | shallow    | Gravel        | 56                    | 65             |
|             | shallow    | Mud           | 199                   | 39             |
|             | shallow    | Sand          | 32                    | 105            |
| Е           | deep       | CGravel       | 36                    | 176            |
|             | deep       | CSand         | 10                    | 19             |
|             | deep       | Sand          | 49                    | 205            |
|             | mid        | Sand          | 37                    | 82             |
| G<br>H      | deep       | Mud           | 23                    | 17             |
| Н           | deep       | Mud           | 42                    | 122            |
|             | deep       | Sand          | 66                    | 68             |

Table 3.4: Combinations of BOMEC class/ depth zone/ sediment type with more than 10 sample sites in both *specify* and *trawl* databases. Number of sample sites is given. CGravel is calcareous gravel and CSand is calcareous sand.

## Results

#### **Distribution of data within BOMEC classes**

Although 11 BOMEC classes occur within the 250 m depth contour, only 7 contained more than 10 *specify* stations, and 8 contained more than 10 *trawl* stations (Table 3.5). BOMEC classes F, J, and L were not well sampled by either the *trawl* or the *specify* data.

Information on the distribution of depth bands and sediment classes within the BOMEC classes is given in Table 1. BOMEC classes A, C, and E were selected for detailed analysis with respect to depth zone and sediment type differences based on the number of stations sampled within them and the area they covered.

| specify | trawl                                                      |
|---------|------------------------------------------------------------|
| 234     | 54                                                         |
| 91      | 156                                                        |
| 353     | 323                                                        |
| 348     | 311                                                        |
| 158     | 537                                                        |
| 1       | 1                                                          |
| 50      | 23                                                         |
| 119     | 196                                                        |
| 9       | 19                                                         |
| 1       | 0                                                          |
| 1       | 6                                                          |
|         | 234<br>91<br>353<br>348<br>158<br>1<br>50<br>119<br>9<br>1 |

Four Statistical Areas, with varying degrees of fishing intensity (see Section 4 and Table 4.5 in Appendix 4), that covered more than two BOMEC classes were selected for detailed analysis: 047 (n = 2209 tows), 020 (n = 480 tows), 024 (n = 401 tows), and 022 (n = 3112 tows) (see Figure 2.3 in Appendix 2 for location of Statistical Areas). Note that the numbers of tows given for these Statistical Areas are for only the parts of those areas that lie within the study area, for the fishing years 2007–08 to 2011–12.

## **Database differences**

The *specify* records comprised 665 OTUs that were not in the *trawl* records, and 90 OTUs were found only in the *trawl* records. Another 52 OTUs were found in both record database sources. The lower number of taxa found in the *trawl* data may be due to the lower taxonomic resolution used for some records in the *trawl* database (e.g., porifera, crab), particularly from earlier years when identification guides were still being developed, as well as the different collection methods.

The percentage of records from each of the two databases assigned to the sensitivity levels is given in Table 3.6. For the *specify* data, there was little consistency across stations in which OTUs represented the three sensitivity levels, with no OTU present in more than 10% of stations (Table 3.7). This was most obvious for the Level 1 sensitivity with the OTU most frequently present being *Callyspongia* at 1.5% and least for Level 2 being *Neothyris lenticularis* at 5.1%.

There was somewhat more consistency for the *trawl* data. For levels 1 and 2, a single taxon did occur in more than 10% of stations ("sponge" at 20.9% for Level 1 and *Stichopus mollis* at 16.6% for Level 2, Table 3.8). Although Level 3 did not have any OTUs occurring at more than 10% of the stations, it did have a number that occurred at more than 1%. An overall difference in the sensitivity composition of the different databases within the BOMEC classes was detected (p = 0.001). For this reason all the following analyses were conducted on each database separately.

#### Table 3.6: Percentage of *specify* and *trawl* records that were assigned to each sensitivity level.

| Sensitivity       | specify (%) | trawl (%) |
|-------------------|-------------|-----------|
| Level 1           | 14.8        | 24.1      |
| Level 2           | 32.4        | 26.1      |
| Level 3           | 24.1        | 31.1      |
| Neutral           | 21.9        | 22.9      |
| Positive response | 42.0        | 57.8      |

## Table 3.7: Operational taxonomic units (OTU) important in defining the 3 levels of sensitivity that occurred at more than 1% of *specify* stations.

| Level 1           |     | Level 2                |     | Level 3                  |     |
|-------------------|-----|------------------------|-----|--------------------------|-----|
| OTU               | %   | OTU                    | %   | OTU                      | %   |
| Callyspongia      | 1.5 | Neothyris lenticularis | 5.1 | Astropecten polyacanthus | 2.5 |
| Crella incrustans | 1.0 | C. Hydrozoa            | 2.4 | P. Polychaeta            | 2.3 |
|                   |     | Calloria inconspicua   | 2.3 | F. Calanidae             | 2.1 |
|                   |     | C. Ascidiacea          | 1.8 | C. Bivalvia              | 2.1 |
|                   |     | Notosaria nigricans    | 1.4 | Peronella hinemoae       | 1.5 |
|                   |     | Heterothyone alba      | 1.1 | Psilaster acuminatus     | 1.1 |
|                   |     | O. Hydroida            | 1.0 | Astromesites primigenius | 1.0 |
|                   |     | Lytocarpia chiltoni    | 1.0 |                          |     |
|                   |     | Amphisbetia            | 1.0 |                          |     |

| Level 1              |      | Level 2             |      | Level 3                  |     |
|----------------------|------|---------------------|------|--------------------------|-----|
| OTU                  | %    | OTU                 | %    | OTU                      | %   |
| Sponge (P. Porifera) | 20.9 | Stichopus mollis    | 16.6 | Sclerasterias mollis     | 9.4 |
| Callyspongia         | 1.6  | C. Anthozoa         | 8.0  | C. Asteroidea            | 7.6 |
| Coral                | 1.3  | Ascidiacea          | 6.8  | Zygochlamys delicatula   | 7.0 |
|                      |      | P. Bryozoa          | 2.5  | Pseudechinus huttoni     | 4.4 |
|                      |      | C. Hydrozoa         | 1.6  | F. Hormathiidae          | 4.2 |
|                      |      | Celleporina grandis | 1.3  | F. Actinostolidae        | 3.8 |
|                      |      | O. Pennatulacea     | 1.1  | Aglaophenia acanthocarpa | 3.4 |
|                      |      |                     |      | Mesopeplum convexum      | 2.8 |
|                      |      |                     |      | Pecten novaezelandiae    | 2.5 |
|                      |      |                     |      | Bunodactis chrysobathys  | 2.3 |
|                      |      |                     |      | Ostrea chilensis         | 2.3 |
|                      |      |                     |      | Perna canaliculus        | 2.1 |
|                      |      |                     |      | Odontaster               | 1.7 |
|                      |      |                     |      | Pteraster bathamae       | 1.6 |
|                      |      |                     |      | C. Echinoidea            | 1.4 |
|                      |      |                     |      | Psilaster acuminatus     | 1.2 |
|                      |      |                     |      | Atrina zelandica         | 1.2 |
|                      |      |                     |      | Polychaeta               | 1.1 |
|                      |      |                     |      | Echinoderms              | 1.1 |

Table 3.8: Operational taxonomic units (OTU) that occurred at more than 1% of *trawl* stations important in defining the three levels of sensitivity.

#### **OTU-based characterisation of habitat classes**

OTUs characterising the BOMEC classes were never similar in *specify* and *trawl* data (Tables 3.9 and 3.10). For example, using the *specify* data, class A was characterised by *Astropecten polyacanthus*, Order Decapoda, *Echinocardium cordatum*, and *Pontophilus australis*. Using *trawl* data, class A was characterised by Class Anthozoa, *Jasus edwardsii*, *Ovalipes catharus*, and Phylum Porifera.

A few OTUs were important in characterising more than one class. For example, using *specify* data, *Echinocardium cordatum* characterised classes A, B, and D, and using *trawl* data, *Stichopus mollis* characterised classes D, E, and I.

The only species that was found in the MarLIN database was *Echinocardium cordatum*, which was classified as having moderate sensitivity to abrasion and physical disturbance and substratum loss, with a high to moderate degree of certainty.

| Table 3.9: Habitat composition based on each Operational Taxonomic Unit (OTU)       |
|-------------------------------------------------------------------------------------|
| for the <i>specify</i> data, with the contribution to group similarity from SIMPER. |

| BOMEC class | OTU                      | Average<br>number<br>of OTU | Contribution<br>(%) |
|-------------|--------------------------|-----------------------------|---------------------|
| А           | Astropecten polyacanthus | 0.10                        | 33.89               |
|             | Pontophilus australis    | 0.06                        | 14.10               |
|             | O. Decapoda              | 0.07                        | 13.52               |
|             | Echinocardium cordatum   | 0.06                        | 11.65               |
| В           | Echinocardium cordatum   | 0.24                        | 82.51               |
| С           | O. Decapoda              | 0.14                        | 35.60               |
|             | Peronella hinemoae       | 0.05                        | 5.85                |
| D           | Echinocardium cordatum   | 0.42                        | 93.47               |
| Е           | Neothyris parva          | 0.08                        | 8.41                |
|             | Callyspongia             | 0.06                        | 6.59                |
|             | Neothyris lenticularis   | 0.20                        | 58.72               |
|             | Leptomithrax longipes    | 0.09                        | 11.04               |
| G           | Thacanophrys filholi     | 0.10                        | 9.34                |
|             | Liothyrella neozelanica  | 0.08                        | 8.98                |
|             | Cryptolaria prima        | 0.06                        | 5.67                |
|             | Notosaria nigricans      | 0.10                        | 23.65               |
|             | Nemertesia elongata      | 0.08                        | 13.51               |
|             | Calloria inconspicua     | 0.08                        | 12.55               |
|             | F. Calanidae             | 0.06                        | 10.86               |
| Н           | O. Decapoda              | 0.13                        | 29.82               |
|             | Leptomithrax longipes    | 0.04                        | 6.14                |
|             | Caryophyllia profunda    | 0.04                        | 5.13                |
|             | F. Calanidae             | 0.04                        | 9.45                |
|             | Psilaster acuminatus     | 0.05                        | 6.99                |

Table 3.10: Habitat composition based on each OperationalTaxonomic Unit (OTU) for the *trawl* data.

|       |                          | Average   |              |
|-------|--------------------------|-----------|--------------|
| BOMEC |                          | number of | Contribution |
| class | OTU                      | OTU       | (%)          |
| А     | P. Porifera              | 0.67      | 65.63        |
|       | C. Anthozoa              | 0.50      | 23.06        |
|       | Ovalipes catharus        | 0.35      | 72.51        |
|       | Jasus edwardsii          | 0.15      | 11.87        |
| В     | C. Ophiuroidea           | 0.16      | 33.83        |
|       | Pecten novaezelandiae    | 0.13      | 10.88        |
|       | Perna canaliculus        | 0.12      | 10.24        |
|       | Jasus edwardsii          | 0.08      | 8.34         |
|       | Ovalipes catharus        | 0.08      | 7.03         |
|       | Ostrea chilensis         | 0.11      | 6.74         |
| С     | Ibacus alticrenatus      | 0.37      | 79.09        |
|       | P. Porifera              | 0.17      | 10.02        |
| D     | Ovalipes catharus        | 0.31      | 66.48        |
|       | Crab [O.Decapoda]        | 0.16      | 12.06        |
|       | Stichopus mollis         | 0.16      | 7.91         |
| Е     | P. Porifera              | 0.42      | 35.35        |
|       | Crab [O.Decapoda]        | 0.36      | 26.81        |
|       | Stichopus mollis         | 0.33      | 14.37        |
| G     | Ibacus alticrenatus      | 0.35      | 75.68        |
|       | Metanephrops challengeri | 0.17      | 16.22        |
| Н     | Ibacus alticrenatus      | 0.70      | 91.66        |
| Ι     | P. Porifera              | 0.74      | 21.93        |
|       | Crab [O.Decapoda]        | 0.63      | 15.87        |
|       | C. Asteroidea            | 0.53      | 7.52         |
|       | Zygochlamys delicatula   | 0.53      | 6.46         |
|       | Pseudechinus huttoni     | 0.53      | 6.46         |
|       | Sclerasterias mollis     | 0.53      | 6.46         |
|       | Stichopus mollis         | 0.53      | 6.46         |
|       | C. Ascidiacea            | 0.53      | 6.46         |

## Sensitivity-based characterisation of habitat classes

BOMEC classes based on *specify* data did not form distinct clusters in the multivariate space (Figure 3.3); instead they demonstrated high variability in composition based on sensitivity levels. The category most important in classifying the classes was the positive response level, contributing 25–58% of the similarity in all 7 classes (Table 3.11). Sensitivity level 2 was the next most important, contributing 14–58% of the similarity in 5 classes, and sensitivity level 3 was next, contributing 8–26% of the similarity in 5 classes.

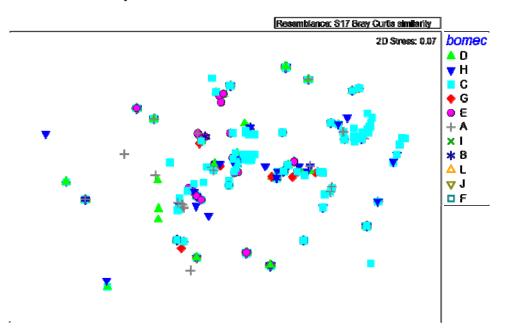



Figure 3.3: Nonmetric multidimensional scaling ordination of sensitivity observed in the *specify* data. Points closest together are most similar and stress values < 0.1 mean that the 2-dimensional plot is a good representation of the similarities.

| Table 3.11: Composition based on sensitivity levels for the <i>specify</i> data. The average OTU count is the |
|---------------------------------------------------------------------------------------------------------------|
| average sum (across OTUs at a site) of the probabilities of OTUs being at that sensitivity.                   |

| <b>BOMEC classes</b> | Sensitivity | Average OTU count | Contribution (%) |
|----------------------|-------------|-------------------|------------------|
| А                    | Positive    | 0.62              | 58.15            |
|                      | Level 3     | 0.33              | 25.59            |
|                      | Neutral     | 0.21              | 8.02             |
| В                    | Positive    | 0.42              | 39.48            |
|                      | Neutral     | 0.35              | 37.51            |
|                      | Level 2     | 0.29              | 14.45            |
| С                    | Positive    | 0.64              | 34.67            |
|                      | Level 2     | 0.68              | 32.92            |
|                      | Level 3     | 0.48              | 15.56            |
|                      | Level 1     | 0.87              | 15.41            |
| D                    | Neutral     | 0.52              | 64.43            |
|                      | Positive    | 0.4               | 25.81            |
| Е                    | Positive    | 0.58              | 42.94            |
|                      | Level 2     | 0.57              | 37.86            |
|                      | Level 3     | 0.35              | 15.31            |
| G                    | Level 2     | 0.72              | 58.22            |
|                      | Positive    | 0.66              | 29.39            |
|                      | Level 3     | 0.2               | 7.58             |
| Н                    | Positive    | 0.74              | 44.77            |
|                      | Level 2     | 0.59              | 26.85            |
|                      | Level 3     | 0.4               | 20.29            |

BOMEC classes based on *trawl* data also did not form distinct clusters in the multivariate space (Figure 3.4); instead they demonstrated high variability in composition based on sensitivity levels. The category most important in classifying the classes was again the positive response level, contributing 20–99% of the similarity in all 8 classes (Table 3.12). Sensitivity level 3 was the next most important, contributing 11–51% of the similarity in 5 classes, and sensitivity level 2 was next, contributing 6–20% of the similarity in 3 classes.

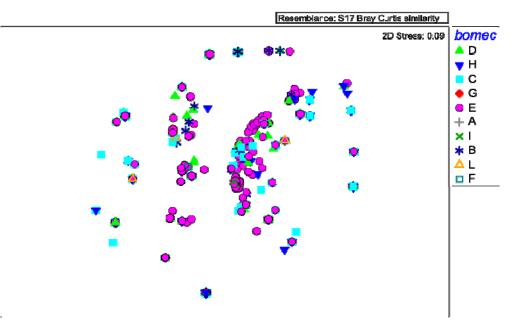



Figure 3.4: Nonmetric multidimensional scaling ordination of sensitivity observed in the *trawl* data. Points closest together are most similar and stress values < 0.1 mean that the 2-dimensional plot is a good representation of the similarities.

Table 3.12: Composition based on sensitivity levels for the *trawl* data. The average OTU count is the average sum (across OTUs at a site) of the probabilities of OTUs being at that sensitivity.

| <b>BOMEC classes</b> | Sensitivity | Average number of OTU | <b>Contribution %</b> |
|----------------------|-------------|-----------------------|-----------------------|
| А                    | Positive    | 0.56                  | 74.40                 |
|                      | Level 3     | 0.41                  | 24.31                 |
| В                    | Level 3     | 0.69                  | 50.91                 |
|                      | Positive    | 0.49                  | 43.06                 |
| С                    | Positive    | 0.79                  | 86.64                 |
| D                    | Positive    | 0.70                  | 74.53                 |
|                      | Level 3     | 0.37                  | 11.73                 |
|                      | Level 2     | 0.28                  | 6.02                  |
| Е                    | Level 1     | 0.45                  | 22.13                 |
|                      | Positive    | 0.90                  | 21.67                 |
|                      | Level 2     | 0.78                  | 19.97                 |
|                      | Level 3     | 1.27                  | 18.37                 |
|                      | Neutral     | 0.41                  | 17.85                 |
| G                    | Positive    | 0.87                  | 99.48                 |
| Н                    | Positive    | 1.24                  | 95.69                 |
| Ι                    | Level 3     | 3.21                  | 30.57                 |
|                      | Positive    | 1.68                  | 20.24                 |
|                      | Level 2     | 1.79                  | 17.93                 |
|                      | Level 1     | 0.74                  | 16.56                 |
|                      | Neutral     | 0.95                  | 14.69                 |

## Differences in sensitivity between habitat classes, based on specify data

Site values within BOMEC classes for sensitivity levels 1–3 ranged from 0 to a maximum of 12, 6, and 5 respectively. BOMEC class C followed by class H had significantly higher values of sensitivity level 1 taxa than the other classes, with class D having the lowest values. The sensitivity level 1 value for class C was more than double that for class H (Figure 3.5), which was over double that of the next highest class (class A). Classes C and H also belonged to the cluster of classes with high values of sensitivity level 2, along with class E and G. Classes C, H, and E belonged to the cluster of classes with highest values of sensitivity level 3. Classes D and B had low values for all three sensitivity levels.

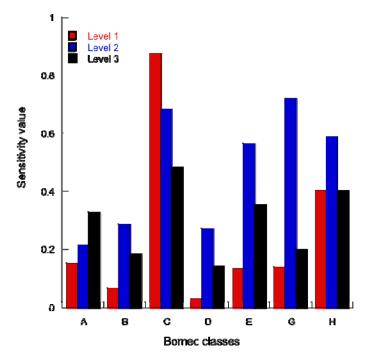



Figure 3.5: Mean values for Sensitivity Levels 1 to 3 for BOMEC classes with more than 10 *specify* stations.

Within BOMEC class A, only two depth bands occurred, shallow (less than 50 m) and mid (50–100 m). There were no significant differences (p < 0.05) in values for sensitivity level 2; but for sensitivity level 1, mid-depth areas had significantly higher values than shallow depths (Figure 3.6). A similar relationship with depth was found for class C where mid-depth areas had significantly higher values than shallow and deep areas, for sensitivity level 1 only. For class E, deep areas had the lowest sensitivity level 1 values, but the highest sensitivity level 3 values.

Significantly higher sensitivity level 1 values were found for gravel substrates in BOMEC class A and for gravel and sand within BOMEC class C, but there was no significant effect of substrate type for BOMEC class E. A cluster of classes with high values of sensitivity level 2 were found for mud substrates in class C and mud and sand substrates in class E (Figure 3.7). Significant differences for sensitivity level 3 were only found for class C, where calcareous gravel, mud, and sand substrates had lowest values and calcareous sand had the highest value.

Within Statistical Area 047, there were three BOMEC classes with more than 10 *specify* stations, classes A, C, and H. No significant differences between these classes were detected for sensitivity level 3. For level 2, there was a gradient between class C (highest) and class A (lowest values) (Figure 3.8). For level 1, classes H and A had significantly lower values than class C.

Within Statistical Areas 020, 022, and 024 there were only two BOMEC classes with more than 10 *specify* stations, classes D and E. No significant differences between these classes were detected for sensitivity level 3 or 2 for any of the Statistical Areas. For level 1, class D had significantly higher values than class E (Figure 3.8) in Statistical Area 020, and the reverse occurred in Statistical Areas 022 and 024.

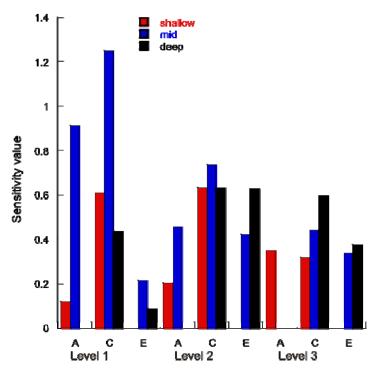



Figure 3.6: Mean values for Sensitivity Levels 1 to 3 from *specify* data for depth bands within BOMEC classes A, C, and E.

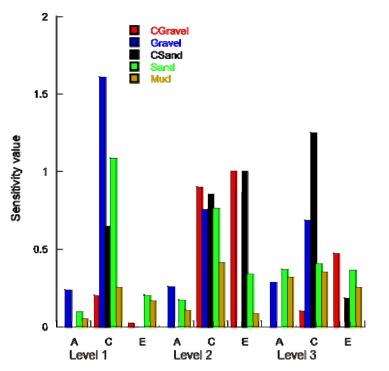



Figure 3.7: Mean values for Sensitivity Levels 1 to 3 from *specify* data for sedimentary habitat classes within BOMEC classes A, C, and E.

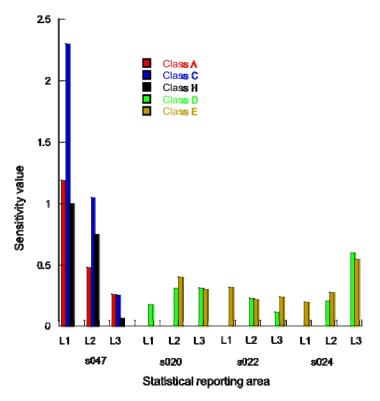



Figure 3.8: Mean values for Sensitivity Levels 1 to 3 from *specify* data for BOMEC classes A, C, D, E, and H within Statistical Areas 047, 020, 022, and 024.

#### Differences in sensitivity between habitat classes, based on trawl data

Station values for sensitivity levels 1–3 ranged from 0 to a maximum of 3, 6, and 11 respectively. BOMEC class I (not included in the *specify* analysis due to too few stations) had the highest values of all three sensitivity levels, followed by class E. For sensitivity levels 2 and 3, class I had significantly higher values than class E, being more than double (Figure 3.9), though for sensitivity level 1 they were not significantly different. The class with the next highest value was variable: class C for sensitivity level 1, class D for sensitivity level 2, and class B for sensitivity level 3. The clusters of classes with the lowest values were G, A, H, D, and B for sensitivity level 1; G, A, and H for sensitivity level 2; and G, C, and H for sensitivity level 3.

Within BOMEC class A, only shallow depths had been sampled. However, for class C, although no significant difference was detected for sensitivity level 2, for sensitivity levels 1 and 3, shallow depths had significantly higher values (Figure 3.10). Deeper areas (100–250 m) were always lowest, although only significantly different from mid-depths for sensitivity level 1. A different pattern was observed for class E which only had mid and deep areas; the deep areas displayed significantly higher values than mid-depths for all three sensitivity levels.

The effect of sediment type was again generally variable. For sensitivity level 3, there were significant differences within class A values in mud, higher than sand and gravel. However, for class C, no significant differences were detected and for class E, significantly higher values were found in sand than other types (Figure 3.11). For sensitivity level 2, no significant differences were detected for class A or class C, but for class E sand was the highest. No more consistency was observed across classes for sensitivity level 1. No significant difference was detected for class A or C, but for class E, gravels had the significantly higher values.

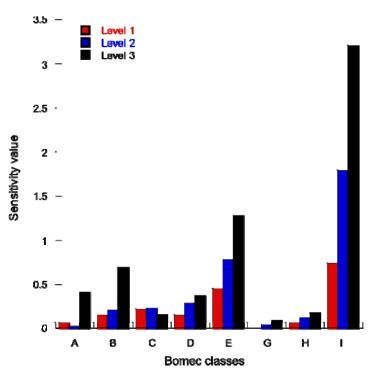



Figure 3.9: Mean values for Sensitivity Levels 1 to 3 for BOMEC classes with more than 10 *trawl* sampling stations.

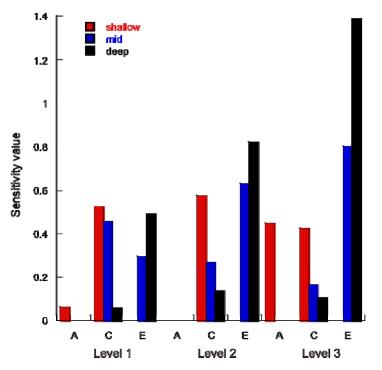



Figure 3.10: Mean values for Sensitivity Levels 1 to 3 from *trawl* data for depth bands within BOMEC classes A, C, and E.

Within Statistical Area 047, there were no BOMEC classes with more than 10 *trawl* stations. Within Statistical Areas 020, 022, and 024 there were only two BOMEC classes with more than 10 *specify* stations, classes D and E. No significant differences between these classes were detected for sensitivity level 1 for any of the Statistical Areas (Figure 3.12). For levels 2 and 3, class E had significantly higher values than class 4 in all three Statistical Areas.

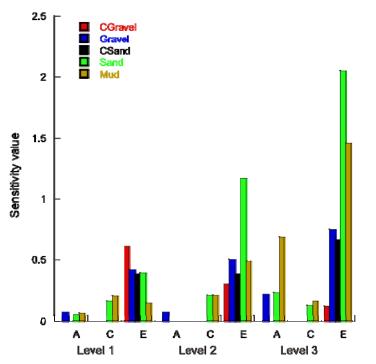



Figure 3.11: Mean values for Sensitivity Levels 1 to 3 from *trawl* data for sedimentary habitat classes within BOMEC classes A, C, and E.

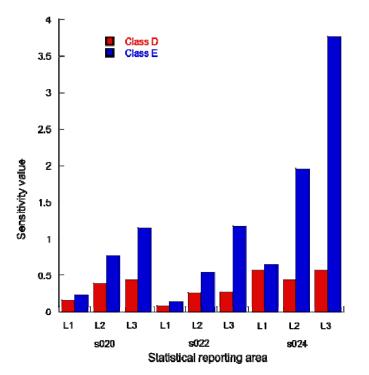



Figure 3.12: Mean values for Sensitivity Levels 1 to 3 from *trawl* data for BOMEC classes D and E within Statistical Areas 020, 022, and 024.

#### Uncertainty in habitat class estimates

There was considerable variation in the number of stations representing the BOMEC classes and also in the standard deviation of the values for the three sensitivity levels within each class (Table 3.13). For BOMEC classes, level 1 displayed more variability when calculated using the *specify* data (see Table 3.13, higher minimum, average and maximum standard deviations). This did not seem to be related to the number of stations. In the *trawl* data, higher variability was observed in the level 3 values.

Splitting the BOMEC classes into subsets based on depth or sediment type did not decrease the variability seen (Table 3.14), with the possible exception of Level 2 depth bands.

| BOMEC   |              |         |         | specify |              |         |         | trawl   |
|---------|--------------|---------|---------|---------|--------------|---------|---------|---------|
| Class   | No. stations | Level 1 | Level 2 | Level 3 | No. stations | Level 1 | Level 2 | Level 3 |
| А       | 234          | 0.68    | 0.47    | 0.52    | 54           | 0.23    | 0.14    | 0.60    |
| J       | 1            | _       | _       | _       | 0            | _       | _       | _       |
| L       | 1            | _       | _       | _       | 6            | _       | -       | _       |
| В       | 91           | 0.29    | 0.52    | 0.42    | 156          | 0.37    | 0.60    | 0.83    |
| С       | 351          | 2.02    | 0.98    | 0.91    | 322          | 0.47    | 0.65    | 0.42    |
| D       | 348          | 0.19    | 0.64    | 0.46    | 311          | 0.38    | 0.56    | 0.63    |
| Е       | 158          | 0.36    | 0.77    | 0.61    | 537          | 0.52    | 1.15    | 2.16    |
| F       | 1            | _       | _       | _       | 1            | _       | _       | _       |
| G       | 50           | 0.40    | 0.90    | 0.45    | 23           | 0.00    | 0.21    | 0.29    |
| Н       | 119          | 0.94    | 0.83    | 0.63    | 196          | 0.26    | 0.32    | 0.51    |
| Ι       | 9            | _       | _       | _       | 19           | 0.45    | 1.65    | 3.07    |
| Maximum |              | 2.02    | 0.98    | 0.91    |              | 0.52    | 1.65    | 3.07    |
| Average |              | 0.70    | 0.73    | 0.57    |              | 0.34    | 0.66    | 1.06    |
| Minimum |              | 0.19    | 0.52    | 0.42    |              | 0.00    | 0.21    | 0.29    |

Table 3.13: Number of stations and standard deviation of the three sensitivity levels in the BOMEC classes with more than 10 stations per class, for each data source.

| Table 3.14: Number of stations and standard deviation of the three sensitivity levels in the BOMEC |
|----------------------------------------------------------------------------------------------------|
| classes A, C, and E, by depth zones and sediment types, for each data source.                      |

|       |          |          |       |       | specify |          |       |       | trawl |
|-------|----------|----------|-------|-------|---------|----------|-------|-------|-------|
| BOMEC | Depth    | No.      | Level | Level | Level   | No.      | Level | Level | Level |
| class | zone     | stations | 1     | 2     | 3       | stations | 1     | 2     | 3     |
| А     | mid      | 11       | 1.81  | 0.69  | 0       | 5        | _     | _     | _     |
|       | shallow  | 223      | 0.56  | 0.45  | 0.53    | 49       | 0.24  | 0.00  | 0.61  |
| С     | deep     | 131      | 0.89  | 0.83  | 0.94    | 203      | 0.26  | 0.40  | 0.31  |
|       | mid      | 182      | 2.57  | 1.08  | 0.91    | 79       | 0.59  | 0.70  | 0.44  |
|       | shallow  | 38       | 1.48  | 0.97  | 0.77    | 40       | 0.68  | 1.24  | 0.71  |
| Е     | deep     | 104      | 0.28  | 0.81  | 0.63    | 432      | 0.52  | 1.23  | 2.33  |
|       | mid      | 51       | 0.46  | 0.65  | 0.59    | 105      | 0.50  | 0.70  | 1.12  |
|       | shallow  | 3        | _     | -     | _       | 0        | -     | _     | _     |
|       | Sediment | No.      | Level | Level | Level   | No.      | Level | Level | Level |
|       | Seament  | stations | 1     | 2     | 3       | stations | 1     | 2     | 3     |
| А     | Cgravel  | 7        | _     | _     | _       | 1        | _     | _     | _     |
|       | CSand    | 7        | _     | _     | _       | 1        | _     | -     | _     |
|       | Gravel   | 106      | 0.79  | 0.5   | 0.45    | 14       | 0.27  | 0.27  | 0.43  |
|       | Mud      | 38       | 0.32  | 0.39  | 0.7     | 16       | 0.25  | 0.00  | 0.70  |
|       | Sand     | 76       | 0.7   | 0.41  | 0.51    | 22       | 0.21  | 0.00  | 0.43  |
| С     | CGravel  | 10       |       |       |         | 1        |       |       |       |
|       | CSand    | 28       | 0.99  | 1.04  | 1.29    | 9        |       |       |       |
|       | Gravel   | 41       | 2.91  | 1.2   | 1.21    | 7        |       |       |       |
|       | Mud      | 88       | 0.68  | 0.69  | 0.7     | 216      | 0.44  | 0.67  | 0.40  |
|       | Sand     | 184      | 2.28  | 1.02  | 0.82    | 89       | 0.42  | 0.60  | 0.39  |
| Е     | CGravel  | 40       | 0.16  | 1.04  | 0.68    | 177      | 0.52  | 0.50  | 0.32  |
|       | CSand    | 11       | 0     | 0.45  | 0.4     | 21       | 0.50  | 0.92  | 1.83  |
|       | Gravel   | 8        |       |       |         | 12       | 0.51  | 0.52  | 0.97  |
|       | Mud      | 12       | 0.39  | 0.29  | 0.45    | 35       | 0.36  | 0.61  | 1.52  |
|       | Sand     | 86       | 0.43  | 0.57  | 0.63    | 287      | 0.52  | 1.37  | 2.57  |
|       | Sdymud   | 1        |       |       |         | 5        |       |       |       |

# Differences between combined habitat classes in proportion of sensitivity and recoverability

#### Specify data

Significant differences between the 23 BOMEC class, depth band, sediment type combinations in the proportion of OTU that were sensitive to a disturbance that comes occasionally in contact with the seafloor (defined as "high" = Level 1 sensitivity) were observed ( $\chi^2$  value = 1.081E12, p-value <0.0001). Significant differences were also observed for the proportion of OTU that were sensitive to a disturbance that drags across the seafloor (defined as "moderate" = Levels 1 + 2;  $\chi^2$  value = 126.6, p-value <0.0001), and a dredge type disturbance (defined as "low" = Levels 1 + 2 + 3;  $\chi^2$  value = 4.6533E10, p-value <0.0001).

The following descriptions of the significant differences observed all use the same pattern. The habitat class with the greatest proportion is given and the habitat classes to which it is significantly different to, in decreasing order of their proportion of OTUs sensitive to trawl type disturbances. Then the habitat class with the lowest proportion is given and the habitat classes to which it is significantly different to, in decreasing order of their proportions. The exception to this is when the number of habitat classes significantly different to the greatest (or lowest) is much larger than the number of habitat classes that it is equal to, in which case these are listed instead.

- The greatest "high" sensitivity was observed in BOMEC class C/mid/Sand, which was significantly different to everything but C/deep/Mud, H/deep/Mud, E/mid/Sand, E/deep/Sand, D/mid/Mud and H/deep/Sand (Figure 3.13). BOMEC class A/shallow/Sand had the smallest "high" sensitivity and was only significantly different to C/mid/Sand.
- The greatest "moderate" sensitivity was also observed in BOMEC class E/deep/CSand, which was significantly different to everything other than C/mid/Sand and E/deep/CGravel (Figure 3.14). BOMEC class D/shallow/Mud had the smallest "moderate" sensitivity, followed by A/shallow/Mud and was significantly different to E/deep/CSand, C/mid/Sand and E/deep/CGravel.
- The greatest "low" sensitivity was observed in BOMEC class E/deep/CSand, which was significantly different to everything but E/deep/CGravel, C/mid/Sand, D/mid/Mud, E/deep/Sand and C/deep/Sand (Figure 3.15). BOMEC class D/shallow/Mud had the smallest "low" sensitivity and was significantly different to E/deep/CSand, E/deep/CGravel, C/mid/Sand, D/mid/Mud, E/deep/Sand, C/deep/Sand, H/deep/Mud, H/deep/Sand, C/deep/Mud, D/shallow/Sand, E/mid/Sand, C/mid/Mud and A/shallow/Gravel.

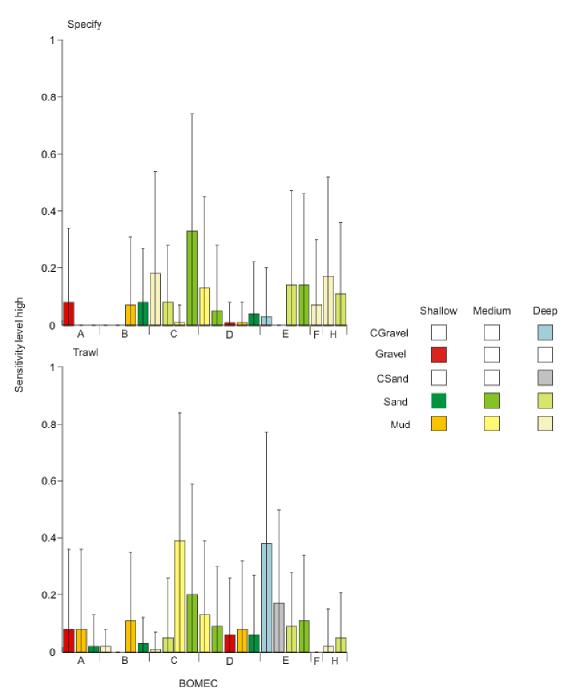



Figure 3.13: Mean proportion of OTUs (with standard deviation) from the sampling stations in the *specify* and *trawl* databases that were sensitive to a disturbance that comes occasionally in contact with the seafloor (defined as "high" = Level 1 sensitivity) for the combined habitat classes.

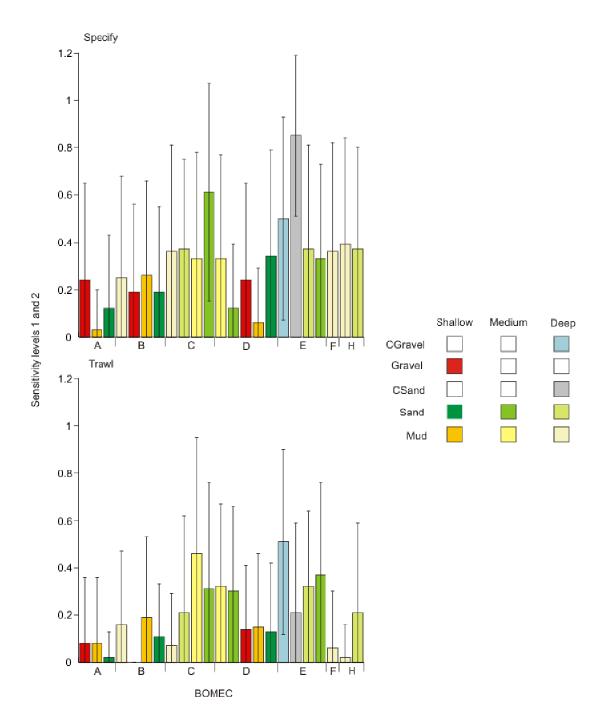



Figure 3.14: Mean proportion of OTUs (with standard deviation) from the sampling stations in the *specify* and *trawl* databases that were sensitive to a disturbance that comes occasionally in contact with the seafloor (defined as "moderate" = Levels 1 and 2 sensitivities) for the combined habitat classes.

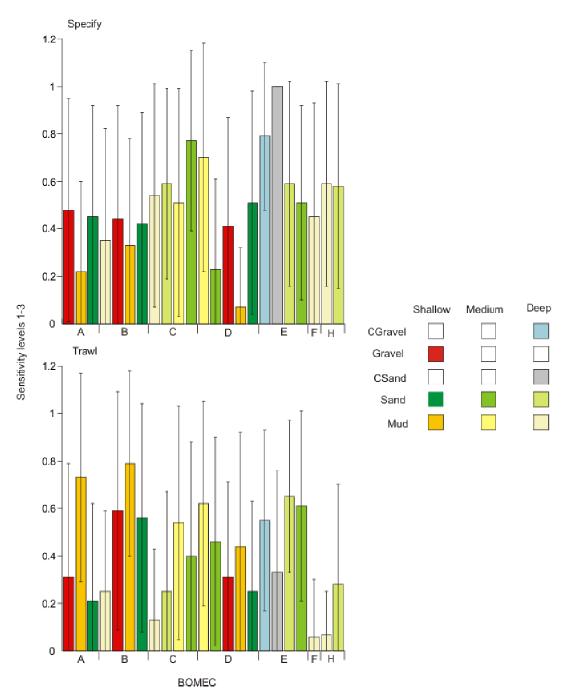



Figure 3.15: Mean proportion of OTUs (with standard deviation) from the sampling stations in the *specify* and *trawl* databases that were sensitive to a disturbance that comes occasionally in contact with the seafloor (defined as "low" = Levels 1, 2, and 3 sensitivities) for the combined habitat classes.

Significant differences were also observed for proportions of OTUs with high ability to recover (recovery level 5;  $\chi^2$  value = 4.75028E10, p-value <0.0001), moderate ability to recover (recovery levels 2, 3, and 4;  $\chi^2$  value = 105.6, p-value <0.0001), but not for low ability to recover (recovery levels 0 and 1;  $\chi^2$  value = 31.7, p-value = 0.0865; see Figure 3.16).

• The greatest high recoverability was observed in BOMEC class D/shallow/Mud, which was significantly different to class C/deep/Mud, E/mid/Sand, H/deep/Mud, C/deep/Sand, E/deep/Sand, H/deep/Sand, E/deep/CGravel, D/mid/Mud, C/mid/Sand and E/deep/CSand (Figure 3.17). BOMEC class E/deep/CSand had the smallest high recoverability and was significantly different to everything but E/deep/CGravel, D/mid/Mud and C/mid/Sand.

• The greatest moderate recoverability was observed in BOMEC class E/deep/CSand, which was significantly different to everything else (Figure 3.18). BOMEC class A/shallow/Mud had the smallest moderate recoverability, followed by D/shallow/Mud, and these were significantly different to E/deep/CSand, C/mid/Sand, E/deep/CGravel and D/mid/Mud.

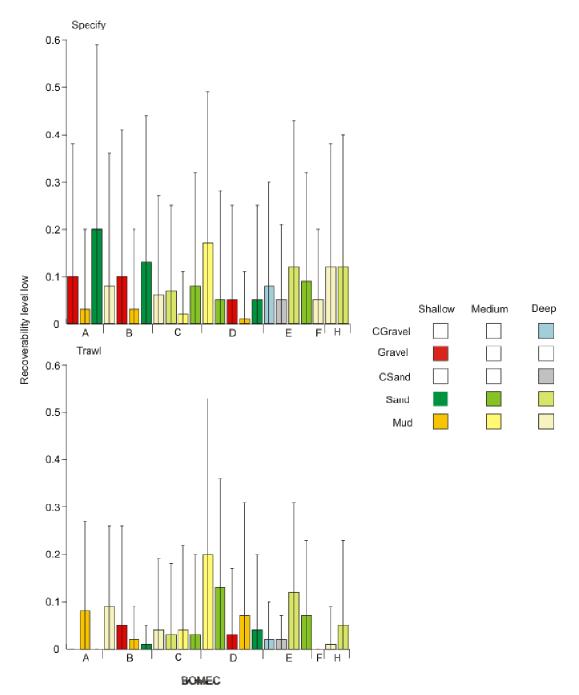



Figure 3.16: Mean proportion of OTUs (with standard deviation) from the sampling stations in the *specify* and *trawl* databases with low recoverability (recovery levels 0 + 1) for the combined habitat classes. Note that these proportions do not sum to 1 because most sites had some OTUs that were without recovery trait information.

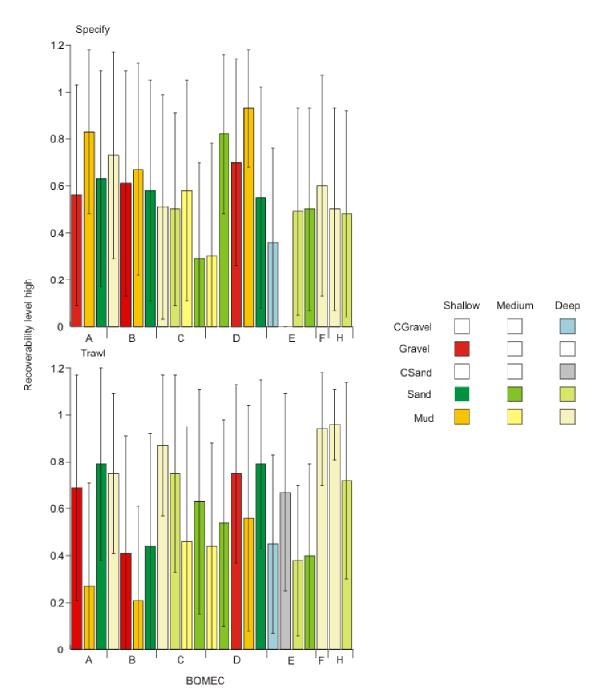



Figure 3.17: Mean proportion of OTUs (with standard deviation) from the sampling stations in the *specify* and *trawl* databases with high recoverability (recovery level 5) for the combined habitat classes. Note that these proportions do not sum to 1 because most sites had some OTUs that were without recovery trait information.

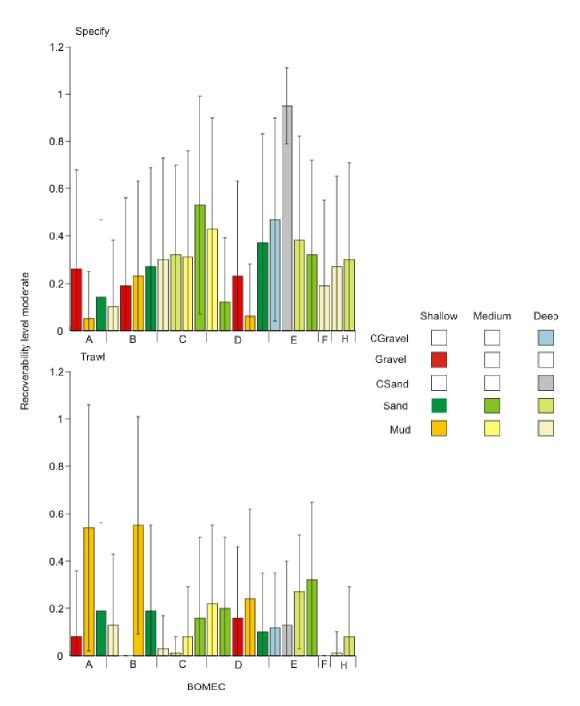



Figure 3.18: Mean proportion of OTUs (with standard deviation) from the sampling stations in the *specify* and *trawl* databases with moderate recoverability (recovery levels 2, 3, and 4) for the combined habitat classes. Note that these proportions do not sum to 1 because most sites had some OTUs that were without recovery trait information.

#### Trawl data

Significant differences were detected for proportions of all sensitivity and recoverability levels in the trawl data (all  $\chi^2$  value > 200, all p-values <0.0001).

- The greatest "high" sensitivities were observed in BOMEC class C/mid/Mud and E/deep/CGravel, which were significantly different to everything else (see Figure 3.13). BOMEC classes H/deep/Mud, B/shallow/Gravel, C/deep/Mud, B/deep/Mud had the smallest "high" sensitivities and were significantly different to C/mid/Mud, E/deep/CGravel and C/mid/Sand.
- The greatest "moderate" sensitivity was observed in BOMEC class E/deep/CGravel, which was significantly different to everything other than C/mid/Mud, E/mid/Sand (see Figure 3.14).

BOMEC class B/shallow/Gravel had the smallest "moderate" sensitivity and was significantly different to E/deep/CGravel, C/mid/Mud, E/mid/Sand, E/deep/Sand, D/mid/Mud, C/mid/Sand, D/mid/Sand, H/deep/Sand, E/deep/CSand and C/deep/Sand.

- The greatest "low" sensitivity was observed in BOMEC class B/shallow/Mud followed by A/shallow/Mud, and these were significantly different from everything but class E/deep/Sand, D/mid/Mud, E/mid/Sand and B/shallow/Gravel (see Figure 3.15). BOMEC class H/deep/Mud had the smallest "low" sensitivity value and was not was significantly different from anything but C/mid/Sand, which was significantly different from everything but class D/shallow/Sand, B/deep/Mud, C/deep/Sand, A/shallow/Sand, C/deep/Mud, and H/deep/Mud.
- The greatest "high" recoverability was observed in BOMEC class H/deep/Mud, which was significantly different to everything but class F/deep/Mud, C/deep/Mud, D/shallow/Sand and A/shallow/Sand (see Figure 3.17). BOMEC class B/shallow/Mud had the smallest "high" recoverability and was significantly different to everything but B/shallow/Gravel, E/mid/Sand, E/deep/Sand, and A/shallow/Mud.
- The greatest "moderate" recoverability values were observed in BOMEC class B/shallow/Mud, A/shallow/Mud, which were significantly different to everything else (see Figure 3.18). BOMEC class H/deep/Mud, followed by B/shallow/Gravel, had the smallest "moderate" recoverability and these were significantly different to B/shallow/Mud, A/shallow/Mud, E/mid/Sand, E/deep/Sand, D/shallow/Mud, D/mid/Mud, D/mid/Sand, A/shallow/Sand, B/shallow/Sand, C/mid/Sand, and D/shallow/Gravel.
- The greatest "low" recoverability was observed in BOMEC class D/mid/Mud, which was significantly different to everything but class D/mid/Sand and E/deep/Sand (see Figure 3.16). BOMEC class A/shallow/Gravel, H/deep/Mud and A/shallow/Sand all had "low" recoverability values of 0, but were only significantly different to D/mid/Mud, D/mid/Sand and E/deep/Sand.

#### Discussion

There was a low degree of consistency between the two databases in which BOMEC class was allotted high or low sensitivity values. Although BOMEC classes B and D had the lowest values for all three levels based on the *specify* data, these classes only had the lowest values for Level 1 based on the *trawl* data. Instead, for Level 2 calculated from the *trawl* data, class H had the lowest value, despite having the second highest value when this level was calculated from the *specify* data. Similarly, for Level 3 calculated from the *trawl* data, classes H and C had the lowest values, despite having the second and first highest values when this level was calculated from the *specify* data. The BOMEC class with the highest value for all three sensitivity levels calculated from the trawl data was class I, which did not have enough *specify* stations for it to be included in that set of calculations.

There was little evidence that depth or sediment type created individualised sensitive habitat classes within the BOMEC classes. While mid-depths had higher values of Level 1 sensitivity for all three BOMEC classes tested, this was the only consistency observed. Moreover, subsets based on depth or sediment type did not have lower variability in sensitivity values compared with the BOMEC classes.

There was evidence of differences in sensitivity values of different BOMEC classes within the Statistical Areas, for both *trawl* and *specify* databases. This suggests that the BOMEC classification could be used to apportion areas of differing sensitivity at the scale of reporting areas; however, data should be specifically collected to test this.

There are two possible reasons why strong, consistent results from this analysis were not apparent.

• Firstly, it may be that BOMEC classes are not at a suitable scale for using in assessment of sensitivity. Initially we investigated using actual habitat class definitions to derive sensitivity but this was when we envisaged that descriptions based on sediment type and biotic factors would be available. As these were not available we had to rely on the BOMEC and its

associations with available biological species information. The BOMEC, although optimised to benthic organisms, has two specific problems which may confound this analysis. (1) Included among the eight groups of benthic organisms used for the optimisation was demersal fish. This was the most extensively sampled group and is likely to have had a strong influence on the classification. (2) BOMEC is based on the entire Territorial Sea and the EEZ out to 3000 m depths; as a result the shallower areas are not well differentiated at the scale at which benthic animals generally respond to the environment.

• Secondly, only two data sources for biological information were available and neither of these were well suited to the task in hand. While the *specify* database held information on a large number of species at a good taxonomic resolution, the data collection methods vary and are usually collecting organisms over a smaller scale than the methods used for the *trawl* database. Such methods do not always sample larger long-lived benthic animals very well, particularly if they have a patchy distribution, although these animals are often those that are most sensitive to bottom fishing. Conversely the *trawl* database generally samples larger animals that protrude from the seafloor well, but has a lower taxonomic resolution and does not sample smaller organisms or those that protrude only small distances from the seafloor or live within the sediment. Finally, data could only be used as presence/absence and changes in abundance are generally the first response to stress. Thus, inherent in analyses of vulnerability (and thus sensitivity) is the need for abundance data.

With the data at hand it is not possible to determine which of these are the most likely to be the confounding factors and in reality it is likely to be a combination of all of the above. The scientific and management communities have acknowledged the limitations of BOMEC generally, and particularly in the shallow waters around New Zealand, funding a number of benthic habitat mapping studies. For example, the Oceans Survey 2020 voyages around the Chatham Rise, Challenger Plateau and Bay of Islands, funded by LINZ, MPI, NIWA and DOC; and the MBIE funded CCM project in the shallow waters around New Zealand. There are also a number of smaller MPI and DOC funded projects. These projects not only solve the problem of the scale of the BOMEC classes but, generally, also provide more adequate species information on which to assess sensitivity.

Analyses of recoverability again provided different categorisation of habitat classes by the two different databases. But there are greater problems than this for assessing recoverability. Firstly, recoverability is very location-specific, depending on hydrodynamics and a source for organisms. It is also very driven by the spatial extent of the disturbance- how mobile does an organism have to be to be able to recolonize from round the edges? Secondly, the biological trait information needed to create even a non-location specific general assessment is much less available, and thus certain, than the information needed for sensitivity assessments. Thus for 35% of the OTUs in the databases, this knowledge was "uncertain" and for 7% there was no information.

#### APPENDIX 3a: OPERATIONAL TAXONOMIC UNIT (OTU) SPECIFY DATABASE

#### PHYLUM ANNELIDA

| ΟΤυ                               | Order           | Super order | Infraclass  | Sub class     | Class      |
|-----------------------------------|-----------------|-------------|-------------|---------------|------------|
| Stibarobdella                     | Rhynchobdellida |             | Euhirudinea | Hirudinea     | Clitellata |
| Hyalinoecia                       | Eunicida        |             |             | Aciculata     | Polychaeta |
| Hyalinoecia longibranchiata       | Eunicida        |             |             | Aciculata     | Polychaeta |
| Kinbergonuphis proalopus          | Eunicida        |             |             | Aciculata     | Polychaeta |
| Oenonidae                         | Eunicida        |             |             | Aciculata     | Polychaeta |
| Scoletoma brevicirra              | Eunicida        |             |             | Aciculata     | Polychaeta |
| Aglaophamus macroura              | Phyllodocida    |             |             | Aciculata     | Polychaeta |
| Aphrodita                         | Phyllodocida    |             |             | Aciculata     | Polychaeta |
| Euphione squamosa                 | Phyllodocida    |             |             | Aciculata     | Polychaeta |
| Hemipodus simplex                 | Phyllodocida    |             |             | Aciculata     | Polychaeta |
| Platynereis australis             | Phyllodocida    |             |             | Aciculata     | Polychaeta |
| Pontogenia latifolia              | Phyllodocida    |             |             | Aciculata     | Polychaeta |
| Sigalionidae                      | Phyllodocida    |             |             | Aciculata     | Polychaeta |
| Protula bispiralis                | Sabellida       |             |             | Canalipalpata | Polychaeta |
| Pseudopotamilla laciniosa         | Sabellida       |             |             | Canalipalpata | Polychaeta |
| Pseudopotamilla pseudopotamilla-B | Sabellida       |             |             | Canalipalpata | Polychaeta |
| Polydora haswelli                 | Spionida        |             |             | Canalipalpata | Polychaeta |
| Polydora websteri                 | Spionida        |             |             | Canalipalpata | Polychaeta |
| Scolecolepides scolecolepides-A   | Spionida        |             |             | Canalipalpata | Polychaeta |
| Spio aequalis                     | Spionida        |             |             | Canalipalpata | Polychaeta |
| Spiophanes japonicum              | Spionida        |             |             | Canalipalpata | Polychaeta |
| Pseudopista rostrata              | Terebellida     |             |             | Canalipalpata | Polychaeta |
| Abarenicola devia                 |                 |             |             | Scolecida     | Polychaeta |
| Armandia maculata                 |                 |             |             | Scolecida     | Polychaeta |
| Clymenura snaiko                  |                 |             |             | Scolecida     | Polychaeta |
| Polychaeta                        |                 |             |             |               | Polychaeta |
|                                   |                 |             |             |               |            |

#### PHYLUM ARTHROPODA, SUBPHYLUM CHELICERATA

| ΟΤυ                     | Order     | Super order | Infraclass | Sub class | Class       |
|-------------------------|-----------|-------------|------------|-----------|-------------|
| Achelia assimilis       | Pantopoda |             |            |           | Pycnogonida |
| Ammothea australiensis  | Pantopoda |             |            |           | Pycnogonida |
| Ammothea magniceps      | Pantopoda |             |            |           | Pycnogonida |
| Austropallene cornigera | Pantopoda |             |            |           | Pycnogonida |
| Pallenopsis obliqua     | Pantopoda |             |            |           | Pycnogonida |
| Pallenopsis pilosa      | Pantopoda |             |            |           | Pycnogonida |
| Pantopoda               | Pantopoda |             |            |           | Pycnogonida |
| Pycnogonida             |           |             |            |           | Pycnogonida |

# PHYLUM ARTHROPODA, SUBPHYLUM CRUSTACEA

|                             |          | Super    |            |                |              |
|-----------------------------|----------|----------|------------|----------------|--------------|
| ΟΤυ                         | Order    | order    | Infraclass | Sub class      | Class        |
| Aegaeon lacazei             | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Alope spinifrons            | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Alpheopsis garricki         | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Alpheus socialis            | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Areopaguristes pilosus      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Areopaguristes setosus      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Aristaeomorpha foliacea     | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Bathypaguropsis cruentus    | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Cancellus sphraerogonus     | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Chlorotocus novaezealandiae | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Ctenocheles maorianus       | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Cyclohombronia depressa     | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Cyrtomaia hispida           | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Decapoda                    | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Diacanthurus                | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Diacanthurus rubricatus     | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Diacanthurus spinulimanus   | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Dittosa cheesmani           | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Dromia wilsoni              | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Ebalia                      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Eplumula australiensis      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Eurynome bituberculata      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Galatheidae                 | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Halicarcinus                | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Halicarcinus tongi          | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Haliporoides sibogae        | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Hymenosomatidae             | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Ibacus alticrenatus         | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Jacquinotia edwardsii       | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Jasus verreauxi             | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Leptomithrax                | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Leptomithrax australis      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Leptomithrax garricki       | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Leptomithrax longipes       | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Leptomithrax tuberculatus   | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Liocarcinus corrugatus      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lophopagurus                | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lophopagurus cookii         | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lophopagurus eltaninae      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lophopagurus foresti        | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lophopagurus laurentae      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lophopagurus nodulosus      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lophopagurus stewarti       | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lophopagurus thompsoni      | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lyreidus                    | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Lyreidus tridentatus        | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Metacarcinus novaezelandiae | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Metadynomene tanensis       | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Metanephrops challengeri    | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Munida gracilis             | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Munida gregaria             | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Munidopsis tasmaniae        | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
| Nauticaris marionis         | Decapoda | Eucarida |            | Eumalacostraca | Malacostraca |
|                             | - mpour  | _availuu |            |                |              |

| ΟΤ                                   | Order     | Super<br>order       | Infraclass  | Sub class                        | Class                        |
|--------------------------------------|-----------|----------------------|-------------|----------------------------------|------------------------------|
| Nectocarcinus                        | Decapoda  | Eucarida             | inii acia35 | Eumalacostraca                   | Malacostraca                 |
| Nectocarcinus antarcticus            | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Nectocarcinus bennetti               | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Nectocarcinus stephensoni            | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Neommatocarcinus huttoni             | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Notomithrax                          | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Notomithrax minor                    | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Notomithrax peronii                  | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Ogyrides delli                       | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Oplophorus novaezeelandiae           | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Ovalipes catharus                    | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Paguridae                            | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Paguristes                           | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Paguristes barbatus                  | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Paguristes subpilosus                | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Pagurus albidianthus                 | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Palaemon affinis                     | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Periclimenes yaldwyni                | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Petrolisthes novazelandiae           | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Phylladiorhynchus pusillus           | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
|                                      |           | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Pilumnopeus<br>Pinnotheres           | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
|                                      | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Pontophilus<br>Pontophilus australia | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Pontophilus australis                | Decapoda  |                      |             | Eumalacostraca                   |                              |
| Pontophilus pilosoides               | Decapoda  | Eucarida<br>Eucarida |             | Eumalacostraca                   | Malacostraca<br>Malacostraca |
| Porcellanopagurus edwardsii          | Decapoda  |                      |             | Eumalacostraca                   | Malacostraca                 |
| Porcellanopagurus filholi            | Decapoda  | Eucarida             |             |                                  |                              |
| Prismatopus filholi                  | Decapoda  | Eucarida             |             | Eumalacostraca<br>Eumalacostraca | Malacostraca                 |
| Propagurus deprofundis               | Decapoda  | Eucarida             |             |                                  | Malacostraca                 |
| Rhynchocinetes balssi                | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Solenocera novaezealandiae           | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Teratomaia richardsoni               | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Thacanophrys filholi                 | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Tozeuma novaezealandiae              | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Trichopeltarion fantasticum          | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Uroptychus                           | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Uroptychus tomentosus                | Decapoda  | Eucarida             |             | Eumalacostraca                   | Malacostraca                 |
| Ampelisca                            | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Ampelisca bouvieri                   | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Ampelisca chiltoni                   | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Ampeliscidae                         | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Amphipoda                            | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Ampithoe lessoniae                   | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Bathymedon neozelanicus              | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Caprellina longicollis               | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Ceradocus                            | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Cerapus                              | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Corophiidae                          | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Elasmopus                            | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Eurystheus                           | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Eurystheus dentatus                  | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Eurystheus thomsoni                  | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Harpinia pectinata                   | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Haustoriidae                         | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |
| Ischyrocerus longimanus              | Amphipoda | Peracarida           |             | Eumalacostraca                   | Malacostraca                 |

|                               |           | Super      |            |                |              |
|-------------------------------|-----------|------------|------------|----------------|--------------|
| OTU                           | Order     | order      | Infraclass | Sub class      | Class        |
| Liljeborgia barhami           | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Lysianassidae                 | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Melitidae                     | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Oedicerotidae                 | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Paraphoxus                    | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Parathemisto                  | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Parathemisto gaudichaudii     | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Parawaldeckia thomsoni        | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Photis                        | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Photis brevicaudata           | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Phoxocephalidae               | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Platyscelus serratulus        | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Proharpinia                   | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Proharpinia stephenseni       | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Protophoxus australis         | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Pseudambasia rossii           | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Scypholanceola                | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Socarnes                      | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Tmetonyx suteri               | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Torridoharpinia hurleyi       | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Urohaustoriidae               | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Urothoidae                    | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Ventojassa frequens           | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Waitangi brevirostris         | Amphipoda | Peracarida |            | Eumalacostraca | Malacostraca |
| Campylaspis                   | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Colurostylis castlepointensis | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cumacea                       | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cyclaspis                     | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cyclaspis argus               | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cyclaspis elegans             | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cyclaspis levis               | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cyclaspis triplicata          | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Diastylis                     | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Diastylis neozealanica        | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Diastylopsis crassior         | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Diastylopsis elongata         | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Eudorella                     | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Hemilamprops pellucidus       | Cumacea   | Peracarida |            | Eumalacostraca | Malacostraca |
| Aegiochus coroo               | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Aegiochus laevis              | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Amphoroidea                   | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Amphoroidea media             | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cassidina typa                | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cilicaea angustispinata       | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cilicaea dolorosa             | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cirolana kokoru               | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cirolanidae                   | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Crinoniscus cephalatus        | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cymodoce                      | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Cymodoce iocosa               | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Dynamenoides decima           | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Exosphaeroma falcatum         | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Exosphaeroma planulum         | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Isocladus armatus             | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| Isopoda                       | Isopoda   | Peracarida |            | Eumalacostraca | Malacostraca |
| 1 · · · · ·                   | r - r     |            |            |                |              |

|                             |             | Super      |             |                |              |
|-----------------------------|-------------|------------|-------------|----------------|--------------|
| ΟΤυ                         | Order       | order      | Infraclass  | Sub class      | Class        |
| Janiridae                   | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Joeropsis                   | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Leptanthura                 | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Maoridotea naylori          | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Mexicope sushara            | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Natatolana                  | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Natatolana aotearoa         | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Natatolana hirtipes         | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Natatolana pellucida        | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Neastacilla                 | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Nerocila orbignyi           | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Notopais                    | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Paranthura                  | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Paridotea ungulata          | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Phreatoicidae               | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Pseudaega                   | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Pseudaega secunda           | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Pseudidotea                 | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Rocinela garricki           | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Sphaeroma quoyanum          | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Sphaeromatidae              | Isopoda     | Peracarida |             | Eumalacostraca | Malacostraca |
| Tenagomysis longisquama     | Mysida      | Peracarida |             | Eumalacostraca | Malacostraca |
| Tenagomysis macropsis       | Mysida      | Peracarida |             | Eumalacostraca | Malacostraca |
| Tenagomysis producta        | Mysida      | Peracarida |             | Eumalacostraca | Malacostraca |
| Apseudes                    | Tanaidacea  | Peracarida |             | Eumalacostraca | Malacostraca |
| Leptognathia                | Tanaidacea  | Peracarida |             | Eumalacostraca | Malacostraca |
| Pancoloides                 | Tanaidacea  | Peracarida |             | Eumalacostraca | Malacostraca |
| Paratanais oculatus         | Tanaidacea  | Peracarida |             | Eumalacostraca | Malacostraca |
| Tanaidacea                  | Tanaidacea  | Peracarida |             | Eumalacostraca | Malacostraca |
| Zeuxo phytalensis           | Tanaidacea  | Peracarida |             | Eumalacostraca | Malacostraca |
| Zeuxoides aka               | Tanaidacea  | Peracarida |             | Eumalacostraca | Malacostraca |
| Zeuxoides ohlini            | Tanaidacea  | Peracarida |             | Eumalacostraca | Malacostraca |
| Anchisquilloides mcneilli   | Stomatopoda |            |             | Hoplocarida    | Malacostraca |
| Heterosquilla tricarinata   | Stomatopoda |            |             | Hoplocarida    | Malacostraca |
| Heterosquilla trifida       | Stomatopoda |            |             | Hoplocarida    | Malacostraca |
| Pariliacantha georgeorum    | Stomatopoda |            |             | Hoplocarida    | Malacostraca |
| Pterygosquilla schizodontia | Stomatopoda |            |             | Hoplocarida    | Malacostraca |
| Stomatopoda                 | Stomatopoda |            |             | Hoplocarida    | Malacostraca |
| Aetideidae                  | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Aetideopsis tumorosa        | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Augaptilus                  | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Calanidae                   | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Candacia bipinnata          | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Candacia cheirura           | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Chirundina streetsii        | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Clausocalanus ingens        | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Clausocalanus jobei         | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Clausocalanus laticeps      | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Ctenocalanus vanus          | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Euaugaptilus nodifrons      | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Eucalanidae                 | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
| Euchaetidae                 | Calanoida   | Gymnoplea  | Neocopepoda | Copepoda       | Maxillopoda  |
|                             |             |            |             |                |              |

|                              |                 | Super     |             |             |             |
|------------------------------|-----------------|-----------|-------------|-------------|-------------|
| ΟΤυ                          | Order           | order     | Infraclass  | Sub class   | Class       |
| Gaetanus kruppi              | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Gaetanus minor               | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Gaetanus pileatus            | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Gaetanus pungens             | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Gaetanus tenuispinus         | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Haloptilus oxycephalus       | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Heterorhabdus                | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Heterorhabdus abyssalis      | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Heterorhabdus austrinus      | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Heterorhabdus pustulifer     | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Heterorhabdus spinifrons     | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Heterorhabdus spinosus       | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Lucicutia                    | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Mecynocera clausi            | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Neocalanus gracilis          | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Paraeuchaeta biloba          | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Paraeuchaeta pseudotonsa     | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Undeuchaeta incisa           | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Undeuchaeta plumosa          | Calanoida       | Gymnoplea | Neocopepoda | Copepoda    | Maxillopoda |
| Chitinolepas spiritsensis    | Ibliformes      | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Arcoscalpellum affibricatum  | Scalpelliformes | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Calantica spinilatera        | Scalpelliformes | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Calantica spinosa            | Scalpelliformes | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Calantica studeri            | Scalpelliformes | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Graviscalpellum pedunculatum | Scalpelliformes | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Austrominius modestus        | Sessilia        | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Balanus                      | Sessilia        | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Notobalanus vestitus         | Sessilia        | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Notomegabalanus decorus      | Sessilia        | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Pachylasma auranticacum      | Sessilia        | Thoracica | Cirripedia  | Thecostraca | Maxillopoda |
| Maxillopoda                  |                 |           | -           |             | Maxillopoda |
| *                            |                 |           |             |             |             |

#### PHYLUM BRACHIOPODA

| ΟΤυ                       | Order          | Super order | Infraclass | Sub class | Class          |
|---------------------------|----------------|-------------|------------|-----------|----------------|
| Novocrania huttoni*       | Craniida       |             |            |           | Craniata       |
| Notosaria nigricans       | Rhynchonellida |             |            |           | Rhynchonellata |
| Notosaria reinga          | Rhynchonellida |             |            |           | Rhynchonellata |
| Aerothyris macquariensis  | Terebratulida  |             |            |           | Rhynchonellata |
| Calloria inconspicua      | Terebratulida  |             |            |           | Rhynchonellata |
| Calloria variegata        | Terebratulida  |             |            |           | Rhynchonellata |
| Gyrothyris mawsoni        | Terebratulida  |             |            |           | Rhynchonellata |
| Liothyrella               | Terebratulida  |             |            |           | Rhynchonellata |
| Liothyrella neozelanica   | Terebratulida  |             |            |           | Rhynchonellata |
| Neothyris compressa       | Terebratulida  |             |            |           | Rhynchonellata |
| Neothyris lenticularis    | Terebratulida  |             |            |           | Rhynchonellata |
| Neothyris parva           | Terebratulida  |             |            |           | Rhynchonellata |
| Terebratella haurakiensis | Terebratulida  |             |            |           | Rhynchonellata |
| Terebratella sanguinea    | Terebratulida  |             |            |           | Rhynchonellata |
| *                         |                | C ( 1 D)    |            | 1.0       | -              |

\* Sub-Phylum Craniiformea. The remaining OTUs are from Sub-Phylum Rhynchonelliformea.

#### PHYLUM BRYOZOA

| ΟΤυ                       | Order           | Super order | Infraclass | Sub class | Class        |
|---------------------------|-----------------|-------------|------------|-----------|--------------|
| Adeonellopsis             | Cheilostomatida |             |            |           | Gymnolaemata |
| Biflustra grandicella     | Cheilostomatida |             |            |           | Gymnolaemata |
| Celleporaria agglutinans  | Cheilostomatida |             |            |           | Gymnolaemata |
| Eurystomella aupouria     | Cheilostomatida |             |            |           | Gymnolaemata |
| Eurystomella biperforata  | Cheilostomatida |             |            |           | Gymnolaemata |
| Integripelta sextaria     | Cheilostomatida |             |            |           | Gymnolaemata |
| Amathia wilsoni           | Ctenostomatida  |             |            |           | Gymnolaemata |
| Calvetia osheai           | Cyclostomatida  |             |            |           | Stenolaemata |
| Doliocoitis cyanea        | Cyclostomatida  |             |            |           | Stenolaemata |
| Hornera                   | Cyclostomatida  |             |            |           | Stenolaemata |
| Liripora pseudosarniensis | Cyclostomatida  |             |            |           | Stenolaemata |
| Spiritopora perplexa      | Cyclostomatida  |             |            |           | Stenolaemata |
|                           |                 |             |            |           |              |

#### PHYLUM CHORDATA

| ΟΤυ                                                     | Order           | Super order | Infraclass | Sub class | Class          |
|---------------------------------------------------------|-----------------|-------------|------------|-----------|----------------|
| Branchiostoma lanceolatum*                              |                 |             |            |           | Leptocardii    |
| Epigonichthys hectori*                                  |                 |             |            |           | Leptocardii    |
| Aplousobranchia <sup>+</sup>                            | Aplousobranchia |             |            |           | Ascidiacea     |
| Cnemidocarpa†                                           | Stolidobranchia |             |            |           | Ascidiacea     |
| Cnemidocarpa nisiotis†                                  | Stolidobranchia |             |            |           | Ascidiacea     |
| Pyura pachydermatina†                                   | Stolidobranchia |             |            |           | Ascidiacea     |
| Pyura picta†                                            | Stolidobranchia |             |            |           | Ascidiacea     |
| Ascidiacea [Tunicates]†                                 |                 |             |            |           | Ascidiacea     |
| Thaliacea [Salps]†                                      |                 |             |            |           | Thaliacea      |
| Scorpaenidae:                                           | Scorpaeniformes |             |            |           | Actinopterygii |
| * Sub-Phylum Cephalochordata.<br>† Sub-Phylum Tunicata. | -               |             |            |           |                |

† Sub-Phylum Tunicata.‡ Sub-Phylum Vertebrata, Super Class Ganthostomata.

# PHYLUM CNIDARIA

| ΟΤυ                        | Order            | Super order | Infraclass | Sub class    | Class    |
|----------------------------|------------------|-------------|------------|--------------|----------|
| Actiniaria                 | Actiniaria       |             |            | Hexacorallia | Anthozoa |
| Bunodactis                 | Actiniaria       |             |            | Hexacorallia | Anthozoa |
| Bunodactis chrysobathys    | Actiniaria       |             |            | Hexacorallia | Anthozoa |
| Phellia aucklandica        | Actiniaria       |             |            | Hexacorallia | Anthozoa |
| Antipatharia               | Antipatharia     |             |            | Hexacorallia | Anthozoa |
| Antipathella               | Antipatharia     |             |            | Hexacorallia | Anthozoa |
| Antipathella fiordensis    | Antipatharia     |             |            | Hexacorallia | Anthozoa |
| Antipathes gracilis        | Antipatharia     |             |            | Hexacorallia | Anthozoa |
| Antipathes pauroclema      | Antipatharia     |             |            | Hexacorallia | Anthozoa |
| Myriopathidae              | Antipatharia     |             |            | Hexacorallia | Anthozoa |
| Stichopathes variabilis    | Antipatharia     |             |            | Hexacorallia | Anthozoa |
| Stylopathes tenuispina     | Antipatharia     |             |            | Hexacorallia | Anthozoa |
| Corynactis                 | Corallimorpharia |             |            | Hexacorallia | Anthozoa |
| Caryophyllia               | Scleractinia     |             |            | Hexacorallia | Anthozoa |
| Caryophyllia profunda      | Scleractinia     |             |            | Hexacorallia | Anthozoa |
| Caryophyllia quadragenaria | Scleractinia     |             |            | Hexacorallia | Anthozoa |
| Desmophyllum               | Scleractinia     |             |            | Hexacorallia | Anthozoa |
| Desmophyllum cristagalli   | Scleractinia     |             |            | Hexacorallia | Anthozoa |
| Desmophyllum dianthus      | Scleractinia     |             |            | Hexacorallia | Anthozoa |
| Kionotrochus suteri        | Scleractinia     |             |            | Hexacorallia | Anthozoa |

| ΟΤυ                        | Order         | Super order | Infraclass | Sub class    | Class    |
|----------------------------|---------------|-------------|------------|--------------|----------|
| Oculina virgosa            | Scleractinia  |             |            | Hexacorallia | Anthozoa |
| Scleractinia               | Scleractinia  |             |            | Hexacorallia | Anthozoa |
| Solenosmilia variabilis    | Scleractinia  |             |            | Hexacorallia | Anthozoa |
| Sphenotrochus squiresi     | Scleractinia  |             |            | Hexacorallia | Anthozoa |
| Tethocyathus cylindraceus  | Scleractinia  |             |            | Hexacorallia | Anthozoa |
| Epizoanthus                | Zoantharia    |             |            | Hexacorallia | Anthozoa |
| Epizoanthus paguriphilus   | Zoantharia    |             |            | Hexacorallia | Anthozoa |
| Parazoanthus               | Zoantharia    |             |            | Hexacorallia | Anthozoa |
| Savalia                    | Zoantharia    |             |            | Hexacorallia | Anthozoa |
| Zoantharia                 | Zoantharia    |             |            | Hexacorallia | Anthozoa |
| Zoanthidae                 | Zoantharia    |             |            | Hexacorallia | Anthozoa |
| Alcyonacea                 | Alcyonacea    |             |            | Octocorallia | Anthozoa |
| Alcyoniidae                | Alcyonacea    |             |            | Octocorallia | Anthozoa |
| Rhodelinda gardineri       | Alcyonacea    |             |            | Octocorallia | Anthozoa |
| Taiaroa tauhou             | Alcyonacea    |             |            | Octocorallia | Anthozoa |
| Telesto                    | Alcyonacea    |             |            | Octocorallia | Anthozoa |
| Acanthogorgia              | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Acanthogorgiidae           | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Callogorgia                | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Callogorgia ventilabrum    | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Chrysogorgia               | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Echinisis                  | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Fanellia                   | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Gorgonacea                 | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Keratoisis                 | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Perissogorgia              | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Plexauridae                | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Primnoella                 | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Primnoidae                 | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Scleracis                  | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Thouarella                 | Gorgonacea    |             |            | Octocorallia | Anthozoa |
| Anthoptilum grandiflorum   | Pennatulacea  |             |            | Octocorallia | Anthozoa |
| Funiculina                 | Pennatulacea  |             |            | Octocorallia | Anthozoa |
| Pennatulacea               | Pennatulacea  |             |            | Octocorallia | Anthozoa |
| Amphinema dinema           | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Barnettia caprai           | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Chitina ericopsis          | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Coryne pusilla             | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Ectopleura crocea          | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Eudendrium                 | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Hydractinia novaezelandiae | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Leuckartiara octona        | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Myriothela                 | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Podocoryna minuta          | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Solanderia                 | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Solanderia secunda         | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Stylaster eguchii          | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Stylasteridae              | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Turritopsis nutricula      | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Aglaophenia acanthocarpa   | Leptothecata  |             |            | Hydroidolina | Hydrozoa |
| Aglaophenia ctenata        | Leptothecata  |             |            | Hydroidolina | Hydrozoa |
| Aglaophenia laxa           | Leptothecata  |             |            | Hydroidolina | Hydrozoa |
| Amphisbetia                | Leptothecata  |             |            | Hydroidolina | Hydrozoa |
| Amphisbetia bispinosa      | Leptothecata  |             |            | Hydroidolina | Hydrozoa |
| Amphisbetia fasciculata    | Leptothecata  |             |            | Hydroidolina | Hydrozoa |
| Amphisbetia minima         | Leptothecata  |             |            | Hydroidolina | Hydrozoa |
|                            | 1             |             |            | ,            | J        |

| ΟΤυ                             | Order        | Super order | Infraclass | Sub class    | Class    |
|---------------------------------|--------------|-------------|------------|--------------|----------|
| Amphisbetia operculata          | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Antennella kiwiana              | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Antennella secundaria           | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Clytia johnstoni                | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Corhiza scotiae                 | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Crateritheca                    | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Crateritheca insignis           | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Crateritheca novaezelandiae     | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Crateritheca zelandica          | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Cryptolaria                     | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Cryptolaria pectinata           | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Cryptolaria prima               | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Dictyocladium monilifer         | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Filellum serpens                | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Gonaxia                         | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Gonaxia immersa                 | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Gymnangium longirostre          | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Gymnangium stolifer             | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Halecium delicatulum            | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Halopteris campanula            | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Halopteris heterogona           | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Hydrodendron                    | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Hydrodendron mirabile           | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Lytocarpia chiltoni             | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Lytocarpia incisa               | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Lytocarpia spiralis             | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Monotheca hyalina               | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Nemertesia                      | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Nemertesia ciliata              | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Nemertesia elongata             | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Nemertesia pinnatifida          | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Obelia bidentata                | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Plumularia                      | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Plumularia diploptera           | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Plumularia setacea              | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Plumularia tenuissima           | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Pycnotheca mirabilis            | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Salacia bicalycula              | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Salacia buski                   | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Sertularella geodiae            | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Sertularella intricata          | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Sertularella richardsoni        | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Sertularia unguiculata          | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Staurotheca megalotheca         | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Stereotheca elongata            | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Symplectoscyphus columnarius    | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Symplectoscyphus johnstoni      | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Symplectoscyphus subarticulatus | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Synthecium campylocarpum        | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Synthecium elegans              | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Synthecium longithecum          | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Synthecium subventricosum       | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Zygophylax                      | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Zygophylax antipathes           | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Zygophylax polycarpa            | Leptothecata |             |            | Hydroidolina | Hydrozoa |
| Zygophylax tizardensis          | Leptothecata |             |            | Hydroidolina | Hydrozoa |
|                                 |              |             |            |              |          |

| ΟΤυ                     | Order         | Super order | Infraclass | Sub class    | Class     |
|-------------------------|---------------|-------------|------------|--------------|-----------|
| Zygophylax unilateralis | Leptothecata  |             |            | Hydroidolina | Hydrozoa  |
| Hydroida                |               |             |            | Hydroidolina | Hydrozoa  |
| Hydrozoa                |               |             |            |              | Hydrozoa  |
| Desmonema gaudichaudi   | Semaeostomeae |             |            | Discomedusae | Scyphozoa |
|                         |               |             |            |              |           |

# PHYLUM ECHINODERMATA, SUB-PHYLUM ASTEROZOA

| OTU Order Super order Infraclass Sub class Clas | 5       |
|-------------------------------------------------|---------|
| Brisinga chathamica Brisingida Aster            | oidea   |
| Allostichaster insignis Forcipulatida Aster     | roidea  |
| Allostichaster polyplax Forcipulatida Aster     | roidea  |
| Sclerasterias mollis Forcipulatida Aster        | roidea  |
| Stichaster australis Forcipulatida Aster        | oidea   |
| Astromesites primigenius Paxillosida Aster      | oidea   |
| Astropecten Paxillosida Aster                   | oidea   |
| Astropecten dubiosus Paxillosida Aster          | oidea   |
| Astropecten polyacanthus Paxillosida Aster      | oidea   |
| Luidia Paxillosida Aster                        | oidea   |
| Luidia maculata Paxillosida Aster               | oidea   |
| Luidia neozelanica Paxillosida Aster            | oidea   |
| Proserpinaster neozelanicus Paxillosida Aster   | oidea   |
| Psilaster acuminatus Paxillosida Aster          | roidea  |
| Henricia ralphae Spinulosida Aster              | roidea  |
| Asterodiscides truncatus Valvatida Aster        | roidea  |
| Crossaster campbellicus Valvatida Aster         | roidea  |
| Diplodontias miliaris Valvatida Aster           | roidea  |
| Mediaster sladeni Valvatida Aster               | roidea  |
| Nepanthia reinga Valvatida Aster                | roidea  |
| Odontaster aucklandensis Valvatida Aster        | oidea   |
|                                                 | oidea   |
| Odontaster meridionalis Valvatida Aster         | roidea  |
| I O                                             | oidea   |
| Patiriella regularis Valvatida Aster            | roidea  |
| 0 I                                             | roidea  |
|                                                 | roidea  |
|                                                 | roidea  |
|                                                 | roidea  |
|                                                 | uroidea |
| <i>Ophiopeza cylindrica</i> Ophiurida Ophi      | uroidea |

| OTU                    | Order     | Super order | Infraclass | Sub class | Class       |
|------------------------|-----------|-------------|------------|-----------|-------------|
| Ophiopsammus assimilis | Ophiurida |             |            |           | Ophiuroidea |
| Ophiopsammus maculata  | Ophiurida |             |            |           | Ophiuroidea |
| Ophiozonoida picta     | Ophiurida |             |            |           | Ophiuroidea |
| Ophiuroidea            |           |             |            |           | Ophiuroidea |

# PHYLUM ECHINODERMATA, SUB-PHYLUM CRINOZOA & SUB-PHYLUM ECHINOZOA

| ΟΤυ                         | Order           | Super order      | Infraclass     | Sub class    | Class         |
|-----------------------------|-----------------|------------------|----------------|--------------|---------------|
| Argyrometra mortenseni*     | Comatulida      | •                |                | Articulata   | Crinoidea     |
| Taeniogyrus dendyi          | Apodida         |                  |                |              | Holothuroidea |
| Taeniogyrus dunedinensis    | Apodida         |                  |                |              | Holothuroidea |
| Australostichopus mollis    | Aspidochirotida |                  |                |              | Holothuroidea |
| Bathyplotes moseleyi        | Aspidochirotida |                  |                |              | Holothuroidea |
| Amphicyclus thomsoni        | Dendrochirotida |                  |                |              | Holothuroidea |
| Echinocucumis hispida       | Dendrochirotida |                  |                |              | Holothuroidea |
| Heterothyone alba           | Dendrochirotida |                  |                |              | Holothuroidea |
| Heterothyone ocnoides       | Dendrochirotida |                  |                |              | Holothuroidea |
| Neothyonidium armatum       | Dendrochirotida |                  |                |              | Holothuroidea |
| Placothuria huttoni         | Dendrochirotida |                  |                |              | Holothuroidea |
| Squamocnus brevidentis      | Dendrochirotida |                  |                |              | Holothuroidea |
| Squamocnus niveus           | Dendrochirotida |                  |                |              | Holothuroidea |
| Heteromolpadia marenzelleri | Molpadida       |                  |                |              | Holothuroidea |
| Holothuroidea               | -               |                  |                |              | Holothuroidea |
| Goniocidaris corona         | Cidaroida       |                  |                | Cidaroidea   | Echinoidea    |
| Goniocidaris peltata        | Cidaroida       |                  |                | Cidaroidea   | Echinoidea    |
| Goniocidaris umbraculum     | Cidaroida       |                  |                | Cidaroidea   | Echinoidea    |
| Prionocidaris callista      | Cidaroida       |                  |                | Cidaroidea   | Echinoidea    |
| Diadema palmeri             | Diadematoida    |                  | Acroechinoidea | Euechinoidea | Echinoidea    |
| Evechinus chloroticus       | Camarodonta     | Echinacea        | Carinacea      | Euechinoidea | Echinoidea    |
| Pseudechinus                | Camarodonta     | Echinacea        | Carinacea      | Euechinoidea | Echinoidea    |
| Pseudechinus flemingi       | Camarodonta     | Echinacea        | Carinacea      | Euechinoidea | Echinoidea    |
| Pseudechinus huttoni        | Camarodonta     | Echinacea        | Carinacea      | Euechinoidea | Echinoidea    |
| Brissopsis oldhami          | Spatangoida     | Atelostomata     | Irregularia    | Euechinoidea | Echinoidea    |
| Cyclaster regalis           | Spatangoida     | Atelostomata     | Irregularia    | Euechinoidea | Echinoidea    |
| Echinocardium cordatum      | Spatangoida     | Atelostomata     | Irregularia    | Euechinoidea | Echinoidea    |
| Paramaretia                 | Spatangoida     | Atelostomata     | Irregularia    | Euechinoidea | Echinoidea    |
| Paramaretia tuberculata     | Spatangoida     | Atelostomata     | Irregularia    | Euechinoidea | Echinoidea    |
| Spatangus multispinus       | Spatangoida     | Atelostomata     | Irregularia    | Euechinoidea | Echinoidea    |
| Clypeaster                  | Clypeasteroida  | Neognathostomata | Irregularia    | Euechinoidea | Echinoidea    |
| Clypeaster australasiae     | Clypeasteroida  | Neognathostomata | Irregularia    | Euechinoidea | Echinoidea    |
| Fellaster zelandiae         | Clypeasteroida  | Neognathostomata | Irregularia    | Euechinoidea | Echinoidea    |
| Peronella hinemoae          | Clypeasteroida  | Neognathostomata | Irregularia    | Euechinoidea | Echinoidea    |
| Echinoidea                  |                 |                  |                |              | Echinoidea    |

\* Sub-Phylum Crinozoa. The remaining belong to Sub-Phylum Echinozoa.

# PHYLUM FORAMINIFERA

| Granuloreticulosea     Granuloreticulosea       PHYLUM HEMICHORDATA       Order     Super order     Infractas     Sub class       Class       Bolanoglossus australiensis     Class       Drut Order     Super order     Infractas     Sub class     Class       Duraricella hantamiana     Lacianoida     Euheterodonta     Heterodonta     Bilaviavia       Austrovenus stuckburyi     Veneroida     Euheterodonta     Heterodonta     Bilaviavia       Dotrine grepi     Veneroida     Euheterodonta     Heterodonta     Bilaviavia       Dotrina grepi     Veneroida     Euheterodonta     Heterodonta     Bilaviavia       Austrovenus spissa     Veneroida     Euheterodonta     Heterodonta     Bilaviavia       Autorita     Periomorphia     Bivalvia       Colspan="2">Colspan="2">Colspan="2"     Periomorphia     Bivalvia       Colspan="2">Colspan="2"      Periomorphia <td colsp<="" th=""><th>ΟΤυ</th><th>Orden</th><th>Super order</th><th>Infueless</th><th>Sub along</th><th>Class</th></td>                                                                                                                                                                                                                                                                                          | <th>ΟΤυ</th> <th>Orden</th> <th>Super order</th> <th>Infueless</th> <th>Sub along</th> <th>Class</th> | ΟΤυ             | Orden          | Super order     | Infueless        | Sub along          | Class |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|------------------|--------------------|-------|
| Automation       Automation         PTYLUM HEMICHORDATA         OTU       Order       Super order       Infraclass       Sub class       Enteropneusia         Diamoglossus australiensis       Enteropneusia       Enteropneusia       Enteropneusia         DTU       Order       Super order       Infraclass       Sub class       Class         Diverscella huttoniana       Luciocida       Eubeterodonta       Heterodonta       Bivalvia         Austrovenus stautebhuryi       Veneroida       Eubeterodonta       Heterodonta       Bivalvia         Dosnina       Veneroida       Eubeterodonta       Heterodonta       Bivalvia         Dosnina       Veneroida       Eubeterodonta       Heterodonta       Bivalvia         Opinia       Veneroida       Eubeterodonta       Heterodonta       Bivalvia         Opinia       Veneroida       Eubeterodonta       Heterodonta       Bivalvia         Opperse elongata       Veneroida       Eubeterodonta       Heterodonta       Bivalvia         Parbeis sonzeazealandiae       Arcoida       Peroimorphia       Bivalvia         Autornya arra       Mytiloida       Peroimorphia       Bivalvia         Autornya arra       Mytiloida       Peroimorphia       Bivalvia<                                                                  |                                                                                                       | Order           | Super order    | Infraclass      | Sub class        | Class              |       |
| OruOrderSuper orderInfractassSub classClassBalanoglosus australiensisEnterponeusaDeterponeusaDeterponeusaDeterponeusaDeterponeusaDeterponeusaDeterponeusaDeterponeusaDeterponeusaDeterponeusaDeterponeusaDeterponeus state/bburyiOrner isidaDeterponeus state/bburyiOrner isidaDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterponeusDeterpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Granuloreticulosea                                                                                    |                 |                |                 |                  | Granuloreticulosea |       |
| Balanoglossus australiensis         Entropeusta           PHYLUM MOLLUSCA         Order         Super order         Infraclass         Sub class         Class           Divaricella huttoniana         Lucinoida         Eubeterodonta         Heterodonta         Bivalvia           Bassina yate         Veneroida         Eubeterodonta         Heterodonta         Bivalvia           Cardita aoteana         Veneroida         Eubeterodonta         Heterodonta         Bivalvia           Dosinia         Veneroida         Eubeterodonta         Heterodonta         Bivalvia           Dosinia         Veneroida         Eubeterodonta         Heterodonta         Bivalvia           Austrovenus spissa         Veneroida         Eubeterodonta         Heterodonta         Bivalvia           Paphies subringulata         Veneroida         Eubeterodonta         Heterodonta         Bivalvia           Towera spissa         Veneroida         Eubeterodonta         Heterodonta         Bivalvia           Geyeymerididae         Arcoida         Periomorphia         Bivalvia           Autacomya atra         Mytiloida         Periomorphia         Bivalvia           Autacomya atra         Mytiloida         Periomorphia         Bivalvia           Pereinomorphia         Bi     | PHYLUM HEMICHO                                                                                        | RDATA           |                |                 |                  |                    |       |
| Subsection         Order         Super order         Infractas         Sub class         Class           Draricella huttoniana         Lucinoida         Euheterodonta         Fleterodonta         Bivalvia           Bassina yatei         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Cardita acteana         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Dosinia         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Dosinia         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Materridae         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Papties subriangulara         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Atterridae         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Parkeis Miringulara         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Attacongra atra         Mytiloida         Periomorphia         Bivalvia           Audecongra atra         Mytiloida         Periomorphia         Bivalvia           Audecongra atra         Mytiloida         Periomorphia         Bivalvia  | ΟΤυ                                                                                                   | Order           | Super order    | Infraclass      | Sub class        | Class              |       |
| OTUOrderSuper orderInfractassSub classClassDivaricella huttonianaLucinoidaEucleterodontaBivalviaAustrovenus stucchburyiVeneroidaEucleterodontaHeterodontaBivalviaBassina yateiVeneroidaEucleterodontaHeterodontaBivalviaDosiniaVeneroidaEucleterodontaHeterodontaBivalviaDosinia greyiVeneroidaEucleterodontaHeterodontaBivalviaMactridaeVeneroidaEucleterodontaHeterodontaBivalviaPaphies subriangulataVeneroidaEucleterodontaHeterodontaBivalviaPaphies subriangulataVeneroidaEucleterodontaHeterodontaBivalviaPaphies subriangulataVeneroidaEucleterodontaHeterodontaBivalviaGlycymeridiaArcoidaEucleterodontaHeterodontaBivalviaGlycymerididaeArcoidaPeriomorphiaBivalviaAulacomya atraMytiloidaPeriomorphiaBivalviaAulacomya atraMytiloidaPeriomorphiaBivalviaAulacomya GutraOstreoidaPeriomorphiaBivalviaZygochlamysOstreoidaPeriomorphiaBivalviaZygochlamysOstreoidaPeriomorphiaBivalviaZygochlamysOstreoidaPeriomorphiaBivalviaZygochlamysOstreoidaPeriomorphiaBivalviaZygochlamysOstreoidaPeriomorphiaBivalviaZygochlamysOstreoidaPeriomorph                                                                                                                                                                                                                                                     | Balanoglossus australiensis                                                                           |                 |                |                 |                  | Enteropneusta      |       |
| Divaricella huttoniana         Lucinoida         Euclerodonta         Hetrodonta         Bivalvia           Austrovenus stuchburyi         Veneroida         Eucleterodonta         Hetrodonta         Bivalvia           Cardita aoteana         Veneroida         Eucleterodonta         Hetrodonta         Bivalvia           Dosinia greyi         Veneroida         Eucleterodonta         Hetrodonta         Bivalvia           Dosinia greyi         Veneroida         Eucleterodonta         Hetrodonta         Bivalvia           Austridae         Veneroida         Eucleterodonta         Hetrodonta         Bivalvia           Paphies subriangulata         Veneroida         Eucleterodonta         Hetrodonta         Bivalvia           Pavera sjissa         Veneroida         Eucleterodonta         Hetrodonta         Bivalvia           Barbatia novacealandiae         Arcoida         Petriomorphia         Bivalvia           Aulaconya atra         Mytiloida         Petriomorphia         Bivalvia           Aulaconya atra         Mytiloida         Petriomorphia         Bivalvia           Aulaconya atra         Mytiloida         Petriomorphia         Bivalvia           Zyagochlamys         Ostreoida         Petriomorphia         Bivalvia           Zyagochlamys | PHYLUM MOLLUSC                                                                                        | A               |                |                 |                  |                    |       |
| Divaricella huttoniana         Lucinoida         Euheterodonta         Heterodonta         Bivalvia           Austrovenus stuchburyi         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Bassina yatei         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Dosinia         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Dosinia         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Mactridae         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Paphies subringulata         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Paphies subringulata         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Barbatia novaezealandize         Arcoida         Petriomorphia         Bivalvia           Glycymerididae         Arcoida         Petriomorphia         Bivalvia           Aulaconnya area         Mytiloida         Petriomorphia         Bivalvia           Aulaconnya area         Mytiloida         Petriomorphia         Bivalvia           Petroinorphia         Bivalvia         Petriomorphia         Bivalvia           Zygochlamys       | ΟΤυ                                                                                                   | Order           | Super order    | Infraclass      | Sub class        | Class              |       |
| Bassina yateiVeneroidaEuheterodontaHeterodontaBivalviaCordita aoteanaVeneroidaEuheterodontaHeterodontaBivalviaDosiniaVeneroidaEuheterodontaHeterodontaBivalviaDosinia greyiVeneroidaEuheterodontaHeterodontaBivalviaMacridaeVeneroidaEuheterodontaHeterodontaBivalviaOxyperas elongataVeneroidaEuheterodontaHeterodontaBivalviaTawera spissaVeneroidaEuheterodontaHeterodontaBivalviaBarbatia novaezealandiaeAreoidaEuheterodontaHeterodontaBivalviaGlycymerididaeAreoidaEuheterodontaHeterodontaBivalviaGlycymerididaeAreoidaImoidaPteriomorphiaBivalviaAulacomya atraMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaPeteriomorphaOstreoidaPteriomorphiaBivalviaPeteriomorphaOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaDecapodiformesColeoideaCephalopodaOctopodi GrmesColeoideaCephalopodaColeoideaCephalopodaOrychoteuhisOstopodaOctopodiformesColeoideaCephalopodaOstrooidaDecapodiformesColeoideaCephalopodaOstrooidaDecapodiformesColeoideaCephalopodaOrychoteu                                                                                                                                                                                                                                                     | Divaricella huttoniana                                                                                | Lucinoida       | •              | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Bassina yatei       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Cardita aoteana       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Dosinia       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Dosinia greyi       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Actridae       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Oxyperas elongata       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Tawera spissa       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Barbatia novaezealandiae       Arcoida       Euheterodonta       Heterodonta       Bivalvia         Glycymerididae       Arcoida       Imoida       Periomorphia       Bivalvia         Aulacomya atra       Mytiloida       Veneroida       Periomorphia       Bivalvia         Aulacomya atra       Mytiloida       Veneroida       Periomorphia       Bivalvia         Chlamys       Ostroida       Veneroida       Periomorphia       Bivalvia         Perconovaezealandiae       Ostroida       Periomorphia       Bivalvia         Zygochlamys       Ostroida       Periomorphia<                                                           | Austrovenus stutchburyi                                                                               | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Cardita aoteana         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Dosinia greyi         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Mactridae         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Actridae         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Paphies subtriangulata         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Tawera spissa         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Genericardia purpurata         Veneroida         Euheterodonta         Heterodonta         Bivalvia           Barbatia novaezelandiae         Arcoida         Fueroinorphia         Bivalvia           Limatula vigilis         Limoida         Fueroinorphia         Bivalvia           Audecomya atra         Mytiloida         Petroinorphia         Bivalvia           Modiolas areolatus         Mytiloida         Petroinorphia         Bivalvia           Petroinorphia         Bivalvia         Petroinorphia         Bivalvia           Petroinorphia         Bivalvia         Sivalvia         Sivalvia           Chlamys         Ostreoida         Petroi      |                                                                                                       | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Dosinia greyi       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Macridae       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Oxyperas elongata       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Paphies subriangulata       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Tavera spissa       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Barbatia novaezealandiae       Arcoida       Fuenorphia       Bivalvia         Glycymerididae       Arcoida       Petriomorphia       Bivalvia         Limatula vigilis       Limoida       Petriomorphia       Bivalvia         Aulacomya atra       Mytiloida       Petriomorphia       Bivalvia         Modiolus areolatus       Mytiloida       Petriomorphia       Bivalvia         Mesopeplum convexum       Ostreoida       Petriomorphia       Bivalvia         Pectinidae       Ostreoida       Petriomorphia       Bivalvia         Zygochlamys       Ostreoida       Petromorphia       Bivalvia         Zygochlamys       Ostreoida       Petromorphia       Bivalvia         Zygochlamys       Ostreoida       Decapodiformes       Coleoida                                                                   |                                                                                                       | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Mactridae       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Dxsperas elongata       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Paphies subtriangulata       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Tawera spissa       Veneroida       Euheterodonta       Heterodonta       Bivalvia         Venericardia purpurata       Veneroida       Arcoida       Fueriomophia       Bivalvia         Glycymerididae       Arcoida       Arcoida       Periomophia       Bivalvia         Glycymerididae       Arcoida       Yeneriomophia       Bivalvia         Aulacomya atra       Mytiloida       Periomophia       Bivalvia         Aulacomya atra       Mytiloida       Periomophia       Bivalvia         Modiolus areelatus       Mytiloida       Periomophia       Bivalvia         Mesopeplum convexum       Ostreoida       Periomophia       Bivalvia         Pectinnoba       Ostreoida       Periomophia       Bivalvia         Zygochlamys       Ostreoida       Periomophia       Bivalvia         Zygochlamys       Ostreoida       Periomophia       Bivalvia         Zygochlamys       Ostreoida       Decapodiformes       Coleoida<                                                                   | Dosinia                                                                                               | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Oxyperas elongataVeneroidaEuheterodontaHeterodontaBivalviaPaphies subtriangulataVeneroidaEuheterodontaHeterodontaBivalviaTowera spissaVeneroidaEuheterodontaHeterodontaBivalviaVeneroidaEuheterodontaHeterodontaBivalviaVenericardia purpurataVeneroidaEuheterodontaHeterodontaBivalviaBarbatia novaezealandiaeArcoidaPteriomorphiaBivalviaGlycymerididaeArcoidaPteriomorphiaBivalviaLinnatula vigilisLinnoidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaPecten novaezealandiaeOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaDecapodiformesColeoideaCephalopodaChiroteuthisOegopsidaDecapodiformesColeoideaCephalopodaOrtychoteuthisOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaOrtychoteuthisDecopodiformesColeoideaCephalopodaOrtychoteuthisOctopodaOctopodiformesColeoideaCephalopodaOrtychoteuthisDecopodaOctopodiformesColeoideaCephalopodaOrtopodaOctopodaOctopodiformesColeoideaCephalopoda<                                                                                                                                                                                                                      | Dosinia greyi                                                                                         | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Paphies subtriangulataVeneroidaEuheterodontaHeterodontaBivalviaTowera spissaVeneroidaEuheterodontaHeterodontaBivalviaVeneroidaEuheterodontaHeterodontaBivalviaVenericardia purpurataVeneroidaEuheterodontaHeterodontaBivalviaGlycymerididaeArcoidaPeriomorphiaBivalviaGlycymerididaeArcoidaPeriomorphiaBivalviaLimatula vigitisLimoidaPeriomorphiaBivalviaAulacomya atraMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaChlamysOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPectinidaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaDecapodiformesColeoideaCephalopodaOnychoteuthisOcopodaOctopodiformesColeoideaCephalopodaOrychoteuthisOctopodaOctopodiformesColeoideaCephalopodaOrychoteuthisOctopodaOctopodiformesColeoideaCephalopodaOrychoteuthisOctopodaOctopodiformesColeoideaCephalopodaOrychoteuthisOctopodaOctopodiformesColeoideaCephalopodaOrychoteuthisOctopodaOctopodiformesColeoideaCephalopodaOrychoteuthisOctopoda                                                                                                                                                                                                                                            | Mactridae                                                                                             | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Tawera spissaVeneroidaEuheterodontaHeterodontaBivalviaVeneroidaEuheterodontaHeterodontaBivalviaBivalviaBarbatia novaezealandiaeArcoidaPteriomorphiaBivalviaGlycymerididaeArcoidaPteriomorphiaBivalviaLimatula vigilisLimoidaPteriomorphiaBivalviaAulacomya atraMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaMesopeplum convexumOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaPecapodiformesColeoideaCephalopodaOrhoreuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOctopats campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopats cambelliOctopodaOctopodiformesColeoideaCephalopodaOrythoe utherculataOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodaCaenogastropodaGastropodaArgobuccinum pustulosumLittorinimorphaCaenogastropodaGastropodaArgobuccinum pustulosumLittorinimorphaCaenogastropodaGastropoda                                                                                                                                                                                                         | Oxyperas elongata                                                                                     | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Venericardia purpurataVeneroidaEuheterodontaHeterodontaBivalviaBarbatia novaezealandiaeArcoidaPteriomorphiaBivalviaGlycymerididaeArcoidaPteriomorphiaBivalviaLimatula vigilisLimoidaPteriomorphiaBivalviaLimatula vigilisLimoidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaChlamysOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaDecapodiformesColeoideaCephalopodaOnychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaLittorinimorphaCaenogastropodaGastropodaArgobuccinum pustulosumLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropoda                                                                                                                                                                                                        | Paphies subtriangulata                                                                                | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Barbatia novaezealandiaeArcoidaPteriomorphiaBivalviaGlycymerididaeArcoidaPteriomorphiaBivalviaLimatula vigilisLimoidaPteriomorphiaBivalviaAulacomya atraMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaChlamysOstreoidaPteriomorphiaBivalviaMesopeplum convexumOstreoidaPteriomorphiaBivalviaPectinidaeOstreoidaPteriomorphiaBivalviaPectinidaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaDecapodiformesColeoideaCephalopodaOrtoreuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaGastropodaPristriton laudandusLittorinimorphaCaenogastropodaGastropodaRanellaLittorinimorphaCaenogastropodaGastropodaAranbaciasis pyrumLittorinimorphaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCaenogastropodaGastropoda                                                                                                                                                                                                                                        | Tawera spissa                                                                                         | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| GlycymerididaeArcoidaPteriomorphiaBivalviaLimatula vigilisLimoidaPteriomorphiaBivalviaAulacomya atraMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaModiolus areolatusOstreoidaPteriomorphiaBivalviaMesopeplum convexumOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaDecapodiformesColeoideaCephalopodaChiroteuthisOegopsidaDecapodiformesColeoideaCephalopodaOrcopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCaenogastropodaGastropoda </td <td>Venericardia purpurata</td> <td>Veneroida</td> <td></td> <td>Euheterodonta</td> <td>Heterodonta</td> <td>Bivalvia</td>                                                                 | Venericardia purpurata                                                                                | Veneroida       |                | Euheterodonta   | Heterodonta      | Bivalvia           |       |
| Limothul vigilisLimoidaPieriomorphiaBivalviaAulacomya atraMytiloidaPieriomorphiaBivalviaModiolus areolatusMytiloidaPieriomorphiaBivalviaChlamysOstreoidaPieriomorphiaBivalviaMesopeplum convexumOstreoidaPieriomorphiaBivalviaPecten novaezelandiaeOstreoidaPieriomorphiaBivalviaPecten novaezelandiaeOstreoidaPieriomorphiaBivalviaPectinidaeOstreoidaPieriomorphiaBivalviaZygochlamysOstreoidaPieriomorphiaBivalviaZygochlamysOstreoidaDecapodiformesColeoideaCephalopodaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaDecapodiformesColeoideaCephalopodaCephalopodaCephalopodaOctopodiformesColeoideaCephalopodaCephalopodaDecapodiformesColeoideaCephalopodaCephalopodaDecapodiformesColeoideaCephalopodaCephalopodaDecapodiformesColeoideaCephalopodaCephalopodaDecapodiformesCaenogastropodaGastropoda <td>Barbatia novaezealandiae</td> <td>Arcoida</td> <td></td> <td></td> <td>Pteriomorphia</td> <td>Bivalvia</td>                                                                                                                  | Barbatia novaezealandiae                                                                              | Arcoida         |                |                 | Pteriomorphia    | Bivalvia           |       |
| Aulacomya draMytiloidaPteriomorphiaBivalviaModiolus areolatusMytiloidaPteriomorphiaBivalviaChlamysOstreoidaPteriomorphiaBivalviaMesopeplum convexumOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPectinidaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaPteriomorphiaBivalviaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOrgobaOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisLittorinimorphaCaenogastropodaGastropodaSemicassis pryumLittorinimorphaCaenogastropodaGastropodaArgohoraLittorinimorphaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCaenogastropodaGastropodaAlcihoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCaenogastropodaGastropodaAlcihoe arabicaNeogastropodaCa                                                                                                                                                                                               | Glycymerididae                                                                                        | Arcoida         |                |                 | Pteriomorphia    | Bivalvia           |       |
| Modiolus areolatusMytiloidaPteriomorphiaBivalviaChlamysOstreoidaPteriomorphiaBivalviaMesopeplum convexumOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaPteriomorphiaBivalviaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaPeninoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe astenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe astenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe astenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe aste                                                                                                                                                                             | Limatula vigilis                                                                                      | Limoida         |                |                 | Pteriomorphia    | Bivalvia           |       |
| ChlamysOstreoidaPteriomorphiaBivalviaMesopeplum convexumOstreoidaPteriomorphiaBivalviaPecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPectinidaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaPteriomorphiaBivalviaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOnychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOcythoe tuberculataOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisDecopodaOctopodiformesColeoideaCephalopodaFusitriton laudandusLittorinimorphaSastropodaGastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropoda<                                                                                                                                                                             | Aulacomya atra                                                                                        | Mytiloida       |                |                 | Pteriomorphia    | Bivalvia           |       |
| Mesopeplum convexumOstreoidaPieriomorphiaBivalviaPecten novaezelandiaeOstreoidaPieriomorphiaBivalviaPectinidaeOstreoidaPieriomorphiaBivalviaZygochlamysOstreoidaPieriomorphiaBivalviaZygochlamys delicatulaOstreoidaPieriomorphiaBivalviaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOrychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctpolaOctopodaOctopodiformesColeoideaCephalopodaOctpolaOctopodaOctopodiformesColeoideaCephalopodaOctpolaOctopodaOctopodiformesColeoideaCephalopodaOctpolaOctopodaOctopodiformesColeoideaCephalopodaOctpolaOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaGanogastropodaLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe astenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe astenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe as                                                                                                                                                                                                                 | Modiolus areolatus                                                                                    | Mytiloida       |                |                 | Pteriomorphia    | Bivalvia           |       |
| Pecten novaezelandiaeOstreoidaPteriomorphiaBivalviaPectinidaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaPteriomorphiaBivalviaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOnychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctyboe tuberculataOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesCaenogastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropoda                                                                                                                                                                                               | Chlamys                                                                                               | Ostreoida       |                |                 | Pteriomorphia    | Bivalvia           |       |
| PectinidaeOstreoidaPteriomorphiaBivalviaZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaPteriomorphiaBivalviaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOnychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaSepiolidaeSepiolidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesCaenogastropodaGastropodaArgobuccinum pustulosumLittornimorphaCaenogastropodaGastropodaGastropodaSemicassis pyrumLittornimorphaCaenogastropodaGastropodaGastropodaXenophoraLittornimorphaCaenogastropodaGastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAnstrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaGastropodaGastropoda                                                                                                                                                                    | Mesopeplum convexum                                                                                   | Ostreoida       |                |                 | Pteriomorphia    | Bivalvia           |       |
| ZygochlamysOstreoidaPteriomorphiaBivalviaZygochlamys delicatulaOstreoidaPteriomorphiaBivalviaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOnychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaSepiolidaeSepiolidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopus condiformisOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaFusitriton laudandusLittorinimorphaSemicassis pyrumCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaNeogastropodaCaenogastropodaGastropodaAlcithoe stenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe stenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe stenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe stenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe stenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe stenfeldiNeogastropodaCaenogastropoda <t< td=""><td>Pecten novaezelandiae</td><td>Ostreoida</td><td></td><td></td><td>Pteriomorphia</td><td>Bivalvia</td></t<>                                | Pecten novaezelandiae                                                                                 | Ostreoida       |                |                 | Pteriomorphia    | Bivalvia           |       |
| Zygochlanys delicatulaOstreoidaPteriomorphiaBivalviaChiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOnychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaSepiolidaeSepiolidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopodaOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaCephalopodaUittornimorphaLittornimorphaCaenogastropodaGastropodaFusitriton laudandusLittornimorphaCaenogastropodaGastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe stanfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropoda </td <td>Pectinidae</td> <td>Ostreoida</td> <td></td> <td></td> <td>Pteriomorphia</td> <td>Bivalvia</td>                                                    | Pectinidae                                                                                            | Ostreoida       |                |                 | Pteriomorphia    | Bivalvia           |       |
| Chiroteuthis joubiniOegopsidaDecapodiformesColeoideaCephalopodaOnychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaSepiolidaeSepiolidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOcythoe tuberculataOctopodaOctopodiformesColeoideaCephalopodaPrinoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaUittorinimorphaColeoideaCephalopodaCephalopodaArgobuccinum pustulosumLittorinimorphaCaenogastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe davegibbsiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaOpisthobranchiaHeterobranchiaArminaNudibranchiaOpisthobranchiaHeterobranchiaOpisthobranchiaNudibranchiaOpisthobranchiaHeterobranchia                                                                                                                                                                                                                                  | Zygochlamys                                                                                           | Ostreoida       |                |                 | Pteriomorphia    | Bivalvia           |       |
| OnychoteuthisOegopsidaDecapodiformesColeoideaCephalopodaSepiolidaeSepiolidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOcythoe tuberculataOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaCephalopodaUittorinimorphaIttorinimorphaCaenogastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaGastropodaSemicassis pyrumLittorinimorphaIttorinimorphaCaenogastropodaGastropodaActithoe arabicaNeogastropodaCaenogastropodaGastropodaGastropodaAlcithoe ostenfeldiNeogastropodaIttorinimorphaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropodaOpisthobranchiaNudibranchiaOpisthobranchiaGaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaGaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropodaArminaNudibranchiaOpist                                                                                                                                                                    | Zygochlamys delicatula                                                                                | Ostreoida       |                |                 | Pteriomorphia    | Bivalvia           |       |
| SepiolidaeSepiolidaDecapodiformesColeoideaCephalopodaOctopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOcythoe tuberculataOctopodaOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaLittorinimorphaCaenogastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                   | Chiroteuthis joubini                                                                                  | Oegopsida       | Decapodiformes |                 | Coleoidea        | Cephalopoda        |       |
| Octopus campbelliOctopodaOctopodiformesColeoideaCephalopodaOctopotaOctopodiformesColeoideaCephalopodaColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaCephalopodaOctopodaOctopodiformesColeoideaCephalopodaCephalopodaEittorinimorphaIttorinimorphaCaenogastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaGastropodaAlcithoe arabicaNeogastropodaNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaGastropodaPenion cuvierianusNudibranchiaOpisthobranchiaHeterobranchiaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                    | Onychoteuthis                                                                                         | Oegopsida       | Decapodiformes |                 | Coleoidea        | Cephalopoda        |       |
| Ocythoe tuberculataOctopodaOctopodiOctopodiformesColeoideaCephalopodaPinnoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaCephalopodaCephalopodaLittorinimorphaLittorinimorphaCaenogastropodaGastropodaGastropodaArgobuccinum pustulosumLittorinimorphaCaenogastropodaGastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaGastropodaAlcithoe arabicaNeogastropodaNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaGastropodaPenion cuvierianusNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sepiolidae                                                                                            | Sepiolida       | Decapodiformes |                 | Coleoidea        | Cephalopoda        |       |
| Pinoctopus cordiformisOctopodaOctopodiformesColeoideaCephalopodaCephalopodaLittorinimorphaLittorinimorphaCaenogastropodaGastropodaArgobuccinum pustulosumLittorinimorphaCaenogastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaRanellaLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaXenophoraLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaOpisthobranchiaHeterobranchiaArminaNudibranchiaOpisthobranchiaHeterobranchia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Octopus campbelli                                                                                     | Octopoda        | Octopodiformes |                 | Coleoidea        | Cephalopoda        |       |
| CephalopodaCephalopodaArgobuccinum pustulosumLittorinimorphaCaenogastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaRanellaLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe davegibbsiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ocythoe tuberculata                                                                                   | Octopoda        | Octopodiformes |                 | Coleoidea        | Cephalopoda        |       |
| Argobuccinum pustulosumLittorinimorphaCaenogastropodaGastropodaFusitriton laudandusLittorinimorphaCaenogastropodaGastropodaRanellaLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaAreophoraLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pinnoctopus cordiformis                                                                               | Octopoda        | Octopodiformes |                 | Coleoidea        | Cephalopoda        |       |
| Fusitriton laudandusLittorinimorphaCaenogastropodaGastropodaRanellaLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaXenophoraLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe davegibbsiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaOpisthobranchiaHeterobranchiaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cephalopoda                                                                                           |                 |                |                 |                  | Cephalopoda        |       |
| RanellaLittorinimorphaCaenogastropodaGastropodaSemicassis pyrumLittorinimorphaCaenogastropodaGastropodaXenophoraLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe davegibbsiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Argobuccinum pustulosum                                                                               | Littorinimorpha |                |                 | Caenogastropo    | da Gastropoda      |       |
| Semicassis pyrumLittorinimorphaCaenogastropodaGastropodaXenophoraLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe davegibbsiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fusitriton laudandus                                                                                  | Littorinimorpha |                |                 | Caenogastropo    | da Gastropoda      |       |
| XenophoraLittorinimorphaCaenogastropodaGastropodaAlcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe davegibbsiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ranella                                                                                               | Littorinimorpha |                |                 | Caenogastropo    | da Gastropoda      |       |
| Alcithoe arabicaNeogastropodaCaenogastropodaGastropodaAlcithoe davegibbsiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Semicassis pyrum                                                                                      | Littorinimorpha |                |                 | Caenogastropo    | da Gastropoda      |       |
| Alcithoe davegibbsiNeogastropodaCaenogastropodaGastropodaAlcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xenophora                                                                                             | Littorinimorpha |                |                 | Caenogastropo    | da Gastropoda      |       |
| Alcithoe ostenfeldiNeogastropodaCaenogastropodaGastropodaAustrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alcithoe arabica                                                                                      | Neogastropoda   |                |                 | Caenogastropo    | da Gastropoda      |       |
| Austrofusus glansNeogastropodaCaenogastropodaGastropodaPenion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Alcithoe davegibbsi                                                                                   |                 |                |                 |                  | _                  |       |
| Penion cuvierianusNeogastropodaCaenogastropodaGastropodaArminaNudibranchiaOpisthobranchiaHeterobranchiaGastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       |                 |                |                 |                  | _                  |       |
| Armina Nudibranchia Opisthobranchia Heterobranchia Gastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                 |                |                 |                  | -                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Penion cuvierianus                                                                                    |                 |                |                 |                  | -                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Armina                                                                                                |                 |                | -               |                  | •                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dorididae                                                                                             | Nudibranchia    |                | Opisthobranchia |                  | •                  |       |
| Doris wellingtonensis Nudibranchia Opisthobranchia Heterobranchia Gastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |                 |                |                 |                  | •                  |       |
| Nudibranchia Nudibranchia Opisthobranchia Heterobranchia Gastropoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nudibranchia                                                                                          | Nudibranchia    |                | Opisthobranchia | a Heterobranchia | Gastropoda         |       |

| TritoniaNudibranchiaPleurobranchaea maculataPleurobranchomorphaThecosomataThecosomataAstraea heliotropiumThecosomataGastropodaPolyplacophoraScaphopodaImage: Scaphopoda | Opisthobranchia<br>Opisthobranchia<br>Opisthobranchia | Heterobranchia<br>Heterobranchia<br>Heterobranchia<br>Vetigastropoda | Gastropoda<br>Gastropoda<br>Gastropoda<br>Gastropoda<br>Gastropoda |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|

## **PHYLUM PHORONIDA**

| ΟΤυ                  | Order | Super order | Infraclass | Sub class | Class |
|----------------------|-------|-------------|------------|-----------|-------|
| Phoronis psammophila |       |             |            |           |       |

#### PHYLUM PORIFERA

| ΟΤυ                          | Order          | Super order | Infraclass | Sub class | Class        |
|------------------------------|----------------|-------------|------------|-----------|--------------|
| Leucettusa                   | Clathrinida    |             |            | Calcinea  | Calcarea     |
| Leucettusa tubulosa          | Clathrinida    |             |            | Calcinea  | Calcarea     |
| Ancorina alata               | Astrophorida   |             |            |           | Demospongiae |
| Ancorina bellae              | Astrophorida   |             |            |           | Demospongiae |
| Astrophorida                 | Astrophorida   |             |            |           | Demospongiae |
| Ecionemia alata              | Astrophorida   |             |            |           | Demospongiae |
| Ecionemia novaezealandiae    | Astrophorida   |             |            |           | Demospongiae |
| Geodia                       | Astrophorida   |             |            |           | Demospongiae |
| Lamellomorpha                | Astrophorida   |             |            |           | Demospongiae |
| Penares tylotaster           | Astrophorida   |             |            |           | Demospongiae |
| Stelletta                    | Astrophorida   |             |            |           | Demospongiae |
| Stelletta sandalinum         | Astrophorida   |             |            |           | Demospongiae |
| Stryphnus ariena             | Astrophorida   |             |            |           | Demospongiae |
| Stryphnus levis              | Astrophorida   |             |            |           | Demospongiae |
| Stryphnus spelunca           | Astrophorida   |             |            |           | Demospongiae |
| Tethyopsis                   | Astrophorida   |             |            |           | Demospongiae |
| Tethyopsis mortenseni        | Astrophorida   |             |            |           | Demospongiae |
| Chondrosia                   | Chondrosida    |             |            |           | Demospongiae |
| Chelonaplysilla violacea     | Dendroceratida |             |            |           | Demospongiae |
| Dictyodendrilla              | Dendroceratida |             |            |           | Demospongiae |
| Dictyodendrilla dendyi       | Dendroceratida |             |            |           | Demospongiae |
| Aplysinopsis                 | Dictyoceratida |             |            |           | Demospongiae |
| Cacospongia                  | Dictyoceratida |             |            |           | Demospongiae |
| Coscinoderma                 | Dictyoceratida |             |            |           | Demospongiae |
| Dysidea                      | Dictyoceratida |             |            |           | Demospongiae |
| Psammocinia                  | Dictyoceratida |             |            |           | Demospongiae |
| Spongia                      | Dictyoceratida |             |            |           | Demospongiae |
| Aaptos globosum              | Hadromerida    |             |            |           | Demospongiae |
| Acanthella                   | Hadromerida    |             |            |           | Demospongiae |
| Acanthoclada                 | Hadromerida    |             |            |           | Demospongiae |
| Acanthoclada prostrata       | Hadromerida    |             |            |           | Demospongiae |
| Axinella                     | Hadromerida    |             |            |           | Demospongiae |
| Bubaris                      | Hadromerida    |             |            |           | Demospongiae |
| Ciocalypta                   | Hadromerida    |             |            |           | Demospongiae |
| Ciocalypta polymastia        | Hadromerida    |             |            |           | Demospongiae |
| Cliona                       | Hadromerida    |             |            |           | Demospongiae |
| Cliona celata                | Hadromerida    |             |            |           | Demospongiae |
| Homaxinella erecta           | Hadromerida    |             |            |           | Demospongiae |
| Hymeniacidon sphaerodigitata | Hadromerida    |             |            |           | Demospongiae |
| Hymerhabdia                  | Hadromerida    |             |            |           | Demospongiae |
|                              |                |             |            |           |              |

| ΟΤυ                                                    | Order           | Super order | Infraclass | Sub class | Class        |
|--------------------------------------------------------|-----------------|-------------|------------|-----------|--------------|
| Pararhaphoxya                                          | Hadromerida     |             |            |           | Demospongiae |
| Phakellia                                              | Hadromerida     |             |            |           | Demospongiae |
| Phakellia dendyi                                       | Hadromerida     |             |            |           | Demospongiae |
| Plicatellopsis                                         | Hadromerida     |             |            |           | Demospongiae |
| Polymastia                                             | Hadromerida     |             |            |           | Demospongiae |
| Polymastia crocea                                      | Hadromerida     |             |            |           | Demospongiae |
| Polymastia hirsuta                                     | Hadromerida     |             |            |           | Demospongiae |
| Polymastiidae                                          | Hadromerida     |             |            |           | Demospongiae |
| Protosuberites                                         | Hadromerida     |             |            |           | Demospongiae |
| Rhaphidhistia mirabilis                                | Hadromerida     |             |            |           | Demospongiae |
| Stylissa                                               | Hadromerida     |             |            |           | Demospongiae |
| Suberites                                              | Hadromerida     |             |            |           | Demospongiae |
| Tentorium                                              | Hadromerida     |             |            |           | Demospongiae |
| Tethya amplexa                                         | Hadromerida     |             |            |           | Demospongiae |
| Trachycladus stylifer                                  | Hadromerida     |             |            |           | Demospongiae |
| Callyspongia                                           | Haplosclerida   |             |            |           | Demospongiae |
| Callyspongia ramosa                                    | Haplosclerida   |             |            |           | Demospongiae |
| Calyx imperialis                                       | Haplosclerida   |             |            |           | Demospongiae |
| Dactylia                                               | Haplosclerida   |             |            |           | Demospongiae |
| Dactylia palmata                                       | Haplosclerida   |             |            |           | Demospongiae |
| Haliclona                                              | Haplosclerida   |             |            |           | Demospongiae |
| Haliclona petrocalyx                                   | Haplosclerida   |             |            |           | Demospongiae |
| Pachypellina                                           | Haplosclerida   |             |            |           | Demospongiae |
| Petrosia                                               | Haplosclerida   |             |            |           | Demospongiae |
| Petrosia hebes                                         | Haplosclerida   |             |            |           | Demospongiae |
|                                                        | -               |             |            |           |              |
| Siphonochalina<br>Vastasmanais                         | Haplosclerida   |             |            |           | Demospongiae |
| Xestospongia<br>Xostospongia                           | Haplosclerida   |             |            |           | Demospongiae |
| Xestospongia novaezealandiae<br>Aciculites manawatawhi | Haplosclerida   | mongias     |            |           | Demospongiae |
|                                                        | Lithistid Demo  |             |            |           | Demospongiae |
| Aciculites pulchra                                     | Lithistid Demo  |             |            |           | Demospongiae |
| Aciculites sulcus                                      | Lithistid Demo  |             |            |           | Demospongiae |
| Homophymia stipitata                                   | Lithistid Demo  |             |            |           | Demospongiae |
| Pleroma menoui                                         | Lithistid Demo  |             |            |           | Demospongiae |
| Amphiastrella kirkpatricki                             | Poecilosclerida |             |            |           | Demospongiae |
| Asbestopluma                                           | Poecilosclerida |             |            |           | Demospongiae |
| Biemna flabellata                                      | Poecilosclerida |             |            |           | Demospongiae |
| Biemna rufescens                                       | Poecilosclerida |             |            |           | Demospongiae |
| Chondropsidae                                          | Poecilosclerida |             |            |           | Demospongiae |
| Chondropsis                                            | Poecilosclerida |             |            |           | Demospongiae |
| Chondropsis kirki                                      | Poecilosclerida |             |            |           | Demospongiae |
| Clathria                                               | Poecilosclerida |             |            |           | Demospongiae |
| Clathria atoxa                                         | Poecilosclerida |             |            |           | Demospongiae |
| Clathria scotti                                        | Poecilosclerida |             |            |           | Demospongiae |
| Clathria terraenovae                                   | Poecilosclerida |             |            |           | Demospongiae |
| Crambe                                                 | Poecilosclerida |             |            |           | Demospongiae |
| Crella                                                 | Poecilosclerida |             |            |           | Demospongiae |
| Crella incrustans                                      | Poecilosclerida |             |            |           | Demospongiae |
| Crella novaezealandiae                                 | Poecilosclerida |             |            |           | Demospongiae |
| Dendoricella                                           | Poecilosclerida |             |            |           | Demospongiae |
| Desmacidon mamillatum                                  | Poecilosclerida |             |            |           | Demospongiae |
| Guitarra fimbriata                                     | Poecilosclerida |             |            |           | Demospongiae |
| Hamigera                                               | Poecilosclerida |             |            |           | Demospongiae |
| Histodermella                                          | Poecilosclerida |             |            |           | Demospongiae |
| Hymedesmia australis                                   | Poecilosclerida |             |            |           | Demospongiae |
| Iophon laevistylus                                     | Poecilosclerida |             |            |           | Demospongiae |
| Iophon minor                                           | Poecilosclerida |             |            |           | Demospongiae |

| ΟΤυ                           | Order           | Super order | Infraclass | Sub class      | Class          |
|-------------------------------|-----------------|-------------|------------|----------------|----------------|
| Iophon proximum               | Poecilosclerida |             |            |                | Demospongiae   |
| Latrunculia                   | Poecilosclerida |             |            |                | Demospongiae   |
| Latrunculia duckworthi        | Poecilosclerida |             |            |                | Demospongiae   |
| Latrunculia kaakaariki        | Poecilosclerida |             |            |                | Demospongiae   |
| Latrunculia millerae          | Poecilosclerida |             |            |                | Demospongiae   |
| Latrunculia oxydiscorhabda    | Poecilosclerida |             |            |                | Demospongiae   |
| Latrunculia wellingtonensis   | Poecilosclerida |             |            |                | Demospongiae   |
| Lissodendoryx                 | Poecilosclerida |             |            |                | Demospongiae   |
| Mycale                        | Poecilosclerida |             |            |                | Demospongiae   |
| Oceanapia                     | Poecilosclerida |             |            |                | Demospongiae   |
| Paracornulum                  | Poecilosclerida |             |            |                | Demospongiae   |
| Phorbas                       | Poecilosclerida |             |            |                | Demospongiae   |
| Phorbas areolatus             | Poecilosclerida |             |            |                | Demospongiae   |
| Phorbas intermedia            | Poecilosclerida |             |            |                | Demospongiae   |
| Psammoclema                   | Poecilosclerida |             |            |                | Demospongiae   |
| Raspailia                     | Poecilosclerida |             |            |                | Demospongiae   |
| Raspailia compressa           | Poecilosclerida |             |            |                | Demospongiae   |
| Raspailia topsenti            | Poecilosclerida |             |            |                | Demospongiae   |
| Tedania                       | Poecilosclerida |             |            |                | Demospongiae   |
| Tedania battershilli          | Poecilosclerida |             |            |                | Demospongiae   |
| Tedania connectens            | Poecilosclerida |             |            |                | Demospongiae   |
| Tedania diversirhaphidiophora | Poecilosclerida |             |            |                | Demospongiae   |
| Tedania spinostylota          | Poecilosclerida |             |            |                | Demospongiae   |
| Tedania turbinata             | Poecilosclerida |             |            |                | Demospongiae   |
| Cinachyrella                  | Spirophorida    |             |            |                | Demospongiae   |
| Craniella                     | Spirophorida    |             |            |                | Demospongiae   |
| Tetilla                       | Spirophorida    |             |            |                | Demospongiae   |
| Symplectella rowi             | Lyssacinosida   |             |            | Hexasterophora | Hexactinellida |
| Hexactinellida                |                 |             |            |                | Hexactinellida |
|                               |                 |             |            |                |                |

### **PHYLUM SIPUNCULA**

| ΟΤυ          | Order       | Super order | Infraclass | Sub class | Class        |
|--------------|-------------|-------------|------------|-----------|--------------|
| Sipunculidae | Golfingiida |             |            |           | Sipunculidea |

# PHYLUM XENACOELOMORPHA, SUB-PHYLUM ACOELOMORPHA

| ΟΤυ                 | Order  | Super order | Infraclass | Sub class | Class |
|---------------------|--------|-------------|------------|-----------|-------|
| Polychoerus gordoni | Acoela |             |            |           |       |

# APPENDIX 3b: OPERATIONAL TAXONOMIC UNIT (OTU) TRAWL DATABASE

#### PHYLUM ANNELIDA

| ΟΤυ          | Order        | Super order | Infraclass | Sub class     | Class      |
|--------------|--------------|-------------|------------|---------------|------------|
| Hirudinea    |              |             |            |               | Clitellata |
| Aphrodita    | Phyllodocida |             |            | Aciculata     | Polychaeta |
| Glycera      | Phyllodocida |             |            | Aciculata     | Polychaeta |
| Nereididae   | Phyllodocida |             |            | Aciculata     | Polychaeta |
| Polynoidae   | Phyllodocida |             |            | Aciculata     | Polychaeta |
| Sabellidae   | Sabellida    |             |            | Canalipalpata | Polychaeta |
| Chaetopterus | Spionida     |             |            | Canalipalpata | Polychaeta |
| Polychaeta   |              |             |            |               | Polychaeta |

# PHYLUM ARTHROPODA

| ΟΤυ                         | Order        | Super order | Infraclass | Sub class      | Class        |
|-----------------------------|--------------|-------------|------------|----------------|--------------|
| Pantopoda*                  | Pantopoda    |             |            |                | Pycnogonida  |
| Artemia salina              | Anostraca    |             |            | Sarsostraca    | Branchiopoda |
| Alpheus                     | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Arctides antipodarum        | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Cancer novaezelandiae       | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Chlorotocus novaezealandiae | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Crangonidae                 | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Decapoda                    | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Diacanthurus rubricatus     | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Galatheidae                 | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Haliporoides sibogae        | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Ibacus alticrenatus         | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Jacquinotia edwardsii       | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Jasus edwardsii             | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Leptomithrax                | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Leptomithrax australis      | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Leptomithrax garricki       | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Leptomithrax longimanus     | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Leptomithrax longipes       | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Lithodes                    | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Metanephrops challengeri    | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Munida                      | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Munida gregaria             | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Nectocarcinus antarcticus   | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Nectocarcinus bennetti      | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Nematocarcinus              | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Notopandalus magnoculus     | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Oplophorus novaezeelandiae  | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Ovalipes catharus           | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Palinuridae                 | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Pasiphaea                   | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Pasiphaea barnardi          | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Plagusia chabrus            | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Sergestes spp.              | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Sergia potens               | Decapoda     | Eucarida    |            | Eumalacostraca | Malacostraca |
| Euphausia                   | Euphausiacea | Eucarida    |            | Eumalacostraca | Malacostraca |
| Amphipoda                   | Amphipoda    | Peracarida  |            | Eumalacostraca | Malacostraca |
| Isopoda                     | Isopoda      | Peracarida  |            | Eumalacostraca | Malacostraca |
| Mysida                      | Mysida       | Peracarida  |            | Eumalacostraca | Malacostraca |
|                             |              |             |            |                |              |

| ΟΤυ                              | Order             | Super order      | Infraclass | Sub class   | Class        |
|----------------------------------|-------------------|------------------|------------|-------------|--------------|
| Squilla armata                   | Stomatopoda       |                  |            | Hoplocarida | Malacostraca |
| Maxillopoda                      |                   |                  |            |             | Maxillopoda  |
| Crustacea                        |                   |                  |            |             |              |
| *Sub-Phylum Chelicerata. The rem | nainder belong to | Sub-Phylum Crust | acea.      |             |              |

# PHYLUM BRACHIOPODA

| ΟΤυ         | Order | Super order | Infraclass | Sub class | Class |
|-------------|-------|-------------|------------|-----------|-------|
| Brachiopoda |       |             |            |           |       |

# PHYLUM BRYOZOA

| ΟΤυ                    | Order           | Super order | Infraclass | Sub class | Class        |
|------------------------|-----------------|-------------|------------|-----------|--------------|
| Celleporina grandis    | Cheilostomatida |             |            |           | Gymnolaemata |
| Hippomenella vellicata | Cheilostomatida |             |            |           | Gymnolaemata |
| Bryozoa                |                 |             |            |           |              |

# PHYLUM CHORDATA

| ΟΤυ                  | Order           | Super order | Infraclass | Sub class | Class      |
|----------------------|-----------------|-------------|------------|-----------|------------|
| Pyura pachydermatina | Stolidobranchia |             |            |           | Ascidiacea |
| Ascidiacea           |                 |             |            |           | Ascidiacea |

# PHYLUM CNIDARIA

| OTU                      | Order         | Super order | Infraclass | Sub class    | Class    |
|--------------------------|---------------|-------------|------------|--------------|----------|
| Actinostolidae           | Actiniaria    |             |            | Hexacorallia | Anthozoa |
| Bunodactis chrysobathys  | Actiniaria    |             |            | Hexacorallia | Anthozoa |
| Hormathiidae             | Actiniaria    |             |            | Hexacorallia | Anthozoa |
| Flabellum                | Scleractinia  |             |            | Hexacorallia | Anthozoa |
| Stephanocyathus platypus | Scleractinia  |             |            | Hexacorallia | Anthozoa |
| Pennatulacea             | Pennatulacea  |             |            | Octocorallia | Anthozoa |
| Anthozoa                 |               |             |            |              | Anthozoa |
| Stylasteridae            | Anthoathecata |             |            | Hydroidolina | Hydrozoa |
| Hydrozoa                 |               |             |            |              | Hydrozoa |

### PHYLUM ECHINODERMATA

| ΟΤυ                          | Order         | Super order | Infraclass | Sub class | Class      |
|------------------------------|---------------|-------------|------------|-----------|------------|
| Cosmasterias dyscrita*       | Forcipulatida |             |            |           | Asteroidea |
| Pseudechinaster rubens*      | Forcipulatida |             |            |           | Asteroidea |
| Sclerasterias mollis*        | Forcipulatida |             |            |           | Asteroidea |
| Dipsacaster magnificus*      | Paxillosida   |             |            |           | Asteroidea |
| Proserpinaster neozelanicus* | Paxillosida   |             |            |           | Asteroidea |
| Psilaster acuminatus*        | Paxillosida   |             |            |           | Asteroidea |
| Crossaster multispinus*      | Valvatida     |             |            |           | Asteroidea |
| Mediaster sladeni*           | Valvatida     |             |            |           | Asteroidea |
| Odontaster*                  | Valvatida     |             |            |           | Asteroidea |
| Patiriella*                  | Valvatida     |             |            |           | Asteroidea |
| Patiriella regularis*        | Valvatida     |             |            |           | Asteroidea |
| Diplopteraster*              | Velatida      |             |            |           | Asteroidea |
| Peribolaster lictor*         | Velatida      |             |            |           | Asteroidea |
| Pteraster bathamae*          | Velatida      |             |            |           | Asteroidea |
| Asteroidea*                  |               |             |            |           | Asteroidea |
|                              |               |             |            |           |            |

| Bathypectinura heros*<br>Ophiopsammus maculata*<br>Brittlestar*<br>Bathyplotes spp.<br>Pseudostichopus mollis<br>Stichopus mollis<br>Cidaridae<br>Goniocidaris umbraculum<br>Evechinus chloroticus<br>Gracilechinus multidentatus<br>Pseudechinus albocinctus<br>Pseudechinus huttoni<br>Pseudechinus novaezealandiae<br>Temnopleuridae<br>Paramaretia peloria<br>Spatangus multispinus<br>Apatopygus recens<br>Fellaster zelandiae<br>Peronella hinemoae | Order<br>Ophiurida<br>Ophiurida<br>Aspidochirotida<br>Aspidochirotida<br>Aspidochirotida<br>Cidaroida<br>Cidaroida<br>Camarodonta<br>Camarodonta<br>Camarodonta<br>Camarodonta<br>Camarodonta<br>Spatangoida<br>Spatangoida<br>Cissiduloida<br>Clypeasteroida | Super order<br>Echinacea<br>Echinacea<br>Echinacea<br>Echinacea<br>Echinacea<br>Echinacea<br>Atelostomata<br>Atelostomata<br>Neognathostomata<br>Neognathostomata | Infraclass<br>Carinacea<br>Carinacea<br>Carinacea<br>Carinacea<br>Carinacea<br>Irregularia<br>Irregularia<br>Irregularia<br>Irregularia<br>Irregularia<br>Irregularia | Sub class<br>Cidaroidea<br>Cidaroidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea<br>Euechinoidea | Class<br>Ophiuroidea<br>Ophiuroidea<br>Holothuroidea<br>Holothuroidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea<br>Echinoidea |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Echinoidea<br>Echinoidea                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clypeasteroida                                                                                                                                                                                                                                                | Neognatnostomata                                                                                                                                                  | Irregularia                                                                                                                                                           | Euechinoidea                                                                                                                                                                                                                          | Echinoidea                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |

\* Sub-Phylum Asterozoa. The remainder are Sub-Phylum Echinozoa.

# PHYLUM MOLLUSCA

| ΟΤυ                                | Order           | Super order | Infraclass      | Sub class       | Class      |
|------------------------------------|-----------------|-------------|-----------------|-----------------|------------|
| Mactra murchisoni                  | Veneroida       |             | Euheterodonta   | Heterodonta     | Bivalvia   |
| Modiolarca impacta                 | Mytiloida       |             |                 | Pteriomorphia   | Bivalvia   |
| Mytilidae                          | Mytiloida       |             |                 | Pteriomorphia   | Bivalvia   |
| Mytilus galloprovincialis          | Mytiloida       |             |                 | Pteriomorphia   | Bivalvia   |
| Perna canaliculus                  | Mytiloida       |             |                 | Pteriomorphia   | Bivalvia   |
| Mesopeplum convexum                | Ostreoida       |             |                 | Pteriomorphia   | Bivalvia   |
| Ostrea chilensis                   | Ostreoida       |             |                 | Pteriomorphia   | Bivalvia   |
| Pecten novaezelandiae              | Ostreoida       |             |                 | Pteriomorphia   | Bivalvia   |
| Zygochlamys delicatula             | Ostreoida       |             |                 | Pteriomorphia   | Bivalvia   |
| Atrina zelandica                   | Pterioida       |             |                 | Pteriomorphia   | Bivalvia   |
| Bivalvia                           |                 |             |                 |                 | Bivalvia   |
| Argobuccinum pustulosum<br>tumidum | Littorinimorpha |             |                 | Caapagastropada | Castronada |
|                                    | Littorinimorpha |             |                 | Caenogastropoda | Gastropoda |
| Fusitriton magellanicus            | Littorinimorpha |             |                 | Caenogastropoda | Gastropoda |
| Semicassis pyrum                   | Littorinimorpha |             |                 | Caenogastropoda | Gastropoda |
| Alcithoe arabica                   | Neogastropoda   |             |                 | Caenogastropoda | Gastropoda |
| Alcithoe larochei                  | Neogastropoda   |             |                 | Caenogastropoda | Gastropoda |
| Alcithoe wilsonae                  | Neogastropoda   |             |                 | Caenogastropoda | Gastropoda |
| Austrofusus glans                  | Neogastropoda   |             |                 | Caenogastropoda | Gastropoda |
| Penion chathamensis                | Neogastropoda   |             |                 | Caenogastropoda | Gastropoda |
| Provocator mirabilis               | Neogastropoda   |             |                 | Caenogastropoda | Gastropoda |
| Volutidae                          | Neogastropoda   |             |                 | Caenogastropoda | Gastropoda |
| Aplysiomorpha                      | Anaspidea       |             | Opisthobranchia | Heterobranchia  | Gastropoda |
| Nudibranchia                       | Nudibranchia    |             | Opisthobranchia | Heterobranchia  | Gastropoda |
| Astraea heliotropium               |                 |             |                 | Vetigastropoda  | Gastropoda |
| Calliostoma selectum               |                 |             |                 | Vetigastropoda  | Gastropoda |
| Calliostoma turnerarum             |                 |             |                 | Vetigastropoda  | Gastropoda |
| Cookia sulcata                     |                 |             |                 | Vetigastropoda  | Gastropoda |

| ΟΤυ               | Order | Super order | Infraclass | Sub class      | Class      |
|-------------------|-------|-------------|------------|----------------|------------|
| Scutus breviculus |       |             |            | Vetigastropoda | Gastropoda |
| Gastropoda        |       |             |            |                | Gastropoda |
| Scaphopoda        |       |             |            |                |            |

# **PHYLUM PORIFERA**

| ΟΤ                  | Order           | Super order | Infraclass | Sub class | Class          |
|---------------------|-----------------|-------------|------------|-----------|----------------|
| Geodia vestigifera  | Astrophorida    |             |            |           | Demospongiae   |
| Penares             | Astrophorida    |             |            |           | Demospongiae   |
| Stelletta           | Astrophorida    |             |            |           | Demospongiae   |
| Suberites affinis   | Hadromerida     |             |            |           | Demospongiae   |
| Callyspongia        | Haplosclerida   |             |            |           | Demospongiae   |
| Callyspongia ramosa | Haplosclerida   |             |            |           | Demospongiae   |
| Dactylia palmata    | Haplosclerida   |             |            |           | Demospongiae   |
| Crella incrustans   | Poecilosclerida |             |            |           | Demospongiae   |
| Tetilla leptoderma  | Spirophorida    |             |            |           | Demospongiae   |
| Demospongiae        |                 |             |            |           | Demospongiae   |
| Hexactinellida      |                 |             |            |           | Hexactinellida |
| Porifera            |                 |             |            |           |                |

#### **APPENDIX 4: TRAWL FISHING DATA**

Table 4.1: Percentage of TCER trips each fishing year with between 1 and 146 tows per trip, based on a total of 222 787 tows.

| No. tows per trip | 2008       | 2009       | 2010       | 2011       | 2012       | 2008-12    |
|-------------------|------------|------------|------------|------------|------------|------------|
| 1                 | 13.2       | 11.3       | 10.9       | 10.7       | 10.3       | 11.3       |
| 2                 | 17.3       | 21.1       | 20.2       | 22.3       | 21.2       | 20.4       |
| 3                 | 10.2       | 9.4        | 10.0       | 9.4        | 10.2       | 9.8        |
| 4                 | 7.7        | 6.9        | 7.8        | 7.1        | 8.0        | 7.5        |
| 5                 | 5.1        | 5.0        | 5.1        | 5.0        | 5.2        | 5.1        |
| 6                 | 5.8        | 5.6        | 5.8        | 5.2        | 5.6        | 5.6        |
| 7                 | 5.8        | 5.6        | 5.1        | 5.3        | 4.9        | 5.3        |
| 8                 | 5.2        | 5.0        | 4.8        | 5.4        | 5.4        | 5.1        |
| 9                 | 4.1        | 4.2        | 4.1        | 3.9        | 3.7        | 4.0        |
| 10                | 3.7        | 3.6        | 3.7        | 3.9        | 4.0        | 3.8        |
| 11                | 3.5        | 3.8        | 3.7        | 3.0        | 3.3        | 3.5        |
| 12                | 3.2        | 3.2        | 3.4        | 3.3        | 3.3        | 3.3        |
| 13                | 2.5        | 2.4        | 2.2        | 2.3        | 2.3        | 2.3        |
| 14                | 2.2        | 2.2        | 2.5        | 2.4        | 2.3        | 2.3        |
| 15                | 2.1        | 2.2        | 2.1        | 2.1        | 1.9        | 2.1        |
| 16                | 1.9        | 1.9        | 1.9        | 1.9        | 1.9        | 1.9        |
| 17                | 1.4        | 1.6        | 1.3        | 1.5        | 1.4        | 1.4        |
| 18                | 1.3        | 1.3        | 1.4        | 1.5        | 1.5        | 1.4        |
| 19                | 0.7        | 1.2        | 1.0        | 1.1        | 0.8        | 1.0        |
| 20                | 1.0        | 0.7        | 0.9        | 0.9        | 0.8        | 0.9        |
| 21                | 0.4        | 0.5        | 0.5        | 0.6        | 0.6        | 0.5        |
| 22                | 0.4        | 0.5        | 0.5        | 0.4        | 0.4        | 0.4        |
| 23                | 0.4        | 0.3        | 0.4        | 0.4        | 0.5        | 0.4        |
| 24                | 0.2        | 0.3        | 0.2        | 0.3        | 0.3        | 0.2        |
| 25                | 0.3        | 0.1        | 0.1        | 0.1        | 0.2        | 0.1        |
| 26                | 0.1        | 0.1        | 0.1        | 0.1        | 0.1        | 0.1        |
| 27                | 0.1        | 0.1        | 0.0        | 0.0        | 0.1        | 0.1        |
| 28                | 0.1        | 0.0        | 0.0        | 0.0        | 0.1        | 0.1        |
| 29                | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 30                | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 31                | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 32                | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 33<br>35          | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 35<br>39          | 0.0        | 0.0        | 0.0<br>0.0 | 0.0<br>0.0 | 0.0        | 0.0<br>0.0 |
| 51                | 0.0<br>0.0 | 0.0<br>0.0 | 0.0        | 0.0        | 0.0<br>0.0 | 0.0        |
| 52                | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 56                | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 50<br>60          | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 65                | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 69                | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| 146               | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| Total no. trips   | 6 348      | 6 553      | 7 397      | 6 723      | 6 823      | 33 834     |
| Po                |            |            |            |            |            |            |

| Table 4.2: Number of tows reported on TCERs, by main target species and fishing year. Target species |  |
|------------------------------------------------------------------------------------------------------|--|
| codes are defined in Table 3.                                                                        |  |

| Target<br>code | 2008   | 2009    | 2010   | 2011   | 2012    | All     |
|----------------|--------|---------|--------|--------|---------|---------|
| BAR            | 1 989  | 1 484   | 1 214  | 1 086  | 1 307   | 7 080   |
| BCO            | 8      | 2       | 10     | 1      | 9       | 30      |
| BNS            | 0      | 0       | 0      | 1      | 2       | 3       |
| BYX            | 1      | 0       | 1      | 0      | 0       | 2       |
| ELE            | 588    | 689     | 850    | 607    | 717     | 3 451   |
| EMA            | 0      | 0       | 0      | 0      | 0       | 0       |
| FLA            | 16 726 | 16 526  | 18 862 | 14 667 | 16 535  | 83 316  |
| GSH            | 164    | 559     | 699    | 802    | 486     | 2 710   |
| GUR            | 4 092  | 4 482   | 5 929  | 5 859  | 6 276   | 26 638  |
| HOK            | 113    | 63      | 173    | 140    | 66      | 555     |
| HPB            | 43     | 34      | 41     | 31     | 15      | 164     |
| JDO            | 1 554  | 1 239   | 1 474  | 1 027  | 836     | 6 1 3 0 |
| JMA            | 1      | 1       | 9      | 11     | 1       | 23      |
| LEA            | 62     | 77      | 222    | 150    | 281     | 792     |
| LIN            | 88     | 66      | 100    | 110    | 61      | 425     |
| MOK            | 72     | 78      | 54     | 136    | 85      | 425     |
| PAD            | 58     | 8       | 9      | 27     | 17      | 119     |
| QSC            | 95     | 205     | 95     | 21     | 40      | 456     |
| RBT            | 0      | 0       | 0      | 0      | 0       | 0       |
| RBY            | 0      | 2       | 0      | 0      | 6       | 8       |
| RCO            | 2 834  | 2 684   | 2 611  | 2 671  | 2 453   | 13 253  |
| RSK            | 3      | 8       | 72     | 63     | 25      | 171     |
| SCH            | 68     | 96      | 57     | 83     | 72      | 376     |
| SCI            | 0      | 0       | 0      | 0      | 0       | 0       |
| SKI            | 5      | 27      | 32     | 79     | 22      | 165     |
| SNA            | 1 953  | 2 119   | 2 027  | 2 421  | 2 191   | 10 711  |
| SPD            | 260    | 386     | 318    | 187    | 151     | 1 302   |
| SPE            | 25     | 25      | 118    | 151    | 35      | 354     |
| SPO            | 16     | 67      | 132    | 112    | 156     | 483     |
| SQU            | 400    | 29      | 73     | 62     | 79      | 643     |
| STA            | 1 289  | 1 370   | 1 866  | 1 705  | 1 431   | 7 661   |
| SWA            | 14     | 56      | 69     | 81     | 82      | 302     |
| TAR            | 7 426  | 8 908   | 9 449  | 9 576  | 9 1 5 6 | 44 515  |
| TRE            | 1 092  | 1 1 1 6 | 1 306  | 1 372  | 796     | 5 682   |
| WAR            | 844    | 850     | 885    | 1 059  | 1 166   | 4 804   |
| Others         | 11     | 1       | 12     | 13     | 1       | 38      |
|                | 11     | 1       | 12     | 15     | 1       | 50      |

\* Others includes: HAK, KAH, LDO, MDO, ORH, RSN, SDO, SPZ, and WWA.

Table 4.3: Number of tows reported on TCEPRs, by main target species and fishing year, and the percentage of the total tows for each target species, by vessel size category (A–D). Target species codes are defined in Table 3.

| Target  | 2008   | 2009   | 2010   | 2011   | 2012   | Total   | %      | %      | %      | %      |
|---------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
| code    |        |        |        |        |        | tows    | vess A | vess B | vess C | vess D |
| BAR     | 698    | 796    | 925    | 933    | 858    | 4 2 1 0 | 29.5   | 4.0    | 31.9   | 34.6   |
| BCO     | 0      | 0      | 0      | 0      | 0      | 0       | 0.0    | 1.0    | 2.0    | 3.0    |
| BNS     | 16     | 1      | 1      | 0      | 0      | 18      | 27.8   | 72.2   | 0.0    | 0.0    |
| BYX     | 4      | 4      | 11     | 3      | 1      | 23      | 0.0    | 100.0  | 0.0    | 0.0    |
| ELE     | 30     | 0      | 2      | 54     | 61     | 147     | 53.7   | 46.3   | 0.0    | 0.0    |
| EMA     | 15     | 33     | 14     | 5      | 69     | 136     | 0.0    | 0.0    | 0.0    | 100.0  |
| FLA     | 3      | 0      | 0      | 0      | 0      | 3       | 100.0  | 0.0    | 0.0    | 0.0    |
| GSH     | 4      | 0      | 0      | 1      | 2      | 7       | 42.9   | 42.9   | 14.3   | 0.0    |
| GUR     | 660    | 360    | 778    | 460    | 309    | 2 567   | 48.7   | 51.3   | 0.0    | 0.0    |
| HOK     | 363    | 390    | 357    | 398    | 435    | 1 943   | 3.0    | 87.5   | 9.0    | 0.4    |
| HPB     | 0      | 0      | 0      | 1      | 0      | 1       | 0.0    | 100.0  | 0.0    | 0.0    |
| JDO     | 493    | 678    | 563    | 619    | 577    | 2 930   | 97.8   | 2.2    | 0.0    | 0.0    |
| JMA     | 2 359  | 1 954  | 2 299  | 1 823  | 1 861  | 10 296  | 0.0    | 0.1    | 2.0    | 97.9   |
| LEA     | 5      | 9      | 2      | 3      | 41     | 60      | 90.0   | 10.0   | 0.0    | 0.0    |
| LIN     | 30     | 16     | 15     | 11     | 2      | 74      | 0.0    | 25.7   | 74.3   | 0.0    |
| MOK     | 1      | 0      | 4      | 5      | 0      | 10      | 0.0    | 100.0  | 0.0    | 0.0    |
| PAD     | 0      | 0      | 0      | 0      | 0      | 0       | _      | _      | _      | _      |
| QSC     | 0      | 0      | 0      | 0      | 0      | 0       | _      | _      | _      | _      |
| RBT     | 12     | 40     | 11     | 3      | 19     | 85      | 0.0    | 0.0    | 0.0    | 100.0  |
| RBY     | 6      | 1      | 10     | 15     | 3      | 35      | 2.9    | 97.1   | 0.0    | 0.0    |
| RCO     | 12     | 60     | 97     | 79     | 34     | 282     | 77.3   | 22.3   | 0.4    | 0.0    |
| RSK     | 0      | 0      | 0      | 0      | 0      | 0       | _      | _      | _      | _      |
| SCH     | 6      | 2      | 12     | 19     | 26     | 65      | 15.4   | 84.6   | 0.0    | 0.0    |
| SCI     | 23     | 21     | 32     | 16     | 10     | 102     | 100.0  | 0.0    | 0.0    | 0.0    |
| SKI     | 9      | 24     | 19     | 47     | 16     | 115     | 36.5   | 63.5   | 0.0    | 0.0    |
| SNA     | 1 991  | 2 049  | 1 845  | 1 449  | 1 973  | 9 307   | 86.4   | 13.6   | 0.0    | 0.0    |
| SPD     | 6      | 2      | 20     | 1      | 0      | 29      | 0.0    | 0.0    | 100.0  | 0.0    |
| SPE     | 0      | 0      | 0      | 9      | 0      | 9       | 0.0    | 100.0  | 0.0    | 0.0    |
| SPO     | 0      | 1      | 0      | 0      | 0      | 1       | 0.0    | 100.0  | 0.0    | 0.0    |
| SQU     | 2 141  | 1 592  | 1 935  | 2 100  | 1 633  | 9 401   | 1.6    | 2.7    | 58.5   | 37.2   |
| STA     | 14     | 0      | 11     | 25     | 14     | 64      | 1.6    | 98.4   | 0.0    | 0.0    |
| SWA     | 217    | 163    | 124    | 181    | 115    | 800     | 4.1    | 6.6    | 89.1   | 0.1    |
| TAR     | 2 850  | 2 617  | 2 521  | 2 247  | 2 062  | 12 297  | 64.3   | 35.7   | 0.0    | 0.0    |
| TRE     | 1 679  | 1 911  | 1 543  | 1 971  | 1 771  | 8 875   | 65.3   | 34.7   | 0.0    | 0.0    |
| WAR     | 176    | 126    | 136    | 136    | 156    | 730     | 11.8   | 33.2   | 50.7   | 4.4    |
| Others* | 15     | 18     | 4      | 3      | 7      | 47      | _      | _      | _      | _      |
|         | 13 838 | 12 868 | 13 291 | 12 617 | 12 055 | 64 669  | 43.2   | 20.1   | 13.0   | 23.6   |

\* Others includes: CDL, FRO, HAK, KAH, KIN, OEO, ORH, and WWA.

Table 4.4: Number of TCER tows in each Statistical Area, by fishing year and for all years combined, and the percent of the five year total in each area.

| Statistical |         |         |        |        |         |         |        |
|-------------|---------|---------|--------|--------|---------|---------|--------|
| Area        | 2008    | 2009    | 2010   | 2011   | 2012    | 2008-12 | %      |
| 002         | 362     | 328     | 299    | 338    | 270     | 1 597   | 0.72   |
| 003         | 959     | 809     | 1 008  | 744    | 684     | 4 204   | 1.89   |
| 004         | 27      | 7       | 13     | 4      | 4       | 55      | 0.02   |
| 005         | 801     | 895     | 859    | 633    | 498     | 3 686   | 1.65   |
| 006         | 230     | 463     | 338    | 521    | 399     | 1 951   | 0.88   |
| 007         | 2       | 0       | 1      | 2      | 3       | 8       | 0.00   |
| 008         | 294     | 310     | 332    | 217    | 332     | 1 485   | 0.67   |
| 009         | 506     | 466     | 575    | 636    | 448     | 2 631   | 1.18   |
| 010         | 490     | 734     | 714    | 542    | 365     | 2 845   | 1.28   |
| 011         | 741     | 551     | 770    | 619    | 704     | 3 385   | 1.52   |
| 012         | 838     | 915     | 1 185  | 831    | 851     | 4 620   | 2.07   |
| 013         | 4 045   | 4 345   | 4 641  | 4 832  | 4 202   | 22 065  | 9.90   |
| 014         | 1 999   | 1 902   | 1 486  | 1 916  | 1 819   | 9122    | 4.09   |
| 015         | 110     | 187     | 203    | 261    | 196     | 957     | 0.43   |
| 016         | 449     | 421     | 488    | 525    | 580     | 2 463   | 1.11   |
| 017         | 931     | 1 287   | 1 812  | 1 885  | 1 893   | 7 808   | 3.50   |
| 018         | 348     | 380     | 625    | 620    | 601     | 2 574   | 1.16   |
| 020         | 2 164   | 2 482   | 3 415  | 2 646  | 2 4 4 3 | 13 150  | 5.90   |
| 022         | 3 512   | 4 347   | 4 560  | 4 520  | 4 474   | 21 413  | 9.61   |
| 024         | 2 016   | 1 914   | 2 271  | 2 471  | 2 476   | 11 148  | 5.00   |
| 025         | 1 720   | 1 1 5 9 | 1 064  | 743    | 1 013   | 5 699   | 2.56   |
| 026         | 3 379   | 2 832   | 3 465  | 2 813  | 3 111   | 15 600  | 7.00   |
| 027         | 10      | 16      | 7      | 12     | 15      | 60      | 0.03   |
| 028         | 0       | 1       | 2      | 1      | 0       | 4       | 0.00   |
| 029         | 71      | 77      | 138    | 55     | 71      | 412     | 0.18   |
| 030         | 1 765   | 2 1 2 2 | 2 269  | 2 047  | 2 526   | 10 729  | 4.82   |
| 031         | 0       | 4       | 0      | 0      | 0       | 4       | 0.00   |
| 032         | 81      | 53      | 216    | 176    | 118     | 644     | 0.29   |
| 033         | 1 390   | 1 341   | 1 541  | 1 426  | 1 595   | 7 293   | 3.27   |
| 034         | 3 398   | 3 104   | 3 285  | 2 528  | 2 914   | 15 229  | 6.84   |
| 035         | 1 186   | 1 444   | 1 538  | 970    | 1 029   | 6 167   | 2.77   |
| 036         | 342     | 348     | 502    | 483    | 427     | 2 102   | 0.94   |
| 037         | 468     | 496     | 552    | 710    | 825     | 3 051   | 1.37   |
| 038         | 4 4 4 0 | 4 715   | 5 747  | 4 205  | 3963    | 23 070  | 10.36  |
| 039         | 612     | 713     | 741    | 939    | 931     | 3 936   | 1.77   |
| 040         | 180     | 223     | 195    | 197    | 261     | 1 056   | 0.47   |
| 041         | 549     | 661     | 851    | 785    | 725     | 3 571   | 1.60   |
| 042         | 290     | 364     | 251    | 287    | 526     | 1 718   | 0.77   |
| 043         | 1       | 0       | 0      | 0      | 0       | 1       | 0.00   |
| 044         | 0       | 0       | 0      | 1      | 0       | 1       | 0.00   |
| 045         | 313     | 219     | 168    | 273    | 419     | 1 392   | 0.62   |
| 046         | 200     | 126     | 163    | 218    | 332     | 1 039   | 0.47   |
| 047         | 460     | 283     | 242    | 326    | 241     | 1 552   | 0.70   |
| 801         | 1       | 39      | 13     | 85     | 73      | 211     | 0.09   |
| unk         | 214     | 174     | 224    | 268    | 199     | 1 079   | 0.48   |
| All areas   | 41 894  | 43 257  | 48 769 | 44 311 | 44 556  | 222 787 | 100.00 |
|             |         |         |        | -      |         |         |        |

Table 4.5: Number of TCEPR tows in each Statistical Area, by fishing year and for all years combined, and the percent of the five year total in each area.

| Statistical |        |        |        |        |           |         |        |
|-------------|--------|--------|--------|--------|-----------|---------|--------|
| Area        | 2008   | 2009   | 2010   | 2011   | 2012      | 2008-12 | %      |
| 002         | 46     | 30     | 22     | 28     | 117       | 243     | 0.38   |
| 003         | 245    | 265    | 282    | 261    | 256       | 1 309   | 2.02   |
| 004         | 72     | 92     | 52     | 103    | 59        | 378     | 0.58   |
| 005         | 799    | 974    | 775    | 987    | 867       | 4 402   | 6.81   |
| 006         | 515    | 613    | 548    | 479    | 652       | 2 807   | 4.34   |
| 007         | 0      | 1      | 0      | 1      | 0         | 2       | 0.00   |
| 008         | 547    | 452    | 557    | 551    | 439       | 2 546   | 3.94   |
| 009         | 916    | 933    | 719    | 906    | 972       | 4 446   | 6.88   |
| 010         | 733    | 743    | 906    | 791    | 865       | 4 038   | 6.24   |
| 011         | 220    | 229    | 292    | 404    | 436       | 1 581   | 2.44   |
| 012         | 280    | 328    | 337    | 281    | 281       | 1 507   | 2.33   |
| 013         | 223    | 291    | 328    | 177    | 83        | 1 102   | 1.70   |
| 014         | 610    | 619    | 606    | 364    | 29        | 2 228   | 3.45   |
| 015         | 240    | 152    | 221    | 105    | 27        | 745     | 1.15   |
| 016         | 212    | 217    | 145    | 198    | 188       | 960     | 1.48   |
| 017         | 77     | 49     | 76     | 61     | 90        | 353     | 0.55   |
| 018         | 79     | 31     | 50     | 29     | 34        | 223     | 0.34   |
| 020         | 119    | 42     | 91     | 142    | 86        | 480     | 0.74   |
| 022         | 239    | 548    | 724    | 917    | 684       | 3 112   | 4.81   |
| 024         | 3      | 90     | 87     | 178    | 43        | 401     | 0.62   |
| 025         | 87     | 70     | 90     | 85     | 158       | 490     | 0.76   |
| 026         | 84     | 96     | 87     | 195    | 173       | 635     | 0.98   |
| 027         | 306    | 231    | 280    | 290    | 305       | 1 412   | 2.18   |
| 028         | 1 785  | 1 403  | 1 485  | 1 526  | 1 199     | 7 398   | 11.44  |
| 029         | 31     | 32     | 87     | 48     | 58        | 256     | 0.40   |
| 030         | 3      | 0      | 9      | 10     | 12        | 34      | 0.05   |
| 033         | 2      | 2      | 0      | 2      | 0         | 6       | 0.01   |
| 034         | 219    | 68     | 44     | 133    | 112       | 576     | 0.89   |
| 035         | 249    | 99     | 45     | 79     | 48        | 520     | 0.80   |
| 036         | 305    | 232    | 119    | 93     | 93        | 842     | 1.30   |
| 037         | 458    | 477    | 638    | 358    | 487       | 2 418   | 3.74   |
| 038         | 22     | 8      | 1      | 0      | 0         | 31      | 0.05   |
| 039         | 38     | 44     | 65     | 42     | 47        | 236     | 0.36   |
| 040         | 521    | 340    | 451    | 348    | 411       | 2 071   | 3.20   |
| 041         | 1 219  | 861    | 898    | 600    | 617       | 4 195   | 6.49   |
| 042         | 627    | 453    | 555    | 496    | 395       | 2 526   | 3.91   |
| 045         | 556    | 578    | 514    | 348    | 472       | 2 468   | 3.82   |
| 046         | 254    | 218    | 177    | 162    | 222       | 1 033   | 1.60   |
| 047<br>504  | 299    | 468    | 449    | 452    | 541       | 2 209   | 3.42   |
| 504         | 313    | 225    | 321    | 212    | 275       | 1 346   | 2.08   |
| 801<br>Umb  | 159    | 121    | 46     | 46     | 62<br>160 | 434     | 0.67   |
| Unk         | 126    | 143    | 112    | 129    | 160       | 670     | 1.04   |
| All areas   | 13 838 | 12 868 | 13 291 | 12 617 | 12 055    | 64 669  | 100.00 |

Table 4.6: Comparison of TCER and TCEPR summary values for duration (h), speed (kn.), and derived distance (km), for the main fish species targeted by category A vessels, for all years combined. Species codes are given in Table 3. TCE is TCER and TCP is TCEPR.

| Species<br><b>Duration</b> | Form | No. tows | Minimum | 1st Quartile | Median | Mean  | 3rd Quartile | Maximum |
|----------------------------|------|----------|---------|--------------|--------|-------|--------------|---------|
| GUR                        | TCE  | 26 638   | 0.25    | 3.00         | 3.50   | 3.56  | 4.00         | 10.00   |
|                            | TCP  | 1 249    | 0.25    | 1.41         | 1.75   | 2.08  | 2.66         | 7.58    |
| JDO                        | TCE  | 6 130    | 0.25    | 2.83         | 3.25   | 3.39  | 4.00         | 10.00   |
|                            | TCP  | 2 866    | 0.25    | 1.45         | 2.00   | 2.26  | 3.00         | 7.50    |
| SNA                        | TCE  | 10 711   | 0.20    | 2.00         | 2.75   | 2.69  | 3.25         | 9.75    |
|                            | TCP  | 8 041    | 0.20    | 1.50         | 2.08   | 2.18  | 2.91         | 8.41    |
| TAR                        | TCE  | 44 515   | 0.20    | 3.00         | 3.75   | 3.84  | 4.50         | 10.00   |
|                            | TCP  | 7 909    | 0.25    | 2.75         | 3.50   | 3.64  | 4.33         | 10.00   |
| TRE                        | TCE  | 5 682    | 0.33    | 2.83         | 3.25   | 3.25  | 3.75         | 9.28    |
|                            | TCP  | 5 792    | 0.21    | 1.74         | 2.33   | 2.40  | 3.00         | 9.00    |
| Speed                      |      |          |         |              |        |       |              |         |
| GUR                        | TCE  | 26 638   | 1.5     | 2.7          | 2.9    | 2.9   | 3.0          | 4.2     |
|                            | TCP  | 1 249    | 2.6     | 3.0          | 3.0    | 3.0   | 3.0          | 3.9     |
| JDO                        | TCE  | 6 130    | 1.8     | 2.7          | 2.7    | 2.8   | 2.8          | 4.1     |
|                            | TCP  | 2 866    | 2.5     | 2.9          | 3.0    | 3.0   | 3.0          | 4.0     |
| SNA                        | TCE  | 10 711   | 1.8     | 2.8          | 3.0    | 3.0   | 3.2          | 4.2     |
|                            | TCP  | 8 041    | 2.0     | 3.0          | 3.0    | 3.0   | 3.0          | 3.9     |
| TAR                        | TCE  | 44 515   | 1.5     | 2.8          | 3.0    | 2.9   | 3.0          | 4.5     |
|                            | TCP  | 7 909    | 2.0     | 3.0          | 3.0    | 3.0   | 3.0          | 4.0     |
| TRE                        | TCE  | 5 682    | 1.8     | 3.2          | 3.4    | 3.4   | 3.6          | 4.4     |
|                            | TCP  | 5 792    | 2.8     | 3.0          | 3.2    | 3.2   | 3.5          | 4.5     |
| Distance                   |      |          |         |              |        |       |              |         |
| GUR                        | TCE  | 26 638   | 1.11    | 15.97        | 19.26  | 19.03 | 22.22        | 59.26   |
|                            | TCP  | 1 249    | 1.39    | 7.83         | 9.723  | 11.79 | 14.73        | 46.33   |
| JDO                        | TCE  | 6 130    | 1.25    | 13.89        | 16.81  | 17.35 | 20.74        | 50.00   |
|                            | TCP  | 2 866    | 1.39    | 7.94         | 11.11  | 12.33 | 16.56        | 41.67   |
| SNA                        | TCE  | 10 711   | 0.78    | 11.20        | 15.00  | 14.91 | 18.33        | 50.56   |
|                            | TCP  | 8 041    | 1.11    | 8.33         | 11.56  | 12.16 | 15.77        | 44.45   |
| TAR                        | TCE  | 44 515   | 0.92    | 16.39        | 20.14  | 20.44 | 24.17        | 62.10   |
|                            | TCP  | 7 909    | 1.39    | 15.28        | 19.45  | 20.19 | 24.06        | 58.06   |
| TRE                        | TCE  | 5 682    | 1.83    | 17.22        | 20.53  | 20.50 | 23.98        | 61.67   |
|                            | TCP  | 5 792    | 1.09    | 9.723        | 13.78  | 14.55 | 18.34        | 56.13   |

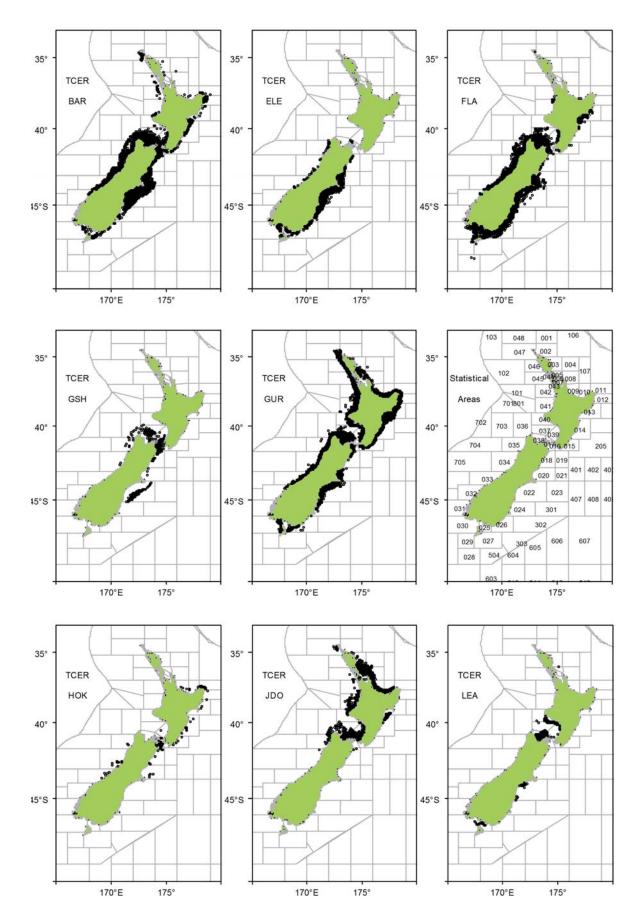



Figure 4.1: Plots of start locations of the trawl fishing effort reported on TCERs, for the main target species during fishing years 2008–12. Target species and total tows are given in Table 3.

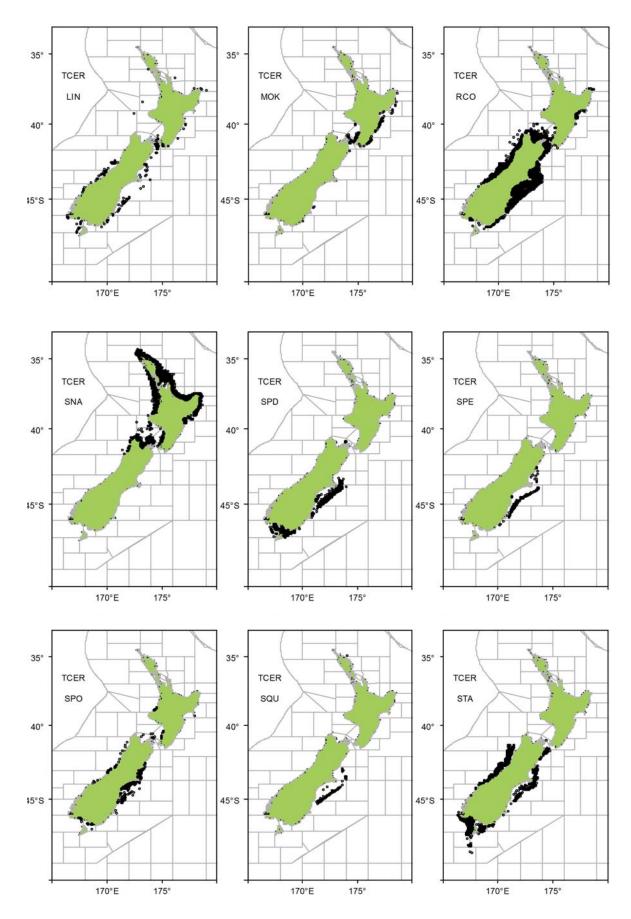



Figure 4.1 *continued*.

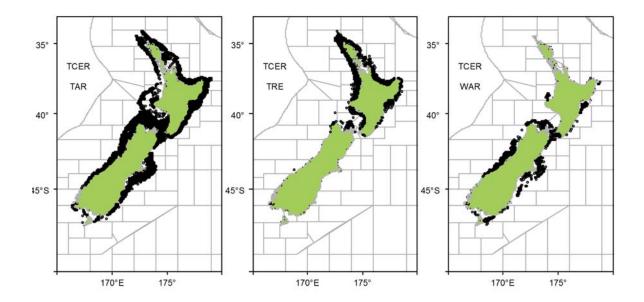



Figure 4.1 *continued*.

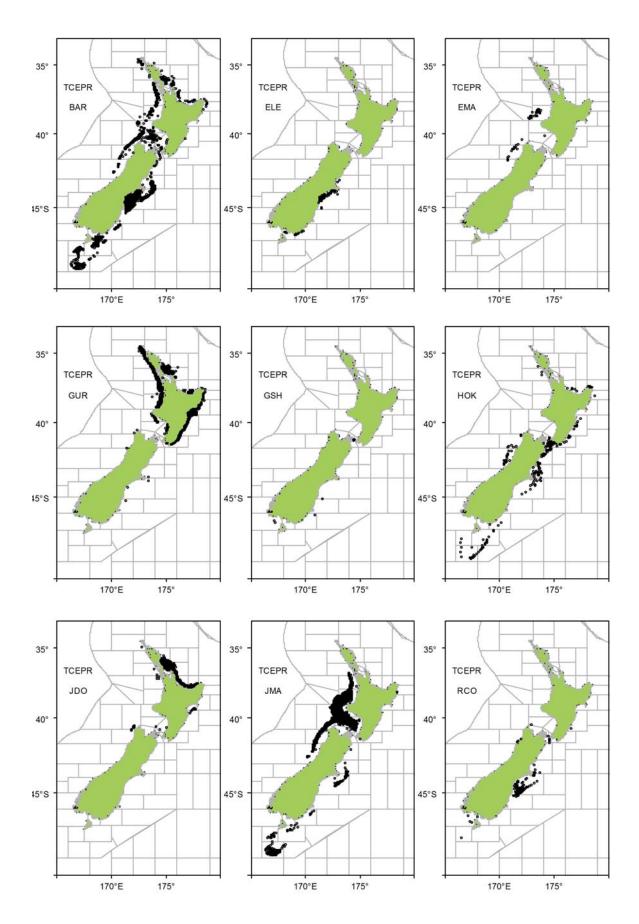



Figure 4.2: Plots of start locations of the trawl fishing effort reported on TCEPRs, for the main target species during fishing years 2008–12. Target species and total tows are given in Table 3.

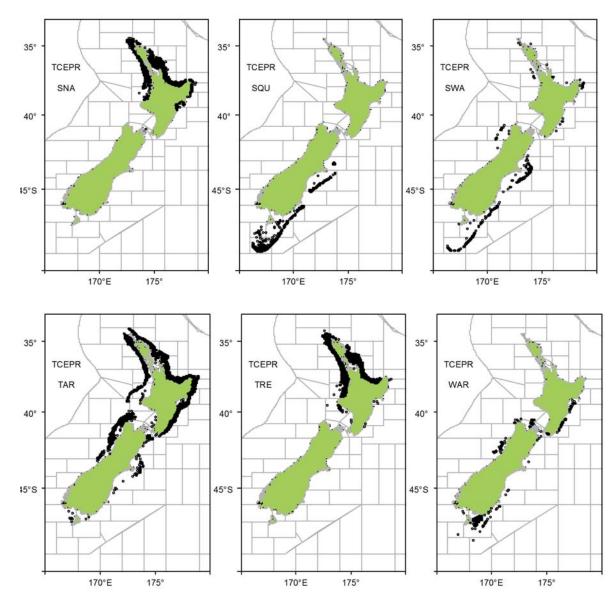



Figure 4.2 *continued*.

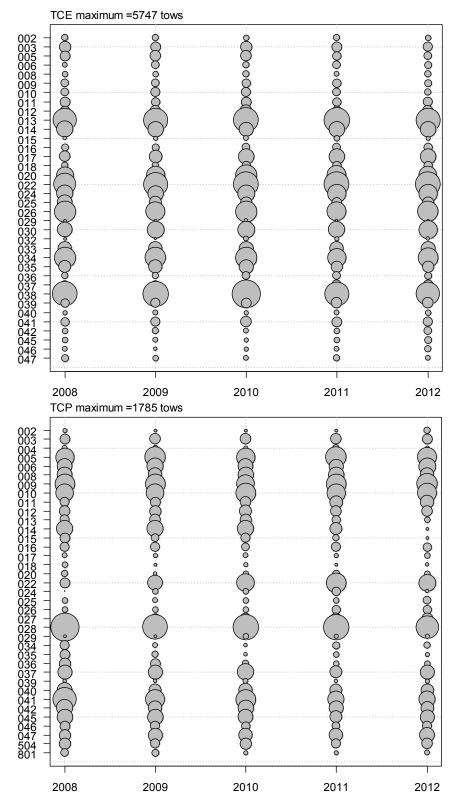



Figure 4.3: Distribution of the TCER (upper) and TCEPR (lower) data by the main Statistical Areas within the study area, for each fishing year. See Figure 2.3 in Appendix 2 for location of Statistical Areas. Data are given in Tables 4.4 and 4.5.

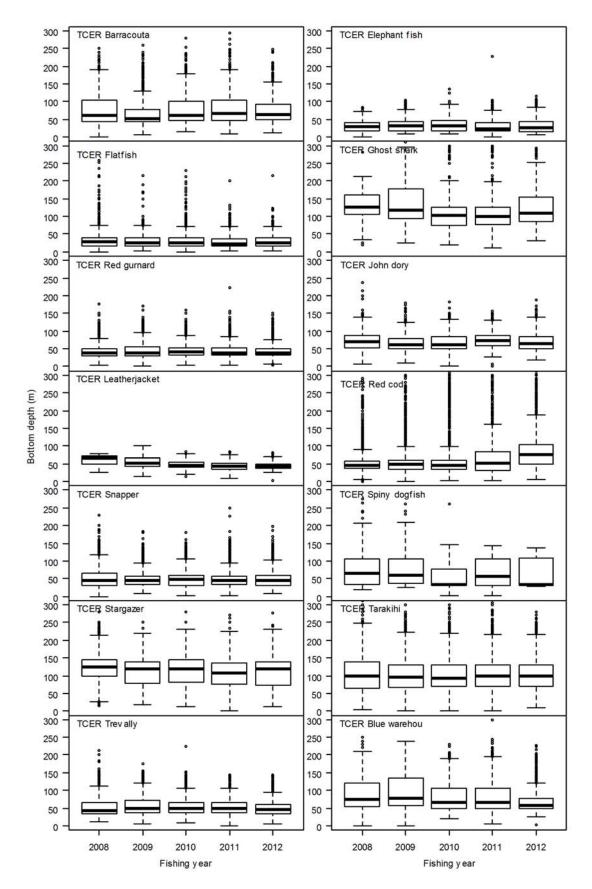



Figure 4.4a: Distribution of bottom depth data reported on TCERs by main target species.

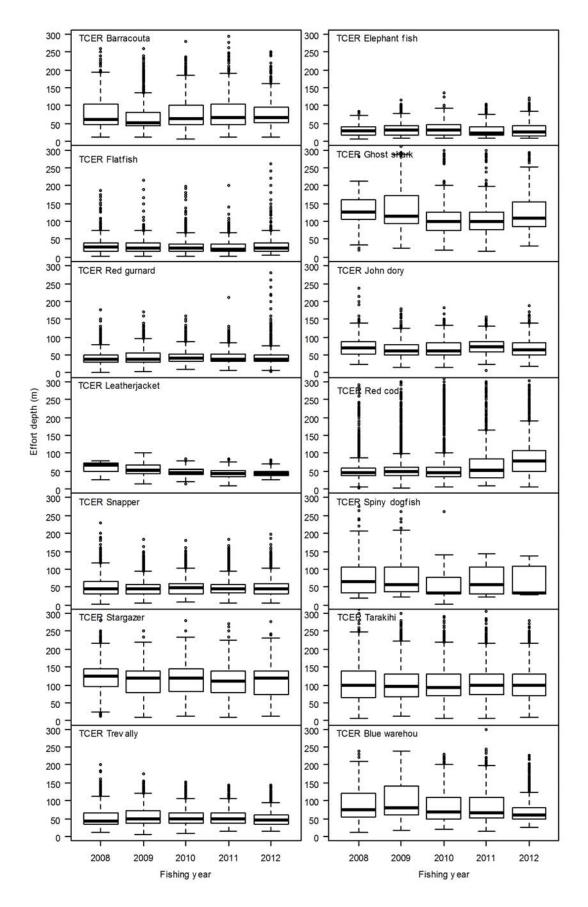



Figure 4.4b: Distribution of bottom depth data reported on TCERs by main target species.

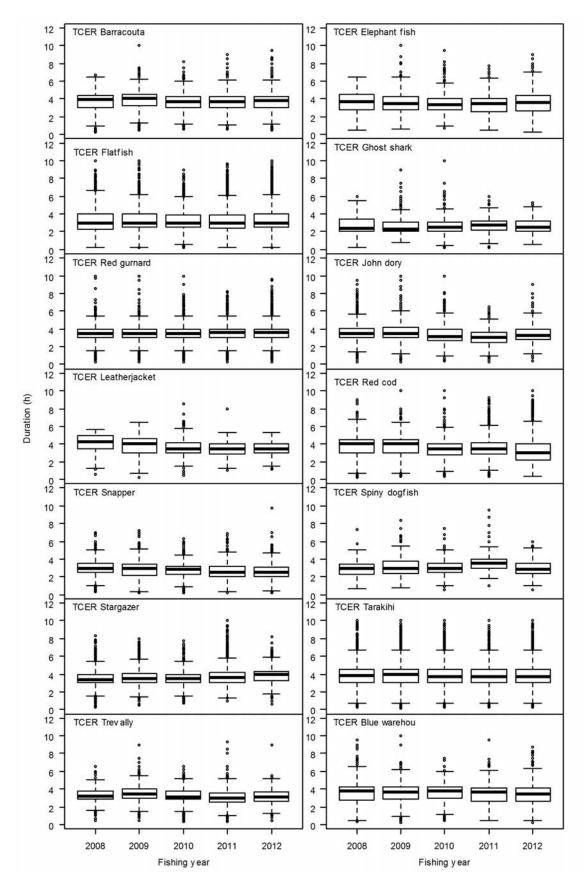



Figure 4.4c: Distribution of tow duration data reported on TCERs by main target species.

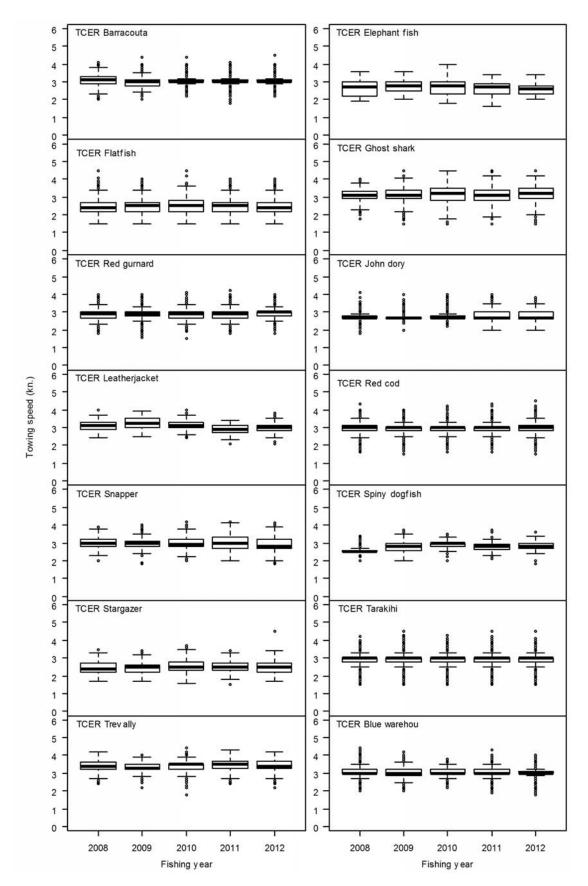



Figure 4.4d: Distribution of tow speed distance data reported on TCERs by main target species.

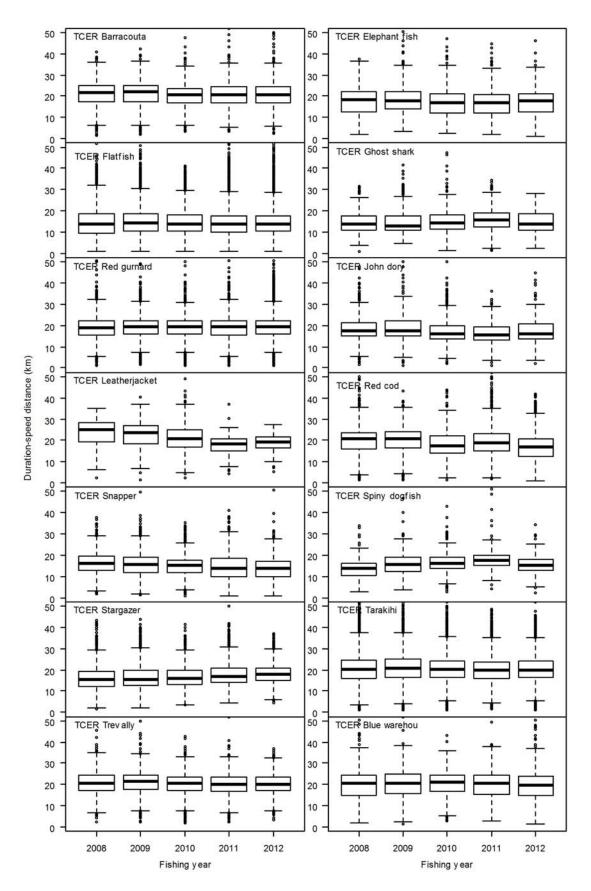



Figure 4.4e: Distribution of duration × speed distance data reported on TCERs by main target species.

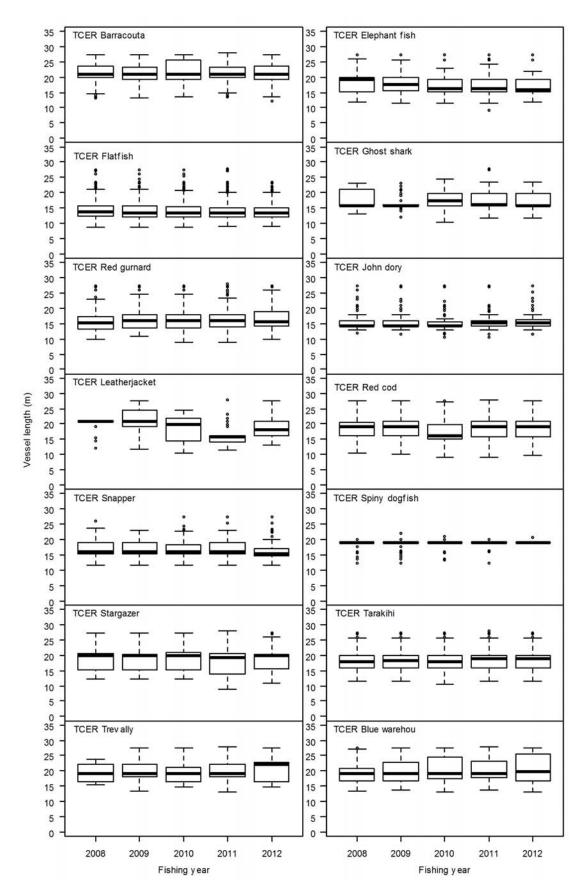



Figure 4.4f: Distribution of vessel length data reported for TCER vessels, by main target species.

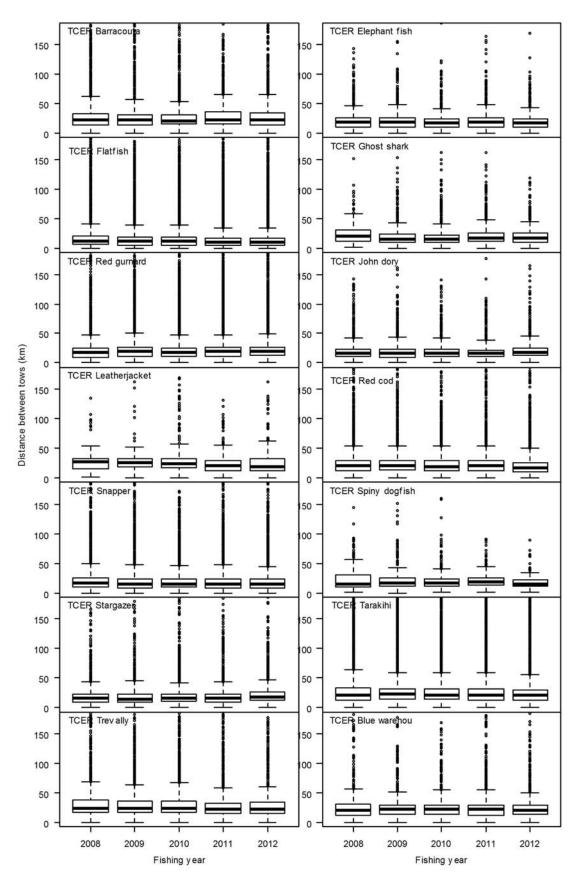



Figure 4.4g: Distribution of distance between start positions of consecutive tows for TCER trawl effort, by main target species.

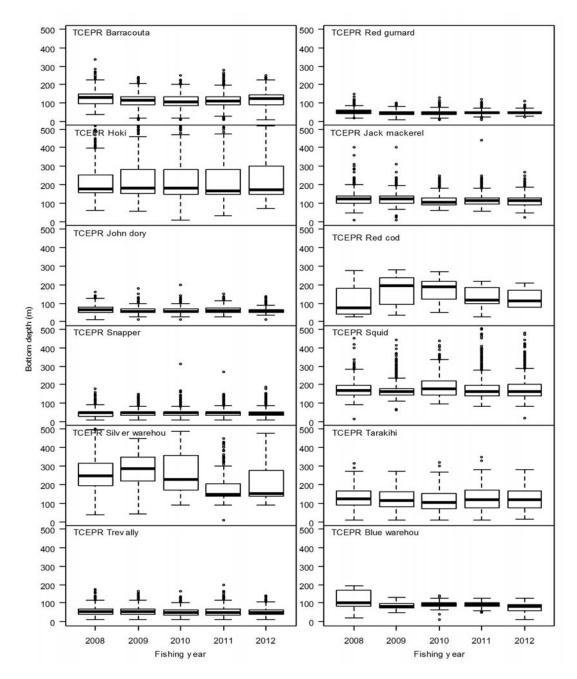



Figure 4.5a: Distribution of bottom depth data for TCEPR trawl effort, by main target species.

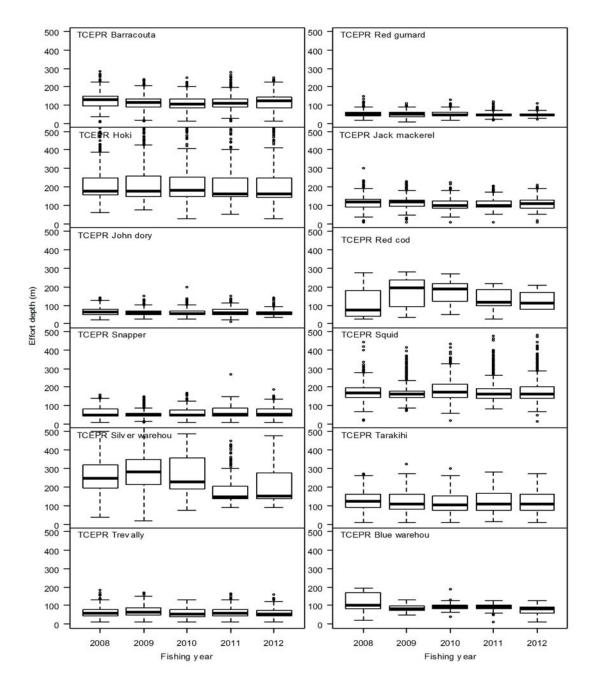



Figure 4.5b: Distribution of effort depth data for TCEPR trawl effort, by main target species.

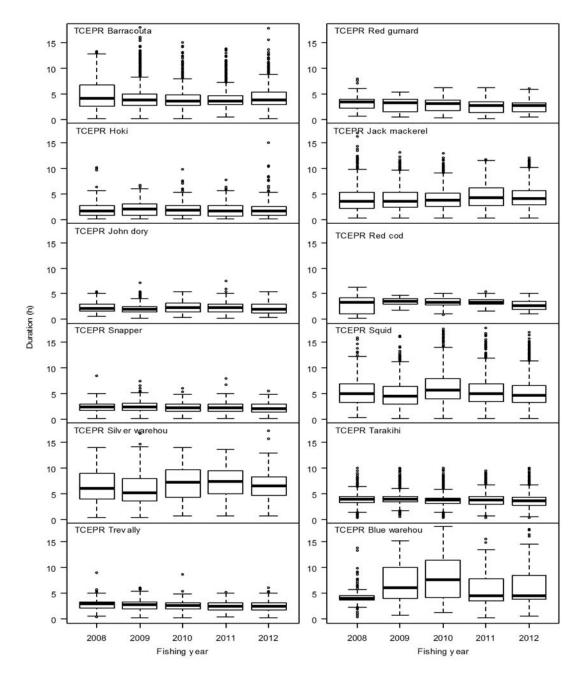



Figure 4.5c: Distribution of duration data for TCEPR trawl effort, by main target species.

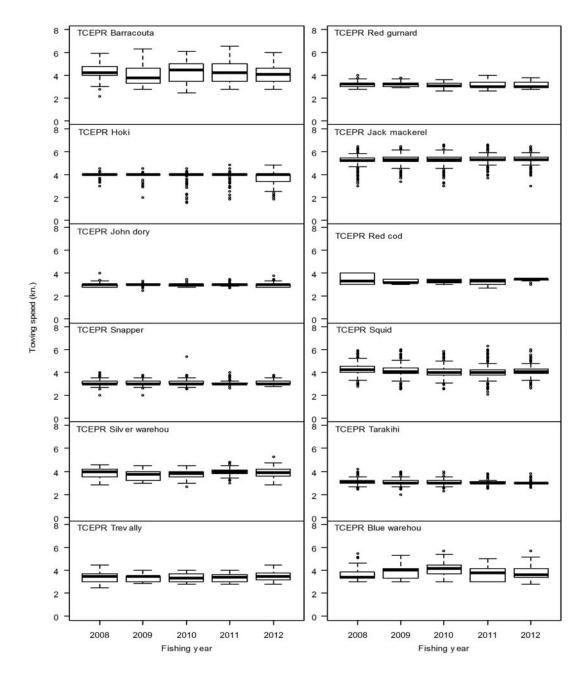



Figure 4.5d: Distribution of tow speed data for TCEPR trawl effort, by main target species.

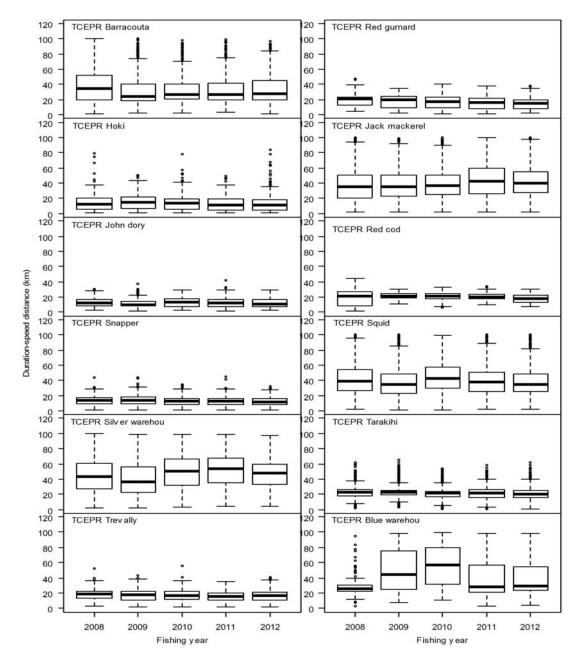



Figure 4.5e: Distribution of duration  $\times$  speed distance data for TCEPR trawl effort, by main target species.

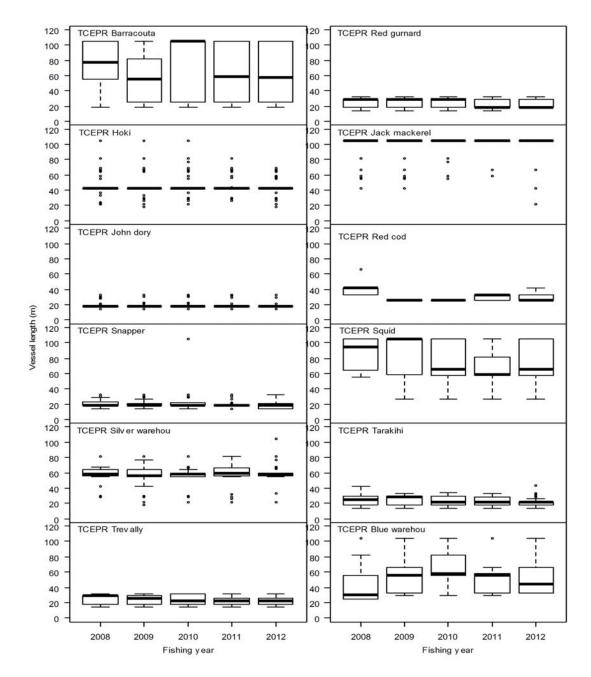



Figure 4.5f: Distribution of bottom depth data for TCEPR trawl effort, by main target species.

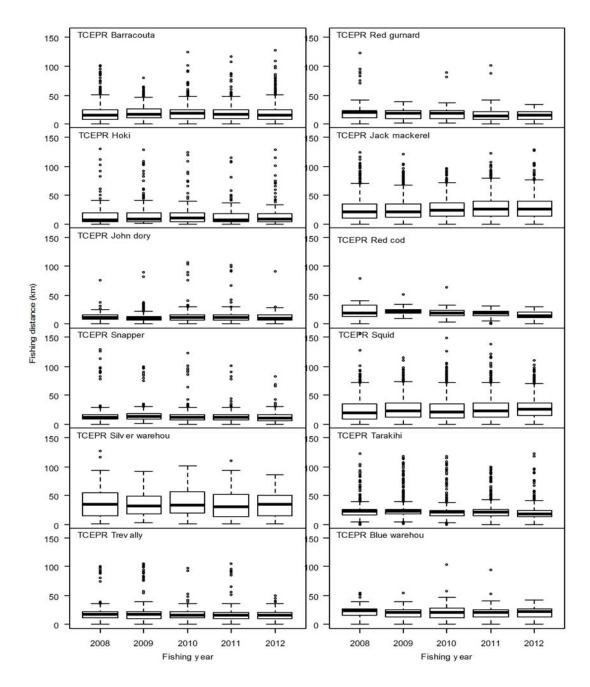



Figure 4.5g: Distribution of fishing distance data for TCEPR trawl effort, derived from start and finish positions, by main target species.

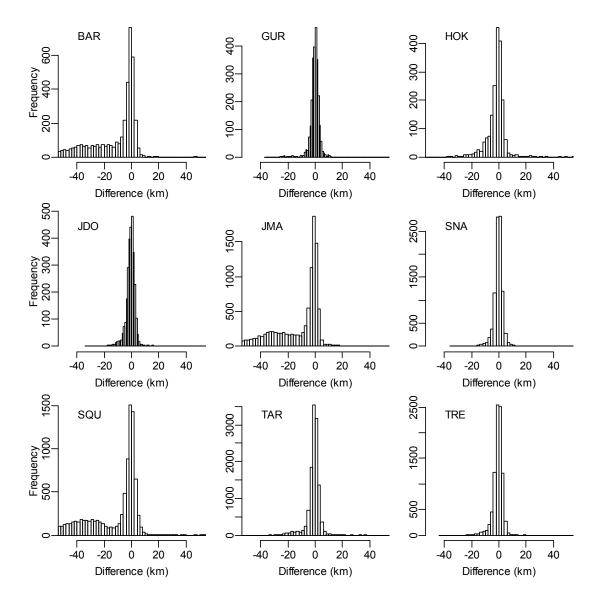



Figure 4.6: Distribution of the differences between the position-based distance and the distance generated from the reported duration and speed data for some of the main species targeted by category A vessels that reported on TCEPRs. Negative numbers indicate that the duration-speed distance was longer. Target species codes are defined in Table 3.

## **APPENDIX 5: CELL-BASED TRAWL SUMMARIES**

Table 5.1: Number of tows reported on TCERs, by target species and fishing year. Target species codes are defined in Table 3.

| Target code | 2008   | 2009    | 2010    | 2011    | 2012   | 2008-12 |
|-------------|--------|---------|---------|---------|--------|---------|
| BAR         | 1 988  | 1 484   | 1 2 1 4 | 1 086   | 1 307  | 7 079   |
| BCO         | 8      | 2       | 10      | 1       | 9      | 30      |
| BNS         | 0      | 0       | 0       | 1       | 0      | 1       |
| BYX         | 0      | 0       | 0       | 0       | 0      | 0       |
| ELE         | 588    | 689     | 850     | 607     | 717    | 3 451   |
| EMA         | 0      | 0       | 0       | 0       | 0      | 0       |
| FLA         | 16 717 | 16 523  | 18 853  | 14 661  | 16 527 | 83 281  |
| GSH         | 164    | 559     | 699     | 801     | 486    | 2 709   |
| GUR         | 4 072  | 4 476   | 5 927   | 5 853   | 6 259  | 26 587  |
| HOK         | 37     | 25      | 114     | 75      | 37     | 288     |
| HPB         | 43     | 34      | 41      | 31      | 15     | 164     |
| JDO         | 1 554  | 1 239   | 1 474   | 1 027   | 836    | 6 130   |
| JMA         | 1      | 1       | 9       | 11      | 1      | 23      |
| LEA         | 62     | 77      | 222     | 150     | 281    | 792     |
| LIN         | 88     | 65      | 100     | 109     | 61     | 423     |
| MOK         | 72     | 78      | 54      | 136     | 85     | 425     |
| PAD         | 58     | 8       | 8       | 27      | 17     | 118     |
| QSC         | 89     | 201     | 95      | 21      | 40     | 446     |
| RBT         | 0      | 0       | 0       | 0       | 0      | 0       |
| RBY         | 0      | 1       | 0       | 0       | 6      | 7       |
| RCO         | 2 830  | 2 682   | 2 607   | 2 670   | 2 447  | 13 236  |
| RSK         | 3      | 8       | 72      | 63      | 25     | 171     |
| SCH         | 68     | 95      | 57      | 83      | 72     | 375     |
| SCI         | 0      | 0       | 0       | 0       | 0      | 0       |
| SKI         | 5      | 27      | 32      | 79      | 22     | 165     |
| SNA         | 1 953  | 2 1 1 9 | 2 0 2 6 | 2 4 2 0 | 2 190  | 10 708  |
| SPD         | 259    | 386     | 318     | 187     | 151    | 1 301   |
| SPE         | 25     | 25      | 118     | 151     | 35     | 354     |
| SPO         | 16     | 67      | 132     | 111     | 156    | 482     |
| SQU         | 399    | 29      | 67      | 62      | 76     | 633     |
| STA         | 1 288  | 1 369   | 1 865   | 1 704   | 1 430  | 7 656   |
| SWA         | 14     | 56      | 67      | 81      | 82     | 300     |
| TAR         | 7 417  | 8 898   | 9 442   | 9 571   | 9 147  | 44 475  |
| TRE         | 1 078  | 1 1 1 6 | 1 302   | 1 371   | 796    | 5 663   |
| WAR         | 841    | 847     | 885     | 1 057   | 1 165  | 4 795   |
| All         | 41 737 | 43 186  | 48 660  | 44 207  | 44 478 | 222 268 |

| Table 5.2: Number of tows reported on TCEPRs, by target species and fishing year. T | arget species codes |
|-------------------------------------------------------------------------------------|---------------------|
| are defined in Table 3.                                                             |                     |

| Target code | 2008   | 2009   | 2010   | 2011    | 2012   | 2008-12 |
|-------------|--------|--------|--------|---------|--------|---------|
| BAR         | 672    | 774    | 903    | 928     | 847    | 4 124   |
| BCO         | 0      | 0      | 0      | 0       | 0      | 0       |
| BNS         | 16     | 1      | 0      | 0       | 0      | 17      |
| BYX         | 3      | 3      | 1      | 3       | 1      | 11      |
| ELE         | 30     | 0      | 2      | 54      | 61     | 147     |
| EMA         | 12     | 24     | 1      | 4       | 23     | 64      |
| FLA         | 3      | 0      | 0      | 0       | 0      | 3       |
| GSH         | 4      | 0      | 0      | 1       | 2      | 7       |
| GUR         | 657    | 360    | 778    | 460     | 308    | 2 563   |
| HOK         | 331    | 348    | 322    | 347     | 385    | 1 733   |
| HPB         | 0      | 0      | 0      | 1       | 0      | 1       |
| JDO         | 493    | 678    | 563    | 619     | 577    | 2 930   |
| JMA         | 1 782  | 1 500  | 1 866  | 1 232   | 1 466  | 7 846   |
| LEA         | 5      | 9      | 2      | 3       | 41     | 60      |
| LIN         | 23     | 11     | 14     | 10      | 2      | 60      |
| MOK         | 1      | 0      | 4      | 5       | 0      | 10      |
| PAD         | 0      | 0      | 0      | 0       | 0      | 0       |
| QSC         | 0      | 0      | 0      | 0       | 0      | 0       |
| RBT         | 5      | 18     | 8      | 3       | 18     | 52      |
| RBY         | 5      | 1      | 10     | 3       | 2      | 21      |
| RCO         | 12     | 60     | 96     | 79      | 34     | 281     |
| RSK         | 0      | 0      | 0      | 0       | 0      | 0       |
| SCH         | 6      | 2      | 12     | 19      | 25     | 64      |
| SCI         | 20     | 20     | 24     | 14      | 9      | 87      |
| SKI         | 9      | 24     | 17     | 47      | 15     | 112     |
| SNA         | 1 990  | 2 049  | 1 845  | 1 449   | 1 973  | 9 306   |
| SPD         | 6      | 2      | 20     | 1       | 0      | 29      |
| SPE         | 0      | 0      | 0      | 9       | 0      | 9       |
| SPO         | 0      | 1      | 0      | 0       | 0      | 1       |
| SQU         | 1 905  | 1 462  | 1 867  | 2 0 3 2 | 1 582  | 8 848   |
| STA         | 14     | 0      | 11     | 25      | 14     | 64      |
| SWA         | 198    | 148    | 116    | 172     | 110    | 744     |
| TAR         | 2 839  | 2 614  | 2 514  | 2 2 2 9 | 2 051  | 12 247  |
| TRE         | 1 675  | 1 911  | 1 542  | 1 971   | 1 770  | 8 869   |
| WAR         | 173    | 125    | 118    | 132     | 152    | 700     |
| All         | 12 859 | 12 095 | 12 583 | 11 710  | 11 318 | 60 565  |

Table 5.3: Aggregated swept area (km<sup>2</sup>) estimated for effort reported on TCERs, by target species and fishing year. Target species codes are defined in Table 3.

| Target codes | 2008     | 2009     | 2010     | 2011     | 2012     | 2008-12   |
|--------------|----------|----------|----------|----------|----------|-----------|
| BAR          | 2 867.5  | 2 121.4  | 1 688.3  | 1 501.9  | 1 815.8  | 9 995.0   |
| BCO          | 5.3      | 0.8      | 8.3      | 1.6      | 8.5      | 24.5      |
| BNS          | _        | _        | _        | 1.4      | _        | 1.4       |
| BYX          | _        | -        | _        | _        | _        | 0.0       |
| ELE          | 717.0    | 857.2    | 1 019.9  | 717.5    | 873.8    | 4 185.3   |
| EMA          | _        | -        | -        | _        | _        | 0.0       |
| FLA          | 16 571.7 | 16 861.5 | 18 271.9 | 13 923.1 | 16 010.5 | 81 638.6  |
| GSH          | 155.9    | 525.0    | 673.0    | 821.0    | 474.3    | 2 649.1   |
| GUR          | 5 084.6  | 5 705.7  | 7 479.7  | 7 342.0  | 8 079.5  | 33 691.5  |
| HAK          | _        | -        | _        | _        | _        | 0.0       |
| HOK          | 8.8      | 16.7     | 69.4     | 59.6     | 21.9     | 176.4     |
| HPB          | 39.2     | 32.9     | 46.2     | 43.9     | 24.9     | 187.2     |
| JDO          | 1 858.6  | 1 463.3  | 1 641.3  | 1 104.7  | 940.9    | 7 008.7   |
| JMA          | 1.6      | 0.4      | 10.0     | 16.0     | 2.0      | 30.0      |
| LEA          | 96.8     | 117.5    | 324.8    | 183.4    | 356.3    | 1 078.9   |
| LIN          | 79.3     | 53.2     | 80.3     | 85.3     | 53.0     | 351.0     |
| MOK          | 87.2     | 97.5     | 49.8     | 153.8    | 90.5     | 478.8     |
| PAD          | 18.3     | 3.5      | 2.1      | 6.3      | 4.2      | 34.5      |
| QSC          | 23.3     | 41.5     | 29.5     | 6.6      | 12.0     | 112.9     |
| RBT          | -        | -        | -        | _        | -        | 0.0       |
| RBY          | -        | 1.0      | -        | _        | 6.2      | 7.2       |
| RCO          | 3 755.2  | 3 643.5  | 3 141.9  | 3 435.2  | 2 766.0  | 16 741.8  |
| RSK          | 3.1      | 11.6     | 83.9     | 81.1     | 36.3     | 216.0     |
| SCH          | 112.2    | 168.3    | 81.6     | 125.9    | 112.9    | 600.9     |
| SCI          | _        | _        | _        | _        | _        | 0.0       |
| SKI          | 3.7      | 45.9     | 45.7     | 110.8    | 23.9     | 230.0     |
| SNA          | 2 101.5  | 2 130.8  | 2 036.5  | 2 291.3  | 2 008.4  | 10 568.5  |
| SPD          | 260.8    | 430.7    | 372.7    | 232.0    | 167.2    | 1 463.4   |
| SPE          | 20.2     | 28.7     | 119.8    | 191.6    | 39.0     | 399.3     |
| SPO          | 22.3     | 90.9     | 167.4    | 167.2    | 224.0    | 671.8     |
| SQU          | 477.6    | 35.9     | 88.0     | 63.8     | 68.2     | 733.5     |
| STA          | 1 433.4  | 1 563.0  | 2 176.2  | 2 064.4  | 1 767.1  | 9 004.1   |
| SWA          | 19.7     | 75.2     | 89.5     | 113.0    | 111.1    | 408.6     |
| TAR          | 10 076.2 | 12 298.0 | 12 894.1 | 12 760.8 | 12 397.7 | 60 426.7  |
| TRE          | 1 447.9  | 1 585.5  | 1 758.2  | 1 838.0  | 1 062.3  | 7 691.9   |
| WAR          | 1 105.3  | 1 079.8  | 1 158.8  | 1 347.6  | 1 541.7  | 6 233.3   |
| All          | 48 454.2 | 51 087.0 | 55 608.7 | 50 791.0 | 51 099.7 | 257 040.6 |

Table 5.4: Aggregated swept area (km<sup>2</sup>) estimated for effort reported on TCEPRs, by target species and fishing year. Target species codes are defined in Table 3.

| Target codes | 2008     | 2009     | 2010     | 2011     | 2012     | 2008-12   |
|--------------|----------|----------|----------|----------|----------|-----------|
| BAR          | 1 556.9  | 1 352.0  | 1 723.7  | 1 768.3  | 1 722.7  | 8 123.7   |
| BCO          | _        | _        | _        | _        | _        | 0.0       |
| BNS          | 15.2     | 1.7      | _        | _        | _        | 16.9      |
| BYX          | 8.7      | 3.3      | 0.3      | 5.6      | 1.2      | 19.2      |
| ELE          | 66.9     | -        | 3.8      | 84.0     | 65.1     | 219.9     |
| EMA          | 42.7     | 49.6     | 1.1      | 3.7      | 36.4     | 133.6     |
| FLA          | 5.5      | _        | _        | _        | _        | 5.5       |
| GSH          | 2.9      | _        | _        | 0.6      | 4.0      | 7.5       |
| GUR          | 1 017.6  | 526.6    | 1 107.5  | 580.9    | 367.5    | 3 600.0   |
| HOK          | 172.6    | 228.6    | 147.6    | 93.1     | 150.2    | 792.2     |
| HPB          | _        | _        | _        | 1.8      | _        | 1.8       |
| JDO          | 431.1    | 531.7    | 511.5    | 550.1    | 466.1    | 2 490.5   |
| JMA          | 5 295.8  | 4 245.3  | 5 698.7  | 4 236.4  | 4 821.5  | 24 297.7  |
| LEA          | 4.5      | 6.8      | 2.0      | 2.6      | 31.4     | 47.2      |
| LIN          | 50.0     | 62.1     | 52.1     | 22.2     | 3.8      | 190.2     |
| MOK          | 2.0      | _        | 6.8      | 9.0      | _        | 17.8      |
| PAD          | _        | _        | _        | _        | _        | 0.0       |
| QSC          | _        | _        | _        | _        | _        | 0.0       |
| RBT          | 11.5     | 34.7     | 17.4     | 5.1      | 21.9     | 90.6      |
| RBY          | 3.2      | 0.3      | 9.5      | 1.6      | 1.5      | 16.0      |
| RCO          | 22.2     | 89.1     | 119.2    | 114.6    | 40.2     | 385.3     |
| RSK          | _        | _        | _        | _        | _        | 0.0       |
| SCH          | 10.9     | 3.7      | 31.1     | 52.5     | 64.6     | 162.8     |
| SCI          | 18.4     | 20.5     | 28.1     | 25.7     | 6.5      | 99.2      |
| SKI          | 21.2     | 43.7     | 23.4     | 48.8     | 16.3     | 153.4     |
| SNA          | 2 012.3  | 2 138.6  | 1 717.6  | 1 282.9  | 1 654.8  | 8 806.2   |
| SPD          | 24.6     | 4.8      | 81.8     | 5.2      | —        | 116.4     |
| SPE          | -        | -        | _        | 14.1     | —        | 14.1      |
| SPO          | -        | 2.2      | _        | -        | —        | 2.2       |
| SQU          | 5 149.6  | 4 493.6  | 6 001.1  | 6 564.9  | 5 289.6  | 27 498.7  |
| STA          | 30.1     | -        | 18.9     | 48.1     | 28.1     | 125.2     |
| SWA          | 765.5    | 538.7    | 470.7    | 755.3    | 413.6    | 2 943.9   |
| TAR          | 4 659.1  | 4 555.8  | 3 817.0  | 3 263.9  | 2 683.8  | 18 979.6  |
| TRE          | 2 374.6  | 2 591.0  | 1 954.1  | 2 282.8  | 2 152.3  | 11 354.7  |
| WAR          | 348.5    | 217.3    | 185.1    | 194.4    | 285.0    | 1 230.4   |
| All          | 24 124.1 | 21 742.0 | 23 729.9 | 22 018.3 | 20 328.1 | 111 942.4 |

| Target | TCER      |           |           |           |           | TCEPR  | TCER and |
|--------|-----------|-----------|-----------|-----------|-----------|--------|----------|
| code   | A vessels | A vessels | B vessels | C vessels | D vessels | Total  | TCEPR    |
| BAR    | 7 079     | 1 241     | 168       | 1 316     | 1 399     | 4 124  | 11 203   |
| BCO    | 30        | 0         | 0         | 0         | 0         | 0      | 30       |
| BNS    | 1         | 5         | 12        | 0         | 0         | 17     | 18       |
| BYX    | 0         | 0         | 11        | 0         | 0         | 11     | 11       |
| ELE    | 3 451     | 79        | 68        | 0         | 0         | 147    | 3 598    |
| EMA    | 0         | 0         | 0         | 0         | 64        | 64     | 64       |
| FLA    | 83 281    | 3         | 0         | 0         | 0         | 3      | 83 284   |
| GSH    | 2 709     | 3         | 3         | 1         | 0         | 7      | 2 716    |
| GUR    | 26 587    | 1 247     | 1 316     | 0         | 0         | 2 563  | 29 150   |
| HOK    | 288       | 25        | 1 183     | 78        | 2         | 1 288  | 1 288    |
| HPB    | 164       | 0         | 1         | 0         | 0         | 1      | 165      |
| JDO    | 6 1 3 0   | 2 866     | 64        | 0         | 0         | 2 930  | 9 060    |
| JMA    | 23        | 1         | 8         | 201       | 7 636     | 7 846  | 7 869    |
| LEA    | 792       | 54        | 6         | 0         | 0         | 60     | 852      |
| LIN    | 423       | 0         | 18        | 42        | 0         | 60     | 483      |
| MOK    | 425       | 0         | 10        | 0         | 0         | 10     | 435      |
| PAD    | 118       | 0         | 0         | 0         | 0         | 0      | 118      |
| QSC    | 446       | 0         | 0         | 0         | 0         | 0      | 446      |
| RBT    | 0         | 0         | 0         | 0         | 52        | 52     | 52       |
| RBY    | 7         | 1         | 20        | 0         | 0         | 21     | 28       |
| RCO    | 13 236    | 217       | 63        | 1         | 0         | 281    | 13 517   |
| RSK    | 171       | 0         | 0         | 0         | 0         | 0      | 171      |
| SCH    | 375       | 10        | 54        | 0         | 0         | 64     | 439      |
| SCI    | 0         | 87        | 0         | 0         | 0         | 87     | 87       |
| SKI    | 165       | 40        | 72        | 0         | 0         | 112    | 277      |
| SNA    | 10 708    | 8 040     | 1 265     | 0         | 1         | 9 306  | 20 014   |
| SPD    | 1 301     | 0         | 0         | 29        | 0         | 29     | 1 330    |
| SPE    | 354       | 0         | 9         | 0         | 0         | 9      | 363      |
| SPO    | 482       | 0         | 1         | 0         | 0         | 1      | 483      |
| SQU    | 633       | 143       | 252       | 5 310     | 3 143     | 8 848  | 9 481    |
| STA    | 7656      | 1         | 63        | 0         | 0         | 64     | 7 720    |
| SWA    | 300       | 33        | 52        | 658       | 1         | 744    | 1 044    |
| TAR    | 44 475    | 7 859     | 4 388     | 0         | 0         | 12 247 | 56 722   |
| TRE    | 5 663     | 5 790     | 3 079     | 0         | 0         | 8 869  | 14 532   |
| WAR    | 4 795     | 86        | 242       | 347       | 25        | 700    | 5 495    |
| All    | 222 268   | 27 831    | 12 428    | 7 983     | 12 323    | 60 565 | 282 833  |

Table 5.5: Number of tows reported on TCERs and TCEPRs, by target species and vessel size category. Target species codes are defined in Table 3. Category A vessels are 6–28 m long; B vessels are 28–46 m long; C vessels are 46–80 m long; and D vessels are > 80 m.

Table 5.6: Aggregated swept area (km<sup>2</sup>) estimated for effort reported on TCERs and TCEPRs, by target species and vessel size category. Target species codes are defined in Table 3. Category A vessels are 6–28 m long; B vessels are 28–46 m long; C vessels are 46–80 m long; and D vessels are > 80 m.

| Target | TCER      |           |           |           |           | TCEPR     | TCER and  |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| code   | A vessels | A vessels | B vessels | C vessels | D vessels | Total     | TCEPR     |
| BAR    | 9 995.0   | 1 476.8   | 290.8     | 3 054.3   | 3 301.7   | 8 123.7   | 18 118.9  |
| BCO    | 24.5      | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 24.5      |
| BNS    | 1.4       | 5.7       | 11.1      | 0.0       | 0.0       | 16.9      | 18.3      |
| BYX    | _         | 0.0       | 19.2      | 0.0       | 0.0       | 19.2      | 19.2      |
| ELE    | 4 185.3   | 89.4      | 130.5     | 0.0       | 0.0       | 219.9     | 4 405.2   |
| EMA    | _         | 0.0       | 0.0       | 0.0       | 133.6     | 133.6     | 133.6     |
| FLA    | 81 638.6  | 5.5       | 0.0       | 0.0       | 0.0       | 5.5       | 81 644.1  |
| GSH    | 2 649.1   | 1.9       | 4.6       | 1.1       | 0.0       | 7.5       | 2 656.6   |
| GUR    | 33 691.5  | 985.3     | 2 614.7   | 0.0       | 0.0       | 3 600.0   | 37 291.5  |
| HOK    | 176.4     | 14.3      | 477.0     | 297.5     | 3.3       | 792.2     | 968.6     |
| HPB    | 187.2     | 0.0       | 1.8       | 0.0       | 0.0       | 1.8       | 189.0     |
| JDO    | 7 008.7   | 2 352.5   | 138.0     | 0.0       | 0.0       | 2 490.5   | 9 499.3   |
| JMA    | 30.0      | 1.4       | 12.8      | 940.7     | 23 342.8  | 24 297.7  | 24 327.7  |
| LEA    | 1 078.9   | 37.9      | 9.2       | 0.0       | 0.0       | 47.2      | 1 126.1   |
| LIN    | 351.0     | 0.0       | 18.6      | 171.6     | 0.0       | 190.2     | 541.2     |
| MOK    | 478.8     | 0.0       | 17.8      | 0.0       | 0.0       | 17.8      | 496.6     |
| PAD    | 34.5      | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 34.5      |
| QSC    | 112.9     | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 112.9     |
| RBT    | 0.0       | 0.0       | 0.0       | 0.0       | 90.6      | 90.6      | 90.6      |
| RBY    | 7.2       | 0.6       | 15.4      | 0.0       | 0.0       | 16.0      | 23.2      |
| RCO    | 16 741.8  | 280.3     | 98.9      | 6.0       | 0.0       | 385.3     | 17 127.0  |
| RSK    | 216.0     | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 216.0     |
| SCH    | 600.9     | 17.0      | 145.8     | 0.0       | 0.0       | 162.8     | 763.7     |
| SCI    | 0.0       | 99.2      | 0.0       | 0.0       | 0.0       | 99.2      | 99.2      |
| SKI    | 230.0     | 39.1      | 114.3     | 0.0       | 0.0       | 153.4     | 383.4     |
| SNA    | 10 568.5  | 6 680.4   | 2 123.0   | 0.0       | 2.8       | 8 806.2   | 19 374.6  |
| SPD    | 1 463.4   | 0.0       | 0.0       | 116.4     | 0.0       | 116.4     | 1 579.8   |
| SPE    | 399.3     | 0.0       | 14.1      | 0.0       | 0.0       | 14.1      | 413.4     |
| SPO    | 671.8     | 0.0       | 2.2       | 0.0       | 0.0       | 2.2       | 674.0     |
| SQU    | 733.5     | 172.2     | 390.5     | 18 044.6  | 8891.8    | 27 498.7  | 28 232.2  |
| STA    | 9 004.1   | 1.6       | 123.6     | 0.0       | 0.0       | 125.2     | 9 129.3   |
| SWA    | 408.6     | 34.0      | 83.6      | 2 825.2   | 1.1       | 2 943.9   | 3 352.4   |
| TAR    | 60 426.7  | 9 387.0   | 9 592.6   | 0.0       | 0.0       | 18 979.6  | 79 406.4  |
| TRE    | 7 691.9   | 5 670.8   | 5 683.9   | 0.0       | 0.0       | 11 354.7  | 19 046.6  |
| WAR    | 6 233.3   | 133.0     | 491.7     | 554.6     | 51.1      | 1 230.4   | 7 463.6   |
| All    | 257 040.6 | 27 486.1  | 22 625.7  | 26 012.0  | 57 141.1  | 111 942.4 | 368 983.0 |

| Table 5.7: Number of tows reported on TCERs, by Statistical Area and fishing year. Statistical Areas are |
|----------------------------------------------------------------------------------------------------------|
| shown in Figure 2.3.                                                                                     |

| Area       | 2008       | 2009       | 2010     | 2011     | 2012       | 2008-12        |
|------------|------------|------------|----------|----------|------------|----------------|
| 002        | 361        | 328        | 299      | 338      | 270        | 1 596          |
| 003        | 959        | 809        | 1 008    | 744      | 684        | 4 204          |
| 004        | 27         | 7          | 13       | 4        | 4          | 55             |
| 005        | 801        | 895        | 859      | 633      | 498        | 3 686          |
| 006        | 230        | 463        | 338      | 521      | 399        | 1 951          |
| 007        | 2          | 0          | 1        | 2        | 3          | 8              |
| 008        | 294        | 310        | 332      | 217      | 332        | 1 485          |
| 009        | 502        | 464        | 574      | 634      | 447        | 2 621          |
| 010        | 490        | 732        | 709      | 541      | 364        | 2 836          |
| 011        | 735        | 550        | 767      | 616      | 699        | 3 367          |
| 012        | 838        | 915        | 1 184    | 825      | 851        | 4 613          |
| 013        | 4 033      | 4 3 4 3    | 4 639    | 4 826    | 4 194      | 22 035         |
| 014        | 1 998      | 1 902      | 1 486    | 1 916    | 1 819      | 9 121          |
| 015        | 110        | 187        | 203      | 261      | 196        | 957            |
| 016        | 443        | 418        | 485      | 524      | 576        | 2 446          |
| 017        | 865        | 1 271      | 1 779    | 1 836    | 1 881      | 7 632          |
| 018        | 348        | 379        | 623      | 620      | 601        | 2 571          |
| 020        | 2 162      | 2 480      | 3 413    | 2 645    | 2 438      | 13 138         |
| 022        | 3 508      | 4 345      | 4 550    | 4 519    | 4 465      | 21 387         |
| 024        | 2 016      | 1 914      | 2 270    | 2 471    | 2 476      | 11 147         |
| 025        | 1 720      | 1 1 5 9    | 1 064    | 743      | 1 013      | 5 699          |
| 026        | 3 372      | 2 828      | 3 463    | 2 812    | 3 111      | 15 586         |
| 027        | 10         | 16         | 7        | 12       | 15         | 60             |
| 028        | 0          | 1          | 2        | 1        | 0          | 4              |
| 029        | 71         | 77         | 138      | 55       | 71         | 412            |
| 030        | 1 764      | 2 121      | 2 269    | 2 046    | 2 526      | 10 726         |
| 031        | 0          | 4          | 0        | 0        | 0          | 4              |
| 032        | 81         | 53         | 216      | 176      | 115        | 641            |
| 033        | 1 385      | 1 336      | 1 539    | 1 424    | 1 593      | 7 277          |
| 034        | 3 393      | 3 082      | 3 255    | 2 510    | 2 902      | 15 142         |
| 035        | 1 182      | 1 444      | 1 538    | 970      | 1 026      | 6 160          |
| 036        | 342        | 348        | 501      | 483      | 427        | 2 101          |
| 037        | 468        | 496        | 552      | 708      | 825        | 3 049          |
| 038        | 4 438      | 4 715      | 5 744    | 4 202    | 3 963      | 23 062         |
| 039        | 610        | 713        | 741      | 939      | 930        | 3 933          |
| 040        | 180        | 223        | 195      | 197      | 261        | 1 056          |
| 041        | 549<br>285 | 658<br>264 | 851      | 784      | 724        | 3 566          |
| 042        | 285        | 364        | 251      | 286      | 525        | 1 711          |
| 043<br>045 | 1<br>308   | 0<br>218   | 0<br>167 | 0<br>273 | 0<br>417   | 1<br>1 383     |
| 043<br>046 | 308<br>187 | 126        | 167      | 275      |            |                |
| 046<br>047 | 458        | 283        | 242      | 326      | 326<br>241 | 1 016<br>1 550 |
| 801        | 438<br>1   | 283<br>39  | 13       | 85       | 73         | 211            |
| unk        | 210        | 170        | 219      | 266      | 197        | 1 062          |
| Sum        | 41 737     | 43 186     | 48 660   | 44 207   | 44 478     | 222 268        |
|            |            |            |          |          |            |                |

Table 5.8: Number of tows reported on TCEPRs, by Statistical Area and fishing year. Statistical Areas are shown in Figure 2.3.

| Area | 2008   | 2009      | 2010   | 2011   | 2012   | 2008-12 |
|------|--------|-----------|--------|--------|--------|---------|
| 002  | 46     | 30        | 22     | 28     | 117    | 243     |
| 003  | 243    | 265       | 282    | 260    | 255    | 1 305   |
| 004  | 72     | 92        | 52     | 103    | 59     | 378     |
| 005  | 793    | 974       | 775    | 987    | 867    | 4 396   |
| 006  | 515    | 613       | 548    | 479    | 652    | 2 807   |
| 007  | 0      | 1         | 0      | 1      | 0      | 2       |
| 008  | 547    | 452       | 557    | 547    | 437    | 2 540   |
| 009  | 914    | 931       | 717    | 904    | 969    | 4 435   |
| 010  | 726    | 741       | 903    | 785    | 858    | 4 013   |
| 011  | 216    | 229       | 289    | 395    | 429    | 1 558   |
| 012  | 279    | 327       | 337    | 271    | 279    | 1 493   |
| 013  | 220    | 291       | 327    | 177    | 83     | 1 098   |
| 014  | 610    | 619       | 596    | 362    | 29     | 2 216   |
| 015  | 237    | 151       | 209    | 105    | 26     | 728     |
| 016  | 186    | 182       | 109    | 97     | 103    | 677     |
| 017  | 62     | 24        | 39     | 28     | 45     | 198     |
| 018  | 76     | 30        | 43     | 22     | 25     | 196     |
| 020  | 110    | 41        | 78     | 120    | 65     | 414     |
| 022  | 226    | 538       | 717    | 905    | 672    | 3 058   |
| 024  | 3      | 90        | 87     | 178    | 43     | 401     |
| 025  | 87     | 70        | 79     | 83     | 158    | 477     |
| 026  | 80     | 90        | 86     | 187    | 169    | 612     |
| 027  | 287    | 202       | 247    | 280    | 288    | 1 304   |
| 028  | 1 566  | 1 252     | 1 415  | 1 393  | 1 160  | 6 786   |
| 029  | 29     | 31        | 79     | 46     | 55     | 240     |
| 030  | 3      | 0         | 9      | 10     | 12     | 34      |
| 033  | 2      | 2         | 0      | 2      | 0      | 6       |
| 034  | 158    | 35        | 39     | 100    | 82     | 414     |
| 035  | 221    | 88        | 36     | 42     | 23     | 410     |
| 036  | 287    | 204       | 110    | 67     | 80     | 748     |
| 037  | 396    | 432       | 583    | 306    | 416    | 2 1 3 3 |
| 038  | 22     | 8         | 1      | 0      | 0      | 31      |
| 039  | 37     | 42        | 46     | 32     | 47     | 204     |
| 040  | 429    | 274       | 386    | 290    | 376    | 1 755   |
| 041  | 996    | 699       | 719    | 446    | 453    | 3 313   |
| 042  | 582    | 420       | 478    | 389    | 350    | 2 219   |
| 045  | 547    | 562       | 511    | 341    | 454    | 2 415   |
| 046  | 253    | 218       | 176    | 162    | 221    | 1 030   |
| 047  | 299    | 468       | 449    | 452    | 541    | 2 209   |
| 504  | 281    | 188       | 313    | 202    | 262    | 1 246   |
| 801  | 97     | 63<br>126 | 31     | 14     | 19     | 224     |
| unk  | 119    | 126       | 103    | 112    | 139    | 599     |
| Sum  | 12 859 | 12 095    | 12 583 | 11 710 | 11 318 | 60 565  |

Table 5.9: Aggregated swept area (km<sup>2</sup>) estimated for effort reported on TCERs, by Statistical Area and fishing year. Statistical Areas are shown in Figure 2.3.

| Area | 2008     | 2009     | 2010      | 2011     | 2012     | 2008-12   |
|------|----------|----------|-----------|----------|----------|-----------|
| 002  | 475.0    | 464.9    | 391.5     | 468.9    | 361.6    | 2161.9    |
| 003  | 1 173.0  | 998.3    | 1 128.1   | 788.6    | 698.8    | 4 786.7   |
| 004  | 46.6     | 13.7     | 25.6      | 6.4      | 6.5      | 98.7      |
| 005  | 863.1    | 949.6    | 856.9     | 536.9    | 419.7    | 3 626.2   |
| 006  | 172.3    | 298.9    | 237.4     | 293.9    | 226.3    | 1 228.7   |
| 007  | 1.3      |          | 0.0       | 1.0      | 1.1      | 3.4       |
| 008  | 355.0    | 379.1    | 406.6     | 246.2    | 371.5    | 1 758.5   |
| 009  | 631.3    | 571.5    | 778.5     | 760.8    | 559.3    | 3 301.5   |
| 010  | 644.5    | 916.2    | 899.5     | 664.1    | 415.3    | 3 539.6   |
| 011  | 810.3    | 599.3    | 869.9     | 675.7    | 849.4    | 3 804.5   |
| 012  | 1 097.8  | 1 228.7  | 1 617.1   | 1 093.4  | 1 167.2  | 6 204.1   |
| 013  | 4 857.1  | 5 305.4  | 5 709.5   | 5 998.0  | 5 161.6  | 27 031.6  |
| 014  | 2 402.1  | 2 348.6  | 1 828.7   | 2 352.7  | 2 236.1  | 11 168.2  |
| 015  | 140.7    | 270.3    | 282.9     | 318.1    | 261.4    | 1 273.4   |
| 016  | 351.4    | 335.0    | 423.0     | 422.1    | 537.2    | 2 068.7   |
| 017  | 693.3    | 1 105.7  | 1 504.9   | 1 688.0  | 1 774.6  | 6 766.5   |
| 018  | 341.2    | 427.1    | 751.5     | 682.4    | 693.0    | 2 895.1   |
| 020  | 2 949.7  | 3 429.9  | 4 565.4   | 3 728.1  | 3 246.0  | 17 919.2  |
| 022  | 4 602.1  | 5 753.2  | 5 920.3   | 5 914.7  | 5 576.8  | 27 767.1  |
| 024  | 1 482.6  | 1 339.7  | 1 580.4   | 1 823.3  | 1 673.5  | 7 899.6   |
| 025  | 1 545.8  | 1 038.8  | 939.1     | 708.5    | 997.5    | 5 229.7   |
| 026  | 2 084.7  | 1 738.8  | 2 330.1   | 1 893.2  | 2 152.9  | 10 199.8  |
| 027  | 9.3      | 15.8     | 6.2       | 16.6     | 23.1     | 70.9      |
| 028  | _        | 0.7      | 2.4       | 1.0      | -        | 4.2       |
| 029  | 64.1     | 78.3     | 140.6     | 54.9     | 74.9     | 412.8     |
| 030  | 1 595.7  | 1 961.7  | 2 127.1   | 2 000.6  | 2 534.9  | 10 219.9  |
| 031  | _        | 2.2      | _         | _        | _        | 2.2       |
| 032  | 82.9     | 48.9     | 200.8     | 148.3    | 107.7    | 588.6     |
| 033  | 1 884.5  | 1 830.0  | 1 964.4   | 1 907.0  | 2 251.7  | 9 837.7   |
| 034  | 5 405.8  | 4 874.4  | 4 786.9   | 3 848.5  | 4 577.1  | 23 492.8  |
| 035  | 1 940.5  | 2 278.2  | 2 2 3 0.4 | 1 414.0  | 1 571.9  | 9 435.1   |
| 036  | 602.9    | 619.9    | 833.6     | 748.5    | 654.9    | 3 459.8   |
| 037  | 718.2    | 755.3    | 806.3     | 989.6    | 1 219.3  | 4 488.6   |
| 038  | 4 524.4  | 5 035.3  | 5 626.4   | 4 135.5  | 3 859.8  | 23 181.5  |
| 039  | 857.7    | 1 083.4  | 1 043.7   | 1 238.2  | 1 225.0  | 5 447.9   |
| 040  | 291.2    | 374.2    | 297.8     | 282.4    | 406.2    | 1 651.8   |
| 041  | 728.8    | 885.3    | 1 113.4   | 964.2    | 938.1    | 4 629.8   |
| 042  | 326.9    | 467.2    | 259.3     | 330.3    | 581.4    | 1 965.1   |
| 043  | 0.3      | _        | _         | _        | _        | 0.3       |
| 045  | 489.4    | 337.6    | 237.7     | 406.1    | 559.2    | 2 030.0   |
| 046  | 299.7    | 206.2    | 256.9     | 339.4    | 461.0    | 1 563.2   |
| 047  | 711.1    | 475.2    | 390.3     | 495.5    | 335.1    | 2 407.2   |
| 801  | 2.0      | 63.7     | 25.4      | 154.5    | 128.1    | 373.5     |
| unk  | 197.8    | 180.8    | 212.3     | 251.1    | 202.9    | 1 044.9   |
| All  | 48 454.2 | 51 087.0 | 55 608.7  | 50 791.0 | 51 099.7 | 257 040.6 |

Table 5.10: Aggregated swept area (km<sup>2</sup>) estimated for effort reported on TCEPRs, by Statistical Area and fishing year. Statistical Areas are shown in Figure 2.3.

| Area | 2008     | 2009     | 2010     | 2011     | 2012     | 2008-12   |
|------|----------|----------|----------|----------|----------|-----------|
| 002  | 69.0     | 62.1     | 27.1     | 43.8     | 157.2    | 359.1     |
| 003  | 256.4    | 265.4    | 318.9    | 282.4    | 282.6    | 1 405.8   |
| 004  | 121.4    | 155.1    | 97.2     | 195.6    | 121.4    | 690.7     |
| 005  | 605.9    | 753.0    | 631.4    | 796.9    | 638.9    | 3 426.1   |
| 006  | 369.3    | 470.7    | 387.7    | 323.7    | 399.6    | 1 951.0   |
| 007  | _        | 6.9      | _        | 1.7      | _        | 8.7       |
| 008  | 706.3    | 545.6    | 701.6    | 666.8    | 551.0    | 3 171.3   |
| 009  | 796.9    | 744.6    | 605.9    | 774.7    | 732.9    | 3 655.1   |
| 010  | 734.2    | 769.2    | 819.7    | 735.0    | 779.2    | 3 837.3   |
| 011  | 198.0    | 214.7    | 265.6    | 348.3    | 386.4    | 1 413.0   |
| 012  | 352.7    | 443.7    | 462.8    | 365.9    | 352.7    | 1 977.8   |
| 013  | 407.8    | 541.4    | 626.9    | 332.4    | 151.8    | 2 060.2   |
| 014  | 1 217.5  | 1 291.7  | 1 205.2  | 765.6    | 62.7     | 4 542.7   |
| 015  | 395.1    | 314.4    | 378.7    | 190.0    | 43.6     | 1 321.8   |
| 016  | 78.5     | 70.6     | 42.7     | 24.1     | 34.7     | 250.6     |
| 017  | 34.7     | 13.0     | 29.1     | 10.7     | 18.6     | 106.2     |
| 018  | 39.5     | 16.6     | 23.8     | 9.6      | 16.5     | 106.1     |
| 020  | 175.6    | 101.1    | 184.6    | 313.2    | 175.3    | 949.8     |
| 022  | 532.0    | 972.8    | 1 445.2  | 1 945.5  | 1 442.4  | 6 337.9   |
| 024  | 4.0      | 87.4     | 84.9     | 197.3    | 34.2     | 407.8     |
| 025  | 170.0    | 83.5     | 128.7    | 141.0    | 314.1    | 837.4     |
| 026  | 197.3    | 208.7    | 204.6    | 491.9    | 423.3    | 1 525.8   |
| 027  | 851.3    | 719.0    | 860.7    | 923.0    | 987.3    | 4 341.3   |
| 028  | 4 199.6  | 3 714.5  | 4 389.7  | 4 720.2  | 3 810.8  | 20 834.8  |
| 029  | 86.5     | 113.1    | 177.3    | 77.2     | 120.3    | 574.5     |
| 030  | 1.2      | _        | 13.8     | 16.3     | 22.3     | 53.5      |
| 033  | 5.2      | 3.7      | _        | 3.9      | _        | 12.8      |
| 034  | 304.9    | 54.3     | 23.3     | 121.7    | 80.7     | 585.0     |
| 035  | 753.1    | 201.0    | 133.8    | 131.9    | 56.1     | 1 275.8   |
| 036  | 761.9    | 520.2    | 274.4    | 170.2    | 214.9    | 1 941.6   |
| 037  | 1 205.6  | 1 170.2  | 1 728.0  | 966.4    | 1 380.9  | 6 451.1   |
| 038  | 35.8     | 23.9     | 3.6      | —        | —        | 63.3      |
| 039  | 123.1    | 83.5     | 120.1    | 82.0     | 124.2    | 532.9     |
| 040  | 1 285.4  | 787.9    | 1 221.7  | 936.7    | 1 310.3  | 5 542.1   |
| 041  | 2 561.8  | 1 963.7  | 2 095.0  | 1 612.8  | 1 405.7  | 9 639.1   |
| 042  | 1 129.7  | 820.6    | 883.7    | 817.9    | 680.4    | 4 332.3   |
| 045  | 1 013.2  | 1 047.3  | 745.6    | 517.5    | 691.0    | 4 014.7   |
| 046  | 523.7    | 486.4    | 312.2    | 287.7    | 423.6    | 2 033.6   |
| 047  | 619.2    | 947.8    | 750.3    | 755.8    | 874.8    | 3 947.8   |
| 504  | 782.8    | 676.7    | 1 101.8  | 794.1    | 891.0    | 4 246.4   |
| 801  | 279.5    | 157.3    | 91.5     | 32.0     | 33.1     | 593.4     |
| unk  | 138.2    | 118.6    | 130.9    | 95.1     | 101.4    | 584.2     |
| All  | 24 124.1 | 21 742.0 | 23 729.9 | 22 018.3 | 20 328.1 | 111 942.4 |

## Table 5.11: Total number of tows reported on TCERs and TCEPRs, by Statistical Area and target species for species where $\geq$ 30 tows exist (BNS, BYX, and RBY data are not shown separately but are included in the totals). Statistical Areas are shown in Figure 2.3 and target species are defined in Table 3.

| Area | BAR   | BCO | ELE  | EMA | FLA   | GSH  | GUR   | HOK  | HPB | JDO  | JMA  | LEA | LIN | MOK | PAD | QSC |
|------|-------|-----|------|-----|-------|------|-------|------|-----|------|------|-----|-----|-----|-----|-----|
| 002  | 1     | 0   | 0    | 0   | 1     | 0    | 5     | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0   |
| 003  | 35    | 0   | 0    | 0   | 0     | 0    | 91    | 0    | 0   | 2061 | 0    | 3   | 0   | 0   | 0   | 0   |
| 004  | 3     | 0   | 0    | 0   | 0     | 0    | 2     | 0    | 0   | 6    | 0    | 0   | 0   | 0   | 0   | 0   |
| 005  | 14    | 0   | 0    | 0   | 0     | 0    | 713   | 0    | 0   | 3433 | 1    | 40  | 0   | 0   | 0   | 0   |
| 006  | 2     | 0   | 0    | 0   | 0     | 0    | 207   | 0    | 0   | 801  | 0    | 0   | 0   | 0   | 0   | 0   |
| 007  | 0     | 0   | 0    | 0   | 0     | 0    | 1     | 0    | 0   | 2    | 0    | 0   | 0   | 0   | 0   | 0   |
| 008  | 23    | 0   | 0    | 0   | 0     | 0    | 73    | 0    | 0   | 766  | 0    | 10  | 1   | 0   | 0   | 0   |
| 009  | 30    | 0   | 0    | 0   | 1     | 0    | 80    | 6    | 0   | 257  | 0    | 0   | 0   | 0   | 0   | 0   |
| 010  | 12    | 0   | 0    | 0   | 1     | 0    | 292   | 6    | 0   | 218  | 0    | 0   | 1   | 0   | 0   | 0   |
| 011  | 17    | 0   | 0    | 0   | 0     | 0    | 158   | 94   | 0   | 0    | 0    | 0   | 5   | 0   | 0   | 0   |
| 012  | 35    | 0   | 0    | 0   | 0     | 0    | 743   | 3    | 0   | 0    | 1    | 0   | 0   | 1   | 0   | 0   |
| 013  | 18    | 0   | 0    | 0   | 1631  | 0    | 11854 | 4    | 0   | 54   | 0    | 0   | 0   | 18  | 0   | 0   |
| 014  | 53    | 0   | 0    | 0   | 3219  | 0    | 3227  | 29   | 0   | 50   | 0    | 0   | 5   | 64  | 0   | 0   |
| 015  | 11    | 0   | 0    | 0   | 3     | 0    | 407   | 19   | 0   | 0    | 0    | 0   | 6   | 31  | 0   | 0   |
| 016  | 34    | 0   | 0    | 0   | 41    | 11   | 267   | 655  | 0   | 13   | 1    | 0   | 33  | 89  | 0   | 0   |
| 017  | 206   | 0   | 5    | 0   | 1755  | 2312 | 563   | 262  | 31  | 82   | 2    | 46  | 27  | 83  | 0   | 0   |
| 018  | 181   | 0   | 40   | 0   | 12    | 75   | 14    | 155  | 0   | 2    | 1    | 0   | 8   | 3   | 0   | 0   |
| 020  | 588   | 1   | 250  | 0   | 4469  | 3    | 208   | 47   | 34  | 0    | 18   | 0   | 88  | 0   | 0   | 0   |
| 022  | 3839  | 0   | 2553 | 0   | 6459  | 125  | 1103  | 15   | 72  | 0    | 182  | 17  | 38  | 0   | 0   | 0   |
| 024  | 798   | 3   | 355  | 0   | 8380  | 4    | 68    | 0    | 9   | 0    | 0    | 1   | 56  | 2   | 26  | 17  |
| 025  | 259   | 8   | 121  | 0   | 4300  | 0    | 167   | 0    | 0   | 0    | 1    | 19  | 1   | 0   | 0   | 0   |
| 026  | 54    | 14  | 156  | 0   | 14388 | 1    | 27    | 3    | 6   | 0    | 10   | 0   | 21  | 1   | 76  | 429 |
| 027  | 294   | 0   | 0    | 0   | 18    | 0    | 0     | 9    | 0   | 0    | 10   | 0   | 15  | 0   | 0   | 0   |
| 028  | 212   | 0   | 0    | 0   | 2     | 0    | 0     | 34   | 0   | 0    | 263  | 0   | 9   | 0   | 0   | 0   |
| 029  | 203   | 0   | 0    | 0   | 7     | 0    | 0     | 0    | 0   | 0    | 15   | 0   | 1   | 0   | 0   | 0   |
| 030  | 15    | 0   | 72   | 0   | 5304  | 2    | 200   | 0    | 0   | 0    | 0    | 7   | 45  | 0   | 0   | 0   |
| 031  | 0     | 0   | 0    | 0   | 0     | 0    | 0     | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0   |
| 032  | 22    | 0   | 0    | 0   | 6     | 0    | 4     | 0    | 0   | 0    | 0    | 0   | 6   | 0   | 0   | 0   |
| 033  | 684   | 0   | 15   | 0   | 1936  | 0    | 203   | 5    | 0   | 0    | 4    | 0   | 47  | 0   | 0   | 0   |
| 034  | 818   | 1   | 11   | 0   | 8691  | 2    | 531   | 11   | 0   | 1    | 31   | 0   | 30  | 0   | 0   | 0   |
| 035  | 295   | 0   | 19   | 7   | 4028  | 9    | 423   | 4    | 0   | 41   | 121  | 0   | 1   | 0   | 0   | 0   |
| 036  | 426   | 0   | 0    | 2   | 57    | 10   | 122   | 0    | 0   | 64   | 358  | 0   | 1   | 0   | 0   | 0   |
| 037  | 629   | 0   | 0    | 1   | 216   | 102  | 432   | 0    | 5   | 46   | 1994 | 215 | 0   | 2   | 0   | 0   |
| 038  | 974   | 3   | 0    | 0   | 17545 | 27   | 823   | 0    | 2   | 74   | 6    | 307 | 0   | 0   | 0   | 0   |
| 039  | 115   | 0   | 0    | 0   | 455   | 15   | 693   | 0    | 3   | 612  | 141  | 51  | 1   | 130 | 0   | 0   |
| 040  | 39    | 0   | 0    | 0   | 0     | 0    | 482   | 0    | 0   | 62   | 1626 | 103 | 0   | 0   | 0   | 0   |
| 041  | 54    | 0   | 0    | 48  | 32    | 0    | 2291  | 0    | 3   | 300  | 2425 | 0   | 0   | 0   | 0   | 0   |
| 042  | 60    | 0   | 0    | 0   | 2     | 0    | 1321  | 0    | 0   | 18   | 442  | 0   | 0   | 0   | 0   | 0   |
| 043  | 0     | 0   | 0    | 0   | 0     | 0    | 0     | 0    | 0   | 1    | 0    | 0   | 0   | 0   | 0   | 0   |
| 045  | 53    | 0   | 0    | 0   | 0     | 0    | 569   | 2    | 0   | 5    | 16   | 0   | 2   | 0   | 0   | 0   |
| 046  | 3     | 0   | 0    | 0   | 0     | 0    | 364   | 1    | 0   | 0    | 0    | 0   | 0   | 0   | 0   | 0   |
| 047  | 48    | 0   | 0    | 0   | 0     | 0    | 282   | 0    | 0   | 13   | 0    | 0   | 0   | 0   | 0   | 0   |
| 504  | 3     | 0   | 0    | 0   | 0     | 0    | 0     | 5    | 0   | 0    | 2    | 0   | 10  | 0   | 0   | 0   |
| 801  | 1     | 0   | 0    | 6   | 0     | 0    | 0     | 0    | 0   | 0    | 166  | 0   | 0   | 0   | 0   | 0   |
| unk  | 42    | 0   | 1    | 0   | 325   | 18   | 140   | 207  | 0   | 78   | 32   | 33  | 25  | 11  | 16  | 0   |
| All  | 11203 | 30  | 3598 | 64  | 83284 | 2716 | 29150 | 1576 | 165 | 9060 | 7869 | 852 | 483 | 435 | 118 | 446 |

## Table 5.11 continued

| Area       | RBT     | RCO   | RSK | SCH | SCI | SKI | SNA   | SPD  | SPE | SPO | SQU        | STA  | SWA       | TAR   | TRE   | WAR  | All         |
|------------|---------|-------|-----|-----|-----|-----|-------|------|-----|-----|------------|------|-----------|-------|-------|------|-------------|
| 002        | 0       | 0     | 0   | 3   | 0   | 0   | 649   | 0    | 0   | 0   | 1          | 0    | 1         | 868   | 310   | 0    | 1839        |
| 003        | 0       | 0     | 0   | 3   | 0   | 2   | 1867  | 0    | 0   | 0   | 0          | 0    | 0         | 950   | 497   | 0    | 5509        |
| 004        | 0       | 0     | 0   | 1   | 2   | 0   | 15    | 0    | 0   | 0   | 0          | 0    | 0         | 391   | 13    | 0    | 433         |
| 005        | 0       | 0     | 0   | 0   | 1   | 0   | 3259  | 0    | 0   | 0   | 0          | 0    | 0         | 71    | 550   | 0    | 8082        |
| 006        | 0       | 0     | 0   | 0   | 0   | 0   | 3707  | 0    | 0   | 0   | 0          | 0    | 0         | 6     | 35    | 0    | 4758        |
| 007        | 0       | 0     | 0   | 0   | 0   | 0   | 6     | 0    | 0   | 0   | 0          | 0    | 0         | 0     | 1     | 0    | 10          |
| 008        | 0       | 0     | 0   | 2   | 19  | 8   | 1358  | 0    | 0   | 0   | 0          | 0    | 0         | 1116  | 646   | 0    | 4025        |
| 009        | 0       | 0     | 0   | 0   | 14  | 1   | 1828  | 0    | 0   | 0   | 0          | 0    | 2         | 1970  | 2862  | 0    | 7056        |
| 010        | 0       | 0     | 0   | 0   | 0   | 5   | 2172  | 0    | 0   | 0   | 0          | 0    | 2         | 2870  | 1266  | 1    | 6849        |
| 011        | 0       | 5     | 0   | 1   | 0   | 29  | 157   | 0    | 0   | 0   | 0          | 0    | 15        | 4434  | 10    | 0    | 4925        |
| 012        | 0       | 0     | 0   | 0   | 1   | 25  | 239   | 0    | 0   | 0   | 0          | 0    | 102       | 4920  | 26    | 4    | 6106        |
| 013        | 0       | 81    | 0   | 0   | 1   | 10  | 295   | 0    | 0   | 1   | 0          | 0    | 0         | 8906  | 123   | 132  | 23133       |
| 014        | 0       | 76    | 0   | 2   | 21  | 176 | 63    | 0    | 0   | 0   | 0          | 0    | 18        | 4237  | 27    | 57   | 11337       |
| 015        | 0       | 1     | 0   | 0   | 24  | 3   | 0     | 0    | 0   | 0   | 0          | 0    | 20        | 1124  | 2     | 14   | 1685        |
| 016        | 0       | 21    | 0   | 16  | 0   | 4   | 2     | 0    | 0   | 0   | 0          | 1    | 4         | 1184  | 13    | 733  | 3123        |
| 017        | 0       | 1018  | 0   | 9   | 0   | 0   | 148   | 3    | 0   | 4   | 0          | 8    | 5         | 1053  | 37    | 171  | 7830        |
| 018        | 0       | 333   | 0   | 1   | 0   | 0   | 0     | 0    | 3   | 4   | 0          | 233  | 5         | 1647  | 0     | 50   | 2767        |
| 020        | 0       | 3151  | 18  | 19  | 0   | 0   | 0     | 25   | 8   | 52  | 52         | 236  | 89        | 3002  | 0     | 1194 | 13552       |
| 022        | 0       | 4923  | 149 | 38  | 4   | 0   | 0     | 419  | 85  | 306 | 650        | 341  | 368       | 2655  | 0     | 104  | 24445       |
| 024        | 0       | 311   | 2   | 0   | 0   | 0   | 0     | 38   | 264 | 16  | 341        | 14   | 6         | 798   | 0     | 39   | 11548       |
| 025        | 0       | 15    | 0   | 1   | 0   | 0   | 0     | 669  | 0   | 13  | 2          | 187  | 1         | 36    | 0     | 376  | 6176        |
| 026        | 0       | 63    | 0   | 2   | 0   | 0   | 0     | 15   | 3   | 0   | 422        | 21   | 92        | 356   | 0     | 38   | 16198       |
| 027        | 6<br>32 | 0     | 0   | 0   | 0   | 0   | 0     | 10   | 0   | 0   | 600        | 21   | 155<br>40 | 2     | 0     | 224  | 1364        |
| 028<br>029 | 2       | 1     | 0   | 0   | 0   | 0   | 0     | 0    | 0   | 0   | 6196<br>14 | 406  |           | 0     | 0     | 0    | 6790<br>652 |
| 029        | 0       | 27    | 0   | 1   | 0   | 0   | 0     | 149  | 0   | 35  | 14         | 400  | 1         | 64    | 0     | 11   | 10760       |
| 030        | 0       | 0     | 0   | 0   | 0   | 0   | 0     | 0    | 0   | 0   | 0          | 4020 | 0         | 04    | 0     | 0    | 4           |
| 032        | 0       | 1     | 0   | 0   | 0   | 0   | 0     | 0    | 0   | 0   | 0          | 5    | 0         | 594   | 0     | 3    | 641         |
| 033        | 0       | 744   | 0   | 2   | 0   | 2   | 0     | 0    | 0   | 9   | 0          | 340  | 1         | 2671  | 1     | 618  | 7283        |
| 034        | 2       | 1098  | 0   | 17  | 0   | 9   | 0     | 0    | 0   | 20  | 0          | 988  | 4         | 2488  | 0     | 803  | 15556       |
| 035        | 3       | 657   | 0   | 4   | 0   | 0   | 14    | 0    | 0   | 4   | 0          | 82   | 30        | 821   | 2     | 5    | 6570        |
| 036        | 2       | 14    | 0   | 23  | 0   | 0   | 32    | 0    | 0   | 0   | 0          | 0    | 1         | 1680  | 24    | 33   | 2849        |
| 037        | 0       | 32    | 0   | 19  | 0   | 0   | 76    | 0    | 0   | 2   | 0          | 0    | 1         | 918   | 81    | 411  | 5182        |
| 038        | 0       | 896   | 2   | 10  | 0   | 0   | 1755  | 0    | 0   | 1   | 0          | 0    | 1         | 198   | 56    | 413  | 23093       |
| 039        | 0       | 27    | 0   | 109 | 0   | 0   | 266   | 0    | 0   | 10  | 0          | 0    | 0         | 1306  | 181   | 22   | 4137        |
| 040        | 0       | 0     | 0   | 17  | 0   | 0   | 12    | 0    | 0   | 0   | 0          | 0    | 0         | 209   | 261   | 0    | 2811        |
| 041        | 0       | 1     | 0   | 3   | 0   | 0   | 175   | 0    | 0   | 6   | 0          | 0    | 0         | 564   | 951   | 26   | 6879        |
| 042        | 0       | 0     | 0   | 20  | 0   | 0   | 562   | 0    | 0   | 0   | 0          | 0    | 3         | 123   | 1379  | 0    | 3930        |
| 043        | 0       | 0     | 0   | 0   | 0   | 0   | 0     | 0    | 0   | 0   | 0          | 0    | 0         | 0     | 0     | 0    | 1           |
| 045        | 0       | 0     | 0   | 30  | 0   | 0   | 736   | 0    | 0   | 0   | 0          | 0    | 2         | 469   | 1914  | 0    | 3798        |
| 046        | 0       | 0     | 0   | 52  | 0   | 0   | 61    | 0    | 0   | 0   | 0          | 0    | 0         | 375   | 1190  | 0    | 2046        |
| 047        | 0       | 0     | 0   | 18  | 0   | 1   | 268   | 0    | 0   | 0   | 0          | 0    | 2         | 1120  | 2007  | 0    | 3759        |
| 504        | 4       | 0     | 0   | 0   | 0   | 0   | 0     | 0    | 0   | 0   | 1152       | 0    | 70        | 0     | 0     | 0    | 1246        |
| 801        | 0       | 0     | 0   | 0   | 0   | 0   | 0     | 0    | 0   | 0   | 0          | 0    | 0         | 262   | 0     | 0    | 435         |
| unk        | 1       | 21    | 0   | 16  | 0   | 2   | 292   | 2    | 0   | 0   | 51         | 3    | 3         | 263   | 67    | 12   | 1661        |
| All        | 52      | 13517 | 171 | 439 | 87  | 277 | 20014 | 1330 | 363 | 483 | 9481       | 7720 | 1044      | 56722 | 14532 | 5495 | 282833      |

# Table 5.12: Percentage of the total effort given in Table 5.11 that was reported on TCERs, by Statistical Area and target species. Statistical Areas are shown in Figure 2.3 and target species are defined in Table 3.

| Area | BAR   | BCO   | BNS   | BYX   | ELE   | EMA | FLA   | GSH   | GUR   | HOK   | HPB   | JDO    | JMA   | LEA   | LIN     | MOK   | PAD   | QSC      |
|------|-------|-------|-------|-------|-------|-----|-------|-------|-------|-------|-------|--------|-------|-------|---------|-------|-------|----------|
| 002  | 0.0   | _     | _     | _     | _     | _   | 100.0 | _     | 100.0 | _     | _     | _      | _     | _     | _       | _     | _     | <u> </u> |
| 003  | 5.7   | _     | _     | _     | _     | _   | _     | _     | 35.2  | _     | -     | 77.6   | _     | 33.3  | _       | _     | _     | _        |
| 004  | 33.3  | _     | _     | _     | _     | _   | _     | _     | 50.0  | _     | _     | 100.0  | _     | _     | _       | _     | _     | _        |
| 005  | 7.1   | _     | _     | _     | _     | _   | _     | _     | 10.9  | _     | _     | 53.0   | 100.0 | 0.0   | _       | _     | _     | _        |
| 006  | 0.0   | _     | _     | _     | _     | _   | _     | _     | 6.3   | _     | _     | 51.8   | -     | -     | _       | _     | _     | _        |
| 007  | -     | _     | _     | _     | _     | _   | _     | _     | 0.0   | _     | _     | 100.0  | _     | _     | _       | _     | _     | _        |
| 008  | 0.0   | _     | _     | _     | _     | _   | _     | _     | 58.9  | -     | _     | 75.2   | -     | 0.0   | 100.0   | _     | _     | _        |
| 009  | 3.3   | _     | _     | _     | _     | _   | 100.0 | _     | 93.8  | 50.0  | _     | 53.7   | _     | - 0.0 | - 100.0 | _     | _     | _        |
| 010  | 41.7  | _     |       |       |       |     | 100.0 | _     | 72.6  | 83.3  | _     | 69.3   | _     |       | 100.0   | _     |       |          |
| 011  | 88.2  | _     | _     | _     | _     | _   | 100.0 | _     | 98.1  | 85.1  | _     | 07.5   | _     | _     | 100.0   | _     | _     | _        |
| 012  | 83.3  | _     |       | 0.0   | _     |     |       | _     | 98.3  | 66.7  | _     | _      | 0.0   | _     | 100.0   | 100.0 | _     |          |
| 012  | 100.0 | _     | _     | 14.3  | _     | _   | 100.0 | _     | 96.8  | 100.0 | _     | 77.8   | - 0.0 | _     | _       | 100.0 | _     |          |
| 013  | 98.1  | _     | 0.0   | 0.0   |       | _   | 100.0 | _     | 87.9  | 34.5  | _     | 82.0   |       |       | 60.0    | 90.6  |       |          |
| 014  | 100.0 | _     | 6.7   | 0.0   | _     | _   | 100.0 | _     | 59.5  | 28.6  | _     | - 62.0 | _     | _     | 33.3    | 90.0  | _     | _        |
| 016  | 85.3  | _     | - 0.7 | 0.0   | _     | _   | 100.0 | 100.0 | 98.1  | 28.0  | _     | 100.0  | 50.0  | _     | 100.0   | 90.3  | _     | _        |
| 017  | 97.1  | _     | _     | 0.0   | 100.0 | _   | 100.0 | 99.9  | 100.0 | 45.0  | 100.0 | 100.0  | 50.0  | 100.0 | 100.0   | 100.0 | _     | _        |
| 017  | 97.1  | _     | _     | 100.0 | 100.0 | _   | 100.0 | 100.0 | 100.0 | 11.9  | 100.0 | 100.0  | 0.0   | 100.0 | 100.0   | 100.0 | _     | _        |
| 020  | 57.0  | 100.0 | _     | 100.0 | 99.2  |     | 100.0 | 100.0 | 99.5  | 28.2  | 100.0 | 100.0  | 0.0   | _     | 100.0   | 100.0 |       |          |
| 020  |       |       |       | -     |       |     |       |       |       |       |       | -      |       |       |         | -     | -     |          |
| 022  | 50.4  | -     | -     | -     | 94.9  | -   | 100.0 | 100.0 | 99.8  | 0.0   | 98.6  | -      | 0.0   | 100.0 | 100.0   | -     | -     | 100.0    |
|      | 64.7  | 100.0 | -     | -     | 100.0 | -   | 100.0 | 75.0  | 98.5  | -     | 100.0 | -      | -     | 100.0 | 100.0   | 100.0 | 100.0 | 100.0    |
| 025  | 22.6  | 100.0 | -     | -     | 97.5  | -   | 100.0 | -     | 100.0 | -     | -     | -      | 0.0   | 84.2  | 0.0     | -     | -     | -        |
| 026  | 25.5  | 100.0 | -     | -     | 92.3  | -   | 100.0 | 0.0   | 100.0 | 0.0   | 100.0 | -      | 0.0   | -     | 71.4    | 100.0 | 100.0 | 100.0    |
| 027  | 0.7   | -     | -     | -     | -     | -   | 100.0 | -     | -     | 0.0   | -     | _      | 0.0   | -     | 0.0     | -     | -     | _        |
| 028  | 0.0   | -     | -     | -     | -     | -   | 100.0 | -     | -     | 0.0   | -     | _      | 0.0   | -     | 0.0     | -     | -     |          |
| 029  | 0.0   | -     | -     | -     | -     | -   | 100.0 | -     | -     | 0.0   | -     | -      | 0.0   | -     | 0.0     | -     | -     | -        |
| 030  | 100.0 | -     | -     | -     | 100.0 | -   | 100.0 | 0.0   | 100.0 | -     | -     | -      | -     | 85.7  | 88.9    | -     | -     |          |
| 031  | -     | -     | -     | -     | -     | -   | -     | -     | -     | -     | -     | -      | -     | -     | -       | -     | -     | -        |
| 032  | 100.0 | -     | 100.0 | -     | -     | -   | 100.0 | -     | 100.0 | -     | -     | -      | -     | -     | 100.0   | -     | -     |          |
| 033  | 100.0 | -     | -     | -     | 100.0 | -   | 100.0 | -     | 100.0 | 100.0 | -     | -      | 100.0 | -     | 100.0   | _     | -     | _        |
| 034  | 78.5  | 100.0 | -     | -     | 100.0 | 0.0 | 100.0 | 100.0 | 99.8  | 69.8  | -     | 100.0  | 2.2   | -     | 93.3    | -     | -     |          |
| 035  | 68.4  | -     | -     | -     | 100.0 | 0.0 | 100.0 | 100.0 | 100.0 | 53.3  | -     | 63.4   | 0.0   | -     | 0.0     | -     | -     | -        |
| 036  | 81.7  | -     | -     | -     | -     | 0.0 | 100.0 | 100.0 | 98.4  | -     | -     | 64.1   | 0.0   | -     | 100.0   | -     | -     | _        |
| 037  | 88.5  | -     | -     | -     | -     | 0.0 | 100.0 | 100.0 | 98.6  | -     | 100.0 | 100.0  | 0.1   | 99.5  | -       | 100.0 | -     | -        |
| 038  | 99.5  | 100.0 | -     | -     | -     | -   | 100.0 | 100.0 | 100.0 | -     | 100.0 | 100.0  | 83.3  | 100.0 | -       | -     | -     |          |
| 039  | 90.4  | -     | -     | -     | -     | -   | 99.3  | 100.0 | 94.5  | 100.0 | 100.0 | 99.5   | 2.3   | 100.0 | 100.0   | 100.0 | -     | -        |
| 040  | 19.5  | -     | -     | -     | -     | -   | -     | -     | 95.4  | -     | -     | 100.0  | 0.0   | 98.1  | -       | _     | -     | _        |
| 041  | 36.4  | -     | -     | -     | -     | 0.0 | 100.0 | -     | 94.9  | -     | 100.0 | 100.0  | 0.0   | -     | 100.0   | -     | -     | _        |
| 042  | 19.7  | -     | -     | -     | -     | -   | 100.0 | -     | 89.5  | -     | -     | 77.8   | 0.0   | -     | -       | _     | -     | -        |
| 043  | -     | -     | -     | -     | -     | -   | -     | -     | -     | -     | -     | 100.0  | -     | -     | -       | -     | -     | -        |
| 045  | 9.4   | -     | -     | -     | -     | -   | -     | -     | 78.4  | 0.0   | -     | 60.0   | 0.0   | -     | 50.0    | -     | -     | -        |
| 046  | 0.0   | -     | -     | -     | -     | -   | -     | -     | 84.9  | 0.0   | -     | -      | -     | -     | -       | -     | _     | -        |
| 047  | 62.5  | -     | -     | -     | -     | -   | -     | -     | 73.4  | -     | -     | 92.3   | -     | -     | -       | -     | -     | -        |
| 504  | 0.0   | -     | -     | -     | -     | -   | -     | -     | -     | 0.0   | -     | -      | 0.0   | -     | 0.0     | -     | _     | -        |
| 801  | 0.0   | _     | -     | -     | -     | 0.0 | -     | -     | _     | _     | -     | -      | 0.0   | -     | -       | -     | -     | -        |
| unk  | 95.2  | _     | -     | -     | 100.0 | -   | 100.0 | 100.0 | 81.4  | 11.1  | -     | 69.2   | 2.4   | 97.0  | 88.0    | 100.0 | 100.0 | _        |
| All  | 62.8  | 100.0 | 15.0  | 8.7   | 95.9  | 0.0 | 99.9  | 99.7  | 91.2  | 22.0  | 99.4  | 67.7   | 0.2   | 92.9  | 87.6    | 97.7  | 100.0 | 100.0    |

### Table 5.12 continued

| Area | RBT | RBY   | RCO   | RSK   | SCH   | SCI | SKI   | SNA   | SPD   | SPE   | SPO   | SQU   | STA   | SWA   | TAR   | TRE   | WAR   | All   |
|------|-----|-------|-------|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 002  | -   | -     | -     | -     | 66.7  | -   | -     | 89.8  | -     | -     | -     | 100.0 | -     | 0.0   | 83.4  | 90.3  | -     | 86.8  |
| 003  | -   | -     | -     | _     | 100.0 | -   | 50.0  | 88.2  | -     | -     | -     | -     | -     | -     | 75.1  | 41.4  | -     | 76.3  |
| 004  | _   | -     | -     | -     | 0.0   | 0.0 | -     | 20.0  | -     | -     | -     | -     | -     | -     | 11.0  | 7.7   | -     | 12.7  |
| 005  | -   | -     | -     | -     | -     | 0.0 | -     | 52.7  | -     | -     | -     | -     | -     | -     | 73.2  | 2.9   | -     | 45.6  |
| 006  | -   | -     | -     | -     | -     | -   | -     | 40.7  | -     | -     | -     | -     | -     | -     | 66.7  | 25.7  | -     | 41.0  |
| 007  | -   | -     | -     | -     | -     | -   | -     | 100.0 | -     | -     | -     | -     | -     | -     | -     | 0.0   | -     | 80.0  |
| 008  | _   | 0.0   | _     | -     | 0.0   | 0.0 | 0.0   | 41.8  | -     | -     | -     | -     | -     | -     | 18.3  | 14.4  | -     | 36.9  |
| 009  | -   | 83.3  | -     | -     | -     | 0.0 | 0.0   | 30.5  | -     | -     | -     | -     | -     | 0.0   | 33.2  | 41.4  | -     | 37.1  |
| 010  | _   | 33.3  | _     | -     | -     | -   | 0.0   | 32.5  | -     | -     | -     | _     | -     | 50.0  | 45.1  | 36.2  | 100.0 | 41.4  |
| 011  | -   | -     | 100.0 | -     | 100.0 | -   | 20.7  | 70.7  | -     | -     | -     | -     | -     | 93.3  | 66.9  | 90.0  | -     | 68.4  |
| 012  | _   | 0.0   | _     | -     | -     | 0.0 | 40.0  | 70.7  | -     | -     | -     | _     | -     | 55.9  | 72.9  | 96.2  | 100.0 | 75.5  |
| 013  | -   | -     | 100.0 | -     | -     | 0.0 | 100.0 | 71.2  | -     | -     | 100.0 | -     | -     | -     | 93.2  | 97.6  | 90.9  | 95.2  |
| 014  | _   | 0.0   | 98.7  | -     | 100.0 | 0.0 | 67.6  | 52.4  | -     | -     | -     | -     | -     | 50.0  | 61.6  | 96.3  | 42.1  | 80.4  |
| 015  | -   | 0.0   | 100.0 | -     | -     | 0.0 | 66.7  | -     | -     | -     | -     | -     | -     | 95.0  | 56.5  | 50.0  | 42.9  | 56.5  |
| 016  | _   | -     | 95.2  | _     | 100.0 | -   | 100.0 | 100.0 | -     | -     | -     | -     | 100.0 | 100.0 | 99.2  | 100.0 | 98.5  | 73.1  |
| 017  | _   | -     | 99.6  | -     | 100.0 | -   | -     | 99.3  | 100.0 | -     | 100.0 | -     | 87.5  | 100.0 | 98.7  | 100.0 | 98.8  | 96.2  |
| 018  | -   | -     | 100.0 | -     | 100.0 | -   | -     | -     | -     | 100.0 | 100.0 | -     | 98.3  | 80.0  | 97.4  | -     | 96.0  | 92.6  |
| 020  | _   | -     | 99.8  | 100.0 | 100.0 | -   | -     | -     | 76.0  | 100.0 | 100.0 | 50.0  | 100.0 | 42.4  | 99.0  | -     | 99.9  | 96.6  |
| 022  | 0.0 | -     | 95.0  | 100.0 | 100.0 | 0.0 | -     | -     | 94.7  | 97.6  | 100.0 | 53.5  | 100.0 | 37.7  | 99.2  | -     | 100.0 | 87.4  |
| 024  | _   | -     | 95.8  | 100.0 | -     | -   | -     | -     | 100.0 | 97.3  | 100.0 | 75.7  | 100.0 | 50.0  | 99.2  | -     | 87.2  | 96.5  |
| 025  | -   | -     | 93.3  | -     | 100.0 | -   | -     | -     | 100.0 | -     | 100.0 | 0.0   | 98.4  | 0.0   | 91.7  | -     | 30.4  | 92.1  |
| 026  | -   | -     | 100.0 | -     | 100.0 | -   | -     | -     | 100.0 | 100.0 | -     | 0.0   | 100.0 | 0.0   | 100.0 | -     | 30.0  | 96.2  |
| 027  | 0.0 | -     | -     | -     | -     | -   | -     | -     | 90.0  | -     | -     | 0.0   | 100.0 | 0.0   | 100.0 | -     | 3.3   | 4.3   |
| 028  | 0.0 | -     | -     | -     | -     | -   | -     | -     | -     | -     | -     | 0.0   | 100.0 | 0.0   | -     | -     | -     | 0.1   |
| 029  | 0.0 | -     | 0.0   | -     | -     | -   | -     | -     | -     | -     | -     | 0.0   | 99.5  | 0.0   | 100.0 | -     | 0.0   | 61.7  |
| 030  | -   | -     | 88.9  | -     | 100.0 | -   | -     | -     | 100.0 | -     | 100.0 | -     | 99.8  | -     | 84.4  | -     | 81.8  | 99.7  |
| 031  | -   | -     | -     | -     | -     | -   | -     | -     | -     | -     | -     | -     | 100.0 | -     | -     | -     | -     | 100.0 |
| 032  | -   | -     | 100.0 | -     | -     | -   | -     | -     | -     | -     | -     | -     | 100.0 | -     | 100.0 | -     | 100.0 | 100.0 |
| 033  | -   | 100.0 | 100.0 | -     | 100.0 | -   | 100.0 | -     | -     | -     | 100.0 | -     | 98.8  | 100.0 | 99.9  | 100.0 | 100.0 | 99.9  |
| 034  | 0.0 | -     | 100.0 | -     | 100.0 | -   | 100.0 | -     | -     | -     | 100.0 | -     | 96.2  | 75.0  | 96.4  | -     | 90.5  | 96.5  |
| 035  | 0.0 | -     | 99.5  | -     | 100.0 | -   | -     | 100.0 | -     | -     | 100.0 | -     | 98.8  | 0.0   | 83.7  | 100.0 | 100.0 | 92.3  |
| 036  | 0.0 | -     | 100.0 | -     | 100.0 | -   | -     | 100.0 | -     | -     | -     | -     | -     | 0.0   | 83.6  | 100.0 | 75.8  | 71.4  |
| 037  | -   | -     | 96.9  | -     | 100.0 | -   | -     | 100.0 | -     | -     | 50.0  | -     | -     | 100.0 | 94.6  | 95.1  | 96.8  | 55.8  |
| 038  | _   | -     | 100.0 | 100.0 | 100.0 | -   | -     | 100.0 | -     | -     | 100.0 | -     | -     | 100.0 | 99.5  | 100.0 | 94.2  | 99.9  |
| 039  | -   | -     | 100.0 | -     | 96.3  | -   | -     | 100.0 | -     | -     | 100.0 | -     | -     | -     | 99.5  | 98.9  | 100.0 | 94.3  |
| 040  | -   | -     | -     | -     | 100.0 | -   | -     | 100.0 | -     | -     | -     | -     | -     | -     | 97.6  | 73.6  | -     | 33.8  |
| 041  | -   | -     | 100.0 | -     | 66.7  | -   | -     | 55.4  | -     | -     | 100.0 | -     | -     | -     | 57.6  | 61.0  | 100.0 | 46.0  |
| 042  | -   | -     | -     | -     | 5.0   | -   | -     | 23.7  | -     | -     | -     | -     | -     | 0.0   | 9.8   | 25.7  | -     | 40.4  |
| 043  | -   | -     | -     | -     | -     | -   | -     | -     | -     | -     | -     | -     | -     | -     | -     | _     | -     | 100.0 |
| 045  | _   | -     | _     | -     | 30.0  | -   | _     | 18.2  | -     | -     | -     | -     | -     | 0.0   | 40.5  | 31.1  | _     | 36.0  |
| 046  | -   | -     | -     | -     | 76.9  | -   | -     | 11.5  | -     | -     | -     | -     | -     | -     | 50.1  | 39.7  | -     | 49.7  |
| 047  | -   | -     | -     | -     | 83.3  | -   | 0.0   | 26.9  | -     | -     | -     | -     | -     | 0.0   | 53.9  | 30.4  | -     | 41.2  |
| 504  | 0.0 | -     | _     | -     | _     | _   | _     | -     | -     | -     | -     | 0.0   | -     | 0.0   | -     | _     | 0.0   | 0.0   |
| 801  |     | -     | _     | -     | -     | -   | -     | -     | -     | -     | -     | _     | -     | -     | 80.5  | _     | _     | 32.7  |
| unk  | 0.0 | _     | 100.0 | _     | 100.0 | -   | 100.0 | 48.3  | 100.0 | _     | -     | 0.0   | 100.0 | 0.0   | 65.8  | 59.7  | 100.0 | 62.2  |
| All  | 0.0 | 19.4  | 97.9  | 100.0 | 85.4  | 0.0 | 59.6  | 53.5  | 97.8  | 97.5  | 99.8  | 6.4   | 99.2  | 28.6  | 78.4  | 39.0  | 86.8  | 77.7  |

Table 5.13: Aggregated swept area (km<sup>2</sup>) estimated for effort reported on TCERs and TCEPRs, by Statistical Area and target species (note the data for BNS, BYX, and RBY are not shown separately but are included in the totals). Statistical Areas are shown in Figure 2.3 and target species are defined in Table 3.

| Area | BAR     | BCO   | ELE    | EMA   | FLA     | GSH    | GUR     | HOK    | HPB   | JDO    | JMA     | LEA    | LIN   | MOK    | PAD  | QSC   |
|------|---------|-------|--------|-------|---------|--------|---------|--------|-------|--------|---------|--------|-------|--------|------|-------|
| 002  | 1.2     | _     | _      | _     | 0.5     | _      | 4.9     | _      | _     | _      | _       | _      | _     | _      | _    | _     |
| 003  | 38.7    | _     | _      | -     | _       | -      | 83.4    | _      | _     | 2338.7 | _       | 2.4    | _     | _      | _    | _     |
| 004  | 6.1     | _     | _      | _     | _       | -      | 7.7     | _      | _     | 7.9    | _       | _      | _     | _      | _    | _     |
| 005  | 13.9    | _     | _      | _     | _       | _      | 492.7   | _      | _     | 3152.9 | 1.6     | 25.4   | _     | _      | _    | _     |
| 006  | 2.3     | _     | _      | _     | _       | _      | 124.1   | _      | _     | 547.1  |         | _      | _     | _      | _    | _     |
| 007  |         | _     | _      | _     | _       | _      | 121.1   | _      | _     | 1.3    | _       | _      | _     | _      | _    | _     |
| 008  | 31.4    | _     | _      | _     | _       | _      | 69.6    | _      | _     | 823.2  | _       | 8.9    | 0.3   | _      | _    | _     |
| 009  | 39.0    | _     | _      | _     | 0.8     | _      | 97.6    | 5.2    | _     | 308.6  |         | - 0.7  |       | _      | _    |       |
| 010  | 16.1    | _     | _      | _     | 0.8     | _      | 337.3   | 5.5    | _     | 295.5  |         | _      | 2.0   |        | _    |       |
| 011  | 19.5    |       |        | _     |         |        | 191.4   | 86.3   | _     | 275.5  |         | _      | 4.2   |        | _    |       |
| 012  | 50.9    |       |        |       |         |        | 989.8   | 3.6    | _     |        | 1.4     | _      | т.2   | 2.2    |      |       |
| 012  | 24.5    |       |        |       | 1335.9  |        | 15368.8 | 4.4    | _     | 88.2   | 1.7     |        |       | 19.9   |      |       |
| 013  | 76.3    |       | _      | _     | 2815.1  | _      | 4609.1  | 34.0   | _     | 80.2   |         |        | 6.9   | 98.8   | _    |       |
|      |         |       |        | _     |         | _      |         | 22.6   |       |        |         |        |       |        | _    |       |
| 015  | 15.5    |       | _      | _     | 2.5     | -      | 612.3   |        | -     | 12.0   | -       | -      | 8.3   | 42.1   | -    |       |
| 016  | 30.5    | _     | -      | -     | 28.3    | 6.8    | 252.9   | 227.9  | -     | 13.8   | 0.2     | - 40.7 | 22.9  | 95.7   | -    |       |
| 017  | 206.1   | -     | 2.6    | -     | 1292.5  | 2126.6 | 498.3   | 85.4   | 27.7  | 59.6   | 3.9     | 40.7   | 28.3  | 56.9   | -    |       |
| 018  | 196.8   | -     | 37.6   | -     | 5.9     | 84.7   | 17.3    | 59.2   | -     | 3.4    | 0.2     |        | 4.3   | 2.9    | -    |       |
| 020  | 1016.4  | 0.2   | 296.7  | -     | 5276.4  | 5.4    | 240.9   | 81.1   | 33.2  | -      | 43.7    | -      | 68.9  | -      | -    |       |
| 022  | 6513.5  | -     | 3434.2 | -     | 7340.7  | 167.9  | 1493.5  | 75.2   | 106.7 | -      | 452.3   | 21.9   | 33.8  | -      | -    |       |
| 024  | 862.2   | 1.5   | 292.4  | -     | 5344.3  | 4.9    | 61.5    | -      | 6.5   | -      | -       | 1.5    | 38.8  | 1.8    | 10.1 | 4.3   |
| 025  | 454.3   | 5.5   | 94.4   | -     | 3752.1  | -      | 140.2   | -      | -     | -      | 3.6     | 23.1   | 3.9   | -      | -    | -     |
| 026  | 128.9   | 13.7  | 119.3  | -     | 9543.2  | 1.1    | 17.7    | 13.8   | 5.0   | -      | 25.5    | _      | 19.4  | 0.8    | 18.1 | 108.7 |
| 027  | 677.8   | -     | -      | -     | 14.6    | -      | -       | 26.4   | -     | -      | 27.0    | _      | 51.4  | -      | -    | _     |
| 028  | 527.6   | -     | -      | -     | 1.7     | -      | -       | 96.0   | -     | -      | 615.2   | _      | 41.0  | -      | -    | _     |
| 029  | 459.8   | -     | -      | -     | 6.8     | -      | -       | -      | -     | -      | 38.0    | -      | 0.0   | -      | -    | -     |
| 030  | 21.9    | -     | 53.8   | -     | 4619.1  | 4.0    | 149.5   | -      | -     | -      | -       | 7.0    | 29.7  | _      | -    | _     |
| 031  | -       | -     | -      | -     | -       | -      | -       | -      | -     | -      | -       | _      | -     | _      | -    | -     |
| 032  | 29.5    | _     | -      | -     | 4.0     | -      | 4.3     | _      | _     | _      | _       | _      | 3.2   | _      | -    | _     |
| 033  | 942.0   | -     | 26.7   | -     | 2863.6  | -      | 315.7   | 6.9    | -     | _      | 6.9     | _      | 58.4  | _      | -    | _     |
| 034  | 1079.6  | 1.6   | 16.6   | -     | 13629.8 | 2.9    | 925.9   | 41.7   | -     | 1.4    | 40.5    | _      | 25.7  | -      | -    | _     |
| 035  | 719.7   | _     | 30.1   | 19.9  | 6015.2  | 13.1   | 608.2   | 28.5   | _     | 74.0   | 289.4   | _      | 2.4   | _      | -    | _     |
| 036  | 760.7   | _     | _      | 5.2   | 83.4    | 17.3   | 169.1   | -      | _     | 107.1  | 1036.7  | _      | 1.4   | _      | -    | _     |
| 037  | 1061.8  | _     | _      | 4.1   | 265.8   | 154.2  | 585.7   | _      | 3.8   | 69.7   | 6071.3  | 316.6  | _     | 2.4    | _    | _     |
| 038  | 1363.8  | 2.0   | _      | _     | 16488.5 | 36.4   | 1009.3  | _      | 1.3   | 78.1   | 7.4     | 394.0  | _     | _      | _    | _     |
| 039  | 163.1   | _     | _      | -     | 641.9   | 18.0   | 965.6   | -      | 3.7   | 825.3  | 403.2   | 69.5   | 1.6   | 161.9  | _    | _     |
| 040  | 87.1    | _     | _      | _     | _       | _      | 744.5   | _      | _     | 97.5   | 5295.3  | 176.2  | _     | _      | _    | _     |
| 041  | 138.8   | _     | _      | 75.3  | 28.5    | -      | 2733.5  | _      | 1.1   | 413.4  | 8017.0  | _      | _     | _      | _    | _     |
| 042  | 107.4   | _     | _      | _     | 2.2     | _      | 1431.0  | _      | _     | 20.5   | 1388.3  | _      | _     | _      | _    |       |
| 043  | _       | _     | _      | _     |         | _      | _       | _      | _     | 0.3    | _       | _      | _     | _      | _    | _     |
| 045  | 86.6    | _     | _      | _     | _       | _      | 824.6   | 2.2    | _     | 6.7    | 33.6    | _      | 3.4   | _      | _    | _     |
| 046  | 3.8     | _     | _      | _     | _       | _      | 517.4   | 0.0    | _     | -      |         | _      | 5.1   | _      | _    |       |
| 047  | 74.9    |       |        | _     | _       |        | 439.4   | - 0.0  | _     | 19.3   |         |        |       |        |      |       |
| 504  | 2.4     |       | _      | _     | _       | _      | - 439.4 | 14.7   | _     | 19.5   | 3.9     |        | 60.3  |        |      |       |
| 801  | 0.7     |       | _      | 29.1  | _       | _      | _       | - 14.7 | _     | _      | 456.4   |        | 00.5  |        | _    |       |
|      | 65.6    | - 0.0 | 0.8    | 0.0   | 240.0   | 13.4   | 155.1   | 47.9   | 0.0   | 65.6   | 65.3    | 38.7   | 20.7  | - 11.2 | 6.3  | 0.0   |
| unk  |         |       |        |       |         |        |         | 968.6  |       |        |         |        |       |        |      |       |
| All  | 18118.6 | 24.5  | 4405.2 | 133.0 | 81644.1 | 2656.6 | 37291.5 | 908.0  | 189.0 | 9499.3 | 24327.7 | 1120.1 | 341.2 | 496.6  | 34.5 | 112.9 |

### Table 5.13 continued

| Area | RBT  | RCO     | RSK   | SCH   | SCI  | SKI   | SNA     | SPD    | SPE   | SPO   | SQU     | STA    | SWA    | TAR     | TRE     | WAR    | All      |
|------|------|---------|-------|-------|------|-------|---------|--------|-------|-------|---------|--------|--------|---------|---------|--------|----------|
| 002  | -    | -       | -     | 5.1   | -    | -     | 763.8   | -      | -     | -     | 1.2     | -      | 5.3    | 1326.2  | 412.8   | -      | 2521.0   |
| 003  | -    | -       | -     | 5.1   | -    | 3.2   | 1976.4  | -      | -     | -     | -       | -      | -      | 1309.1  | 435.5   | -      | 6192.5   |
| 004  | -    | -       | -     | 2.7   | 0.6  | -     | 27.8    | -      | -     | -     | _       | -      | -      | 722.6   | 14.1    | _      | 789.4    |
| 005  | -    | -       | -     | -     | 5.9  | -     | 2910.6  | -      | -     | -     | _       | _      | -      | 74.3    | 375.0   | _      | 7052.2   |
| 006  | -    | -       | -     | -     | _    | -     | 2462.8  | -      | -     | -     | _       | _      | -      | 16.2    | 27.2    | _      | 3179.7   |
| 007  | -    | _       | -     | _     | _    | -     | 2.1     | _      | _     | _     | _       | _      | -      | _       | 6.9     | _      | 12.0     |
| 008  | -    | -       | -     | 1.9   | 33.9 | 19.5  | 1501.7  | -      | -     | _     | _       | _      | -      | 1772.5  | 666.4   | _      | 4929.8   |
| 009  | -    | -       | -     | _     | 13.9 | 1.9   | 1543.2  | -      | -     | _     | _       | _      | 1.8    | 2223.1  | 2716.6  | _      | 6956.6   |
| 010  | -    | -       | -     | -     | -    | 3.3   | 1902.3  | -      | -     | -     | _       | _      | 2.6    | 3399.8  | 1408.2  | 0.7    | 7377.0   |
| 011  | -    | 5.8     | -     | 0.8   | -    | 20.6  | 178.2   | -      | -     | -     | _       | -      | 12.5   | 4687.6  | 10.8    | _      | 5217.6   |
| 012  | -    | -       | -     | -     | 0.4  | 16.3  | 316.4   | -      | _     | -     | _       | _      | 143.8  | 6611.4  | 32.0    | 5.6    | 8181.9   |
| 013  | -    | 90.3    | -     | _     | 2.6  | 12.3  | 408.3   | _      | _     | 1.4   | _       | _      | -      | 11355.1 | 154.9   | 213.5  | 29091.9  |
| 014  | _    | 79.9    | _     | 3.5   | 20.1 | 285.4 | 102.7   | _      | _     | _     | _       | _      | 32.0   | 7300.6  | 42.1    | 108.9  | 15710.9  |
| 015  | _    | 0.5     | _     | _     | 21.1 | 3.7   | _       | _      | _     | _     | _       | _      | 16.3   | 1809.9  | 4.4     | 21.0   | 2595.2   |
| 016  | _    | 19.5    | _     | 25.2  | _    | 2.4   | 1.1     | _      | _     | _     | _       | 0.8    | 4.0    | 1120.0  | 11.0    | 455.3  | 2319.2   |
| 017  | -    | 998.0   | -     | 9.5   | _    | _     | 119.3   | 1.5    | _     | 2.8   | _       | 10.2   | 5.9    | 1151.3  | 33.4    | 112.3  | 6872.7   |
| 018  | -    | 284.9   | _     | 0.9   | _    | _     | _       | _      | 1.9   | 5.6   | _       | 312.6  | 4.7    | 1912.7  | _       | 65.5   | 3001.2   |
| 020  | _    | 4335.8  | 25.5  | 24.0  | _    | _     | _       | 42.0   | 10.0  | 57.7  | 53.9    | 395.2  | 271.8  | 4862.5  | _       | 1727.8 | 18868.9  |
| 022  | -    | 5895.3  | 184.7 | 56.3  | 0.6  | _     | _       | 624.8  | 139.7 | 437.5 | 919.0   | 476.4  | 1178.8 | 4383.5  | _       | 168.7  | 34105.0  |
| 024  | _    | 251.2   | 3.6   | _     | _    | _     | _       | 33.4   | 259.7 | 20.4  | 345.0   | 16.8   | 6.1    | 696.0   | _       | 45.6   | 8307.4   |
| 025  | _    | 13.4    | -     | 0.6   | _    | _     | _       | 680.5  |       | 7.7   | 5.1     | 189.7  | 2.0    | 39.4    | _       | 651.6  | 6067.1   |
| 026  | _    | 41.9    | _     | 2.9   | _    | _     | _       | 15.4   | 2.2   | _     | 1047.1  | 15.9   | 222.3  | 280.3   | _       | 82.3   | 11725.5  |
| 027  | 12.7 | -       | -     |       | _    | _     | _       | 16.0   |       | -     | 2521.9  | 20.6   | 653.7  | 3.3     | _       | 386.7  | 4412.1   |
| 028  | 55.6 | -       | -     | _     | _    | _     | _       | _      | _     | _     | 19309.1 | 2.4    | 190.2  | -       | _       | _      | 20839.0  |
| 029  | 2.4  | 6.0     | -     | _     | _    | _     | _       | _      | _     | _     | 43.8    | 408.9  | 17.9   | 0.8     | _       | 3.0    | 987.4    |
| 030  | _    | 25.2    | _     | 0.5   | _    | _     | _       | 164.1  | _     | 38.1  | _       | 5073.2 | -      | 69.5    | _       | 17.7   | 10273.4  |
| 031  | _    | _       | _     | _     | _    | _     | _       | _      | _     | _     | _       | 2.2    | _      | _       | _       | _      | 2.2      |
| 032  | _    | 1.6     | _     | _     | _    | _     | _       | _      | _     | _     | _       | 4.5    | _      | 537.3   | _       | 4.2    | 588.6    |
| 033  | _    | 1037.6  | _     | 2.5   | _    | 3.4   | _       | _      | _     | 16.2  | _       | 503.3  | 1.2    | 3251.5  | 1.4     | 812.0  | 9850.5   |
| 034  | 4.3  | 1795.5  | -     | 31.9  | _    | 8.7   | _       | _      | _     | 51.7  | _       | 1561.4 | 11.3   | 3743.3  | _       | 1104.0 | 24077.7  |
| 035  | 2.6  | 1035.7  | -     | 6.7   | _    | _     | 18.0    | _      | _     | 5.5   | _       | 132.2  | 202.4  | 1497.6  | 1.7     | 7.9    | 10710.9  |
| 036  | 6.3  | 19.7    | -     | 38.3  | _    | _     | 48.7    | _      | _     | -     | _       | _      | 1.3    | 3021.3  | 33.2    | 51.7   | 5401.4   |
| 037  | -    | 39.9    | _     | 34.8  | _    | _     | 73.8    | _      | _     | 2.6   | _       | _      | 1.1    | 1475.3  | 118.4   | 658.6  | 10939.8  |
| 038  | -    | 1092.2  | 2.1   | 14.9  | _    | _     | 1796.3  | _      | _     | 1.3   | _       | _      | 1.3    | 243.0   | 52.7    | 660.2  | 23244.8  |
| 039  | -    | 36.2    |       | 173.4 | _    | _     | 376.3   | _      | _     | 15.7  | _       | _      | -      | 1826.5  | 265.0   | 34.0   | 5980.9   |
| 040  | -    | _       | _     | 29.5  | _    | _     | 14.9    | _      | _     | -     | _       | _      | _      | 338.4   | 410.5   |        | 7193.9   |
| 041  | -    | 1.8     | -     | 4.6   | _    | _     | 248.1   | _      | _     | 9.9   | _       | _      | -      | 993.8   | 1555.2  | 48.0   | 14269.0  |
| 042  | -    | -       | -     | 47.7  | _    | _     | 854.6   | _      | _     | -     | _       | _      | 4.9    | 259.9   | 2180.9  | -      | 6297.4   |
| 043  | -    | -       | _     | _     | _    | _     | -       | _      | _     | _     | _       | _      | -      |         |         | _      | 0.3      |
| 045  | _    | _       | _     | 80.9  | _    | _     | 986.1   | _      | _     | _     | _       | _      | 3.4    | 1099.9  | 2917.3  | _      | 6044.6   |
| 046  | _    | _       | _     | 103.5 | _    | _     | 86.5    | _      | _     | _     | _       | _      |        | 860.5   | 2025.0  | _      | 3596.7   |
| 047  | _    | _       | _     | 32.7  | _    | 2.3   | 395.6   | _      | _     | _     | _       | _      | 3.3    | 2326.5  | 3061.2  | _      | 6355.1   |
| 504  | 4.7  | _       | _     |       | _    |       |         | _      | _     | _     | 3820.5  | _      | 339.8  |         |         | _      | 4246.4   |
| 801  | -    | _       | _     | _     | _    | _     | _       | _      | _     | _     |         | _      | -      | 480.7   | _       | _      | 966.9    |
| unk  | 2.0  | 19.0    | 0.0   | 23.4  | 0.0  | 0.4   | 259.2   | 2.1    | 0.0   | 0.0   | 165.4   | 3.1    | 10.7   | 323.3   | 73.0    | 16.9   | 1629.2   |
| All  |      | 17127.0 |       | 763.7 | 99.2 | 383.4 | 19374.6 | 1579.8 | 413.4 |       | 28232.2 | 9129.3 | 3352.4 | 79406.4 | 19046.6 |        | 368983.0 |

# Table 5.14: Percentage of the total aggregated swept area (km<sup>2</sup>) given in Table 5.13 that was reported on TCERs, by Statistical Area and target species. Statistical Areas are shown in Figure 2.3 and target species are defined in Table 3.

| Area       | BAR          | BCO     | BNS   | BYX   | ELE    | EMA   | FLA   | GSH     | GUR   | HOK     | HPB     | JDO          | JMA     | LEA       | LIN    | MOK   | PAD     | QSC   |
|------------|--------------|---------|-------|-------|--------|-------|-------|---------|-------|---------|---------|--------------|---------|-----------|--------|-------|---------|-------|
| 002        | 0.0          | -       | -     | -     | -      | -     | 100.0 | -       | 100.0 | -       | -       | -            | -       | -         | -      | -     | _       | _     |
| 003        | 5.2          | -       | -     | -     | -      | -     | -     | -       | 39.2  | -       | -       | 80.5         | -       | 37.5      | -      | -     | _       | _     |
| 004        | 34.4         | -       | _     | _     | _      | _     | _     | -       | 19.5  | _       | -       | 100.0        | _       | _         | -      | _     | _       | _     |
| 005        | 7.2          | -       | _     | _     | _      | _     | _     | _       | 16.1  | _       | _       | 61.0         | 100.0   | 0.0       | _      | _     | _       | _     |
| 006        | 0.0          | -       | _     | _     | _      | _     | _     | -       | 8.4   | _       | _       | 54.6         | _       | _         | _      | _     | _       | _     |
| 007        | _            | _       | _     | _     | _      | _     | _     | _       | 0.0   | _       | _       | 100.0        | _       | _         | _      | _     | _       | _     |
| 008        | 0.0          | -       | _     | _     | -      | -     | -     | -       | 66.9  | -       | -       | 76.3         | -       | 0.0       | 100.0  | -     | _       | _     |
| 009        | 1.5          | -       | _     | _     | _      | _     | 100.0 | _       | 96.6  | 61.5    | _       | 59.5         | _       | _         | _      | _     | _       | _     |
| 010        | 40.4         | _       | _     | _     | _      | _     | 100.0 | _       | 81.9  | 83.3    | _       | 75.1         | _       | _         | 100.0  | _     | _       | _     |
| 011        | 92.3         | _       | _     | _     | _      | _     | -     | _       | 98.0  | 92.0    | _       | -            | _       | _         | 100.0  | _     | _       | _     |
| 012        | 82.3         | _       | _     | 0.0   | _      | _     | _     | _       | 98.1  | 69.4    | _       | _            | 0.0     | _         | -      | 100.0 | _       | _     |
| 013        | 100.0        | -       | _     | 0.6   | _      | _     | 100.0 | -       | 95.3  | 100.0   | -       | 70.3         | -       | _         | _      | 100.0 | _       | _     |
| 014        | 99.0         | _       | 0.0   | 0.0   | _      | _     | 100.0 | _       | 82.6  | 32.1    | _       | 76.4         | _       | _         | 71.0   | 86.3  | _       | _     |
| 015        | 100.0        | -       | 6.7   | 0.0   | -      | _     | 100.0 | -       | 55.4  | 33.7    | -       | -            | -       | -         | 28.9   | 90.3  | _       | _     |
| 016        | 85.6         | _       | -     | 0.0   | _      | _     | 100.0 | 100.0   | 98.5  | 2.2     | _       | 100.0        | 66.7    | _         | 100.0  | 99.8  | _       | _     |
| 017        | 97.4         | _       | _     | -     | 100.0  | _     | 100.0 | 99.9    | 100.0 | 30.3    | 100.0   | 100.0        | 25.5    | 100.0     | 100.0  | 100.0 | _       |       |
| 017        | 95.5         | -       | -     | 100.0 | 100.0  | _     | 100.0 | 100.0   | 100.0 | 19.8    | -       | 100.0        | 0.0     | -         | 100.0  | 100.0 | _       | _     |
| 020        | 42.8         | 100.0   |       | -     | 98.7   | _     | 100.0 | 100.0   | 99.3  | 21.6    | 100.0   |              | 0.0     | _         | 100.0  | 100.0 | _       |       |
| 020        | 39.2         | - 100.0 | _     | _     | 94.4   | _     | 100.0 | 100.0   | 99.8  | 0.0     | 98.3    | _            | 0.0     | 100.0     | 100.0  | _     | _       |       |
| 022        | 68.9         | 100.0   | _     | _     | 100.0  | _     | 100.0 | 87.8    | 96.9  | - 0.0   | 100.0   | _            | - 0.0   | 100.0     | 100.0  | 100.0 | 100.0   | 100.0 |
| 024        | 17.4         | 100.0   | _     | _     | 96.8   | _     | 100.0 | - 07.0  | 100.0 | _       | 100.0   | _            | 0.0     | 75.8      | 0.0    | 100.0 | 100.0   | 100.0 |
| 023        | 5.6          | 100.0   | _     | _     | 83.4   | _     | 100.0 | 0.0     | 100.0 | 0.0     | 100.0   | _            | 0.0     |           | 46.9   | 100.0 | 100.0   | 100.0 |
| 020        | 0.5          | - 100.0 |       | _     | - 05.4 | _     | 100.0 | - 0.0   | 100.0 | 0.0     | - 100.0 | _            | 0.0     | _         | 0.0    | 100.0 | - 100.0 | 100.0 |
| 027        | 0.0          | _       | _     | _     | _      | _     | 100.0 | _       | _     | 0.0     | _       | _            | 0.0     | _         | 0.0    | _     | _       |       |
| 028        | 0.0          | _       | _     | _     | _      | _     | 100.0 |         | _     | 0.0     | _       | _            | 0.0     | _         | 0.0    |       |         |       |
| 029        | 100.0        | _       | _     | _     | 100.0  |       | 100.0 | 0.0     | 100.0 | 0.0     | _       | _            | - 0.0   | 85.7      | - 89.6 | _     | _       |       |
| 030        | 100.0        | _       | -     | _     | 100.0  | -     | 100.0 | 0.0     | 100.0 | _       | _       | -            | _       | 63.7      | 69.0   | _     | _       |       |
| 031        | 100.0        | _       | 100.0 | _     | _      | _     | 100.0 |         | 100.0 |         |         | _            | _       |           | 100.0  | _     | _       |       |
| 032        | 100.0        |         |       | -     | 100.0  | _     | 100.0 | -       | 100.0 | - 100.0 | -       | _            | - 100.0 | -         | 100.0  | -     | -       |       |
| 033        | 88.2         | 100.0   | -     |       | 100.0  | - 0.0 |       | - 100.0 | 99.8  | 100.0   | -       | 100.0        |         | -         | 97.7   | -     | _       |       |
| 034        | 44.6         | 100.0   | -     | -     |        | 0.0   | 100.0 | 100.0   |       |         | -       |              | 1.7     | -         | 97.7   | -     | -       |       |
| 035        |              |         | -     |       | 100.0  | 0.0   | 100.0 |         | 100.0 | 3.0     | -       | 53.1<br>52.4 | 0.0     | -         |        | _     | -       |       |
|            | 68.2         | -       | -     | -     | -      |       | 100.0 | 100.0   | 97.9  | -       | -       |              |         | -<br>99.7 | 100.0  | -     | -       |       |
| 037<br>038 | 74.1<br>99.5 | - 100.0 | -     | -     | -      | 0.0   | 100.0 | 100.0   | 98.1  | -       | 100.0   | 100.0        | 0.0     | 99.7      | -      | 100.0 | -       |       |
| 038        |              | 100.0   | -     | -     | -      | -     | 100.0 | 100.0   | 100.0 | -       | _       |              | 32.0    |           | -      | -     | _       |       |
|            | 85.2         | -       | -     | -     | -      | -     | 99.1  | 100.0   | 91.5  | 100.0   | 100.0   | 99.5         | 1.0     | 100.0     | 100.0  | 100.0 | -       | _     |
| 040        | 9.7          | -       | -     | -     | -      | -     | -     | -       | 94.4  | -       | -       | 100.0        | 0.0     | 98.5      | -      | -     | -       |       |
| 041        | 19.4         | -       | -     | -     | -      | 0.0   | 100.0 | -       | 91.7  | -       | 100.0   | 100.0        | 0.0     | -         | 100.0  | -     | -       |       |
| 042        | 16.2         | -       | -     | -     | -      | -     | 100.0 | -       | 82.5  | -       | -       | 80.5         | 0.0     | -         | -      | -     | -       |       |
| 043        | -            | -       | -     | -     | -      | -     | -     | -       | -     | -       | -       | 100.0        | -       | -         | -      | -     | -       |       |
| 045        | 8.5          | -       | -     | -     | -      | -     | -     | -       | 73.2  | 0.0     | -       | 58.8         | 0.0     | -         | 70.6   | -     | -       | -     |
| 046        | 0.0          | -       | -     | -     | -      | -     | -     | -       | 80.5  | -       | -       | -            | -       | -         | -      | -     | -       | -     |
| 047        | 58.5         | -       | -     | -     | -      | -     | -     | -       | 67.3  | -       | -       | 88.6         | -       | -         | -      | -     | -       | -     |
| 504        | 0.0          | -       | -     | -     | -      | -     | -     | -       | -     | 0.0     | -       | -            | 0.0     | -         | 0.0    | -     | -       | -     |
| 801        | 0.0          | -       | -     | -     | -      | 0.0   | -     | -       | -     | -       | -       | -            | 0.0     | -         | -      | -     | -       |       |
| unk        | 87.8         | -       | -     | -     | 100.0  | -     | 100.0 | 100.0   | 88.6  | 12.1    | -       | 74.8         | 1.5     | 97.4      | 59.9   | 100.0 | 100.0   | -     |
| All        | 50.3         | 100.0   | 7.7   | 0.9   | 95.0   | 0.0   | 100.0 | 99.7    | 90.3  | 18.7    | 99.0    | 73.8         | 0.1     | 95.8      | 64.9   | 96.4  | 100.0   | 100.0 |

### Table 5.14 continued

| Area       | RBT | RBY   | RCO         | RSK     | SCH     | SCI   | SKI   | SNA   | SPD     | SPE   | SPO     | SQU   | STA          | SWA   | TAR           | TRE   | WAR         | All          |
|------------|-----|-------|-------------|---------|---------|-------|-------|-------|---------|-------|---------|-------|--------------|-------|---------------|-------|-------------|--------------|
| 002        | -   | -     | _           | -       | 78.4    | -     | -     | 90.7  | -       | -     | -       | 100.0 | -            | 0.0   | 81.7          | 90.9  | _           | 85.8         |
| 003        | -   | -     | -           | -       | 100.0   | -     | 59.4  | 85.9  | -       | -     | -       | -     | -            | -     | 73.7          | 45.7  | -           | 77.3         |
| 004        | _   | _     | _           | -       | 0.0     | 0.0   | -     | 10.8  | _       | _     | -       | _     | -            | _     | 11.5          | 9.9   | _           | 12.5         |
| 005        | -   | -     | -           | -       | -       | 0.0   | -     | 53.5  | -       | -     | -       | -     | -            | -     | 69.2          | 3.8   | -           | 51.4         |
| 006        | -   | -     | -           | _       | _       | -     | -     | 37.0  | -       | -     | _       | _     | -            | _     | 25.9          | 16.9  | _           | 38.6         |
| 007        | -   | -     | -           | -       | -       | -     | -     | 100.0 | -       | -     | -       | -     | -            | -     | -             | 0.0   | -           | 28.1         |
| 008        | _   | 0.0   | _           | _       | 0.0     | 0.0   | 0.0   | 40.2  | _       | _     | _       | _     | _            | _     | 20.4          | 17.9  | _           | 35.7         |
| 009        | _   | 98.0  | _           | _       | _       | 0.0   | 0.0   | 40.0  | _       | _     | _       | _     | _            | 0.0   | 39.8          | 55.6  | _           | 47.5         |
| 010        | -   | 34.5  | _           | -       | _       | _     | 0.0   | 36.6  | -       | -     | -       | -     | -            | 38.5  | 51.9          | 40.1  | 100.0       | 48.0         |
| 011        | _   | _     | 100.0       | _       | 100.0   | _     | 31.1  | 74.2  | _       | _     | _       | _     | _            | 94.4  | 71.4          | 88.0  | _           | 72.9         |
| 012        | -   | 0.0   | _           | -       | _       | 0.0   | 56.4  | 68.2  | -       | _     | _       | _     | _            | 57.0  | 73.2          | 93.8  | 100.0       | 75.8         |
| 013        | _   | -     | 100.0       | _       | _       | 0.0   | 100.0 | 64.5  | -       | _     | 100.0   | _     | _            | -     | 90.1          | 96.3  | 90.3        | 92.9         |
| 014        | _   | 0.0   | 97.5        | _       | 100.0   | 0.0   | 64.2  | 41.5  | _       | _     | -       | _     | _            | 41.9  | 53.6          | 94.8  | 33.7        | 71.1         |
| 015        | _   | 0.0   | 100.0       | _       | -       | 0.0   | 56.8  | -     | _       | _     | _       | _     | _            | 92.6  | 46.5          | 50.0  | 25.4        | 48.8         |
| 016        | _   | - 0.0 | 94.9        | _       | 100.0   | -     | 100.0 | 100.0 | _       | _     | _       | _     | 100.0        | 100.0 | 99.2          | 100.0 | 98.8        | 85.5         |
| 017        | -   | _     | 99.6        | _       | 100.0   | -     | -     | 99.3  | 100.0   | -     | 100.0   | _     | 80.4         | 100.0 | 98.3          | 100.0 | 99.1        | 97.8         |
| 018        | _   | _     | 100.0       | _       | 100.0   | _     | _     | 77.5  | - 100.0 | 100.0 | 100.0   | _     | 97.9         | 91.5  | 98.0          | -     | 95.1        | 96.3         |
| 020        | _   | _     | 99.8        | 100.0   | 100.0   | _     |       |       | 63.3    | 100.0 | 100.0   | 46.1  | 100.0        | 22.0  | 99.2          |       | 99.9        | 94.2         |
| 020        | 0.0 | _     | 94.4        | 100.0   | 100.0   | 0.0   |       |       | 84.3    | 97.5  | 100.0   | 48.9  | 100.0        | 17.2  | 99.2          | _     | 100.0       | 79.3         |
| 022        |     | _     | 94.4        | 100.0   | - 100.0 | - 0.0 |       |       | 100.0   | 97.5  | 100.0   | 74.6  | 100.0        | 34.4  | 97.9          | _     | 86.2        | 95.1         |
| 024        | -   | _     | 94.5        | - 100.0 | 100.0   | _     | _     | -     | 100.0   | 93.9  | 100.0   | 0.0   | 96.2         | 0.0   | 83.8          | _     | 24.8        | 82.2         |
| 025        |     |       | 100.0       | _       | 100.0   |       |       | -     | 100.0   | 100.0 |         | 0.0   | 100.0        | 0.0   | 100.0         | _     | 14.2        | 86.3         |
|            | -   | -     |             |         | 100.0   | -     | -     | -     |         |       | -       |       |              |       |               |       |             |              |
| 027        | 0.0 | -     | -           | -       | -       | -     | -     | -     | 83.1    | -     | -       | 0.0   | 100.0        | 0.0   | 100.0         | -     | 2.2         | 1.4          |
| 028        |     | -     |             | -       | -       | -     | -     | -     | -       | -     | -       | 0.0   | 100.0        | 0.0   |               | -     | -           | 0.0          |
| 029<br>030 | 0.0 | -     | 0.0<br>69.4 | -       | - 100.0 | -     | -     | -     | - 100.0 | -     | - 100.0 | 0.0   | 99.1<br>99.6 | 0.0   | 100.0<br>76.7 | -     | 0.0<br>79.8 | 34.7<br>99.5 |
|            | -   | -     |             | _       | 100.0   |       | -     | -     | 100.0   | -     | 100.0   |       |              | -     |               | -     |             |              |
| 031        | -   | -     | -           | -       | -       | -     | -     | -     | -       | -     | -       | -     | 100.0        | -     | -             | -     | -           | 100.0        |
| 032        | -   | -     | 100.0       | _       | -       | -     | -     | -     | -       | -     | -       | _     | 100.0        | -     | 100.0         | -     | 100.0       | 100.0        |
| 033        | -   | 100.0 | 100.0       | -       | 100.0   | -     | 100.0 | -     | -       | -     | 100.0   | -     | 98.2         | 100.0 | 99.9          | 100.0 | 100.0       | 99.9         |
| 034        | 0.0 | -     | 100.0       | -       | 100.0   | -     | 100.0 | -     | -       | -     | 100.0   | -     | 95.1         | 25.0  | 95.0          | -     | 88.6        | 96.5         |
| 035        | 0.0 | -     | 99.3        | -       | 100.0   | _     | -     | 100.0 | -       | -     | 100.0   | -     | 98.3         | 0.0   | 79.5          | 100.0 | 100.0       | 85.2         |
| 036        | 0.0 | -     | 100.0       | -       | 100.0   | -     | -     | 100.0 | -       | -     | -       | -     | -            | 0.0   | 79.5          | 100.0 | 66.0        | 56.6         |
| 037        | -   | -     | 94.5        | -       | 100.0   | _     | -     | 100.0 | -       | -     | 15.4    | -     | -            | 100.0 | 92.6          | 93.6  | 95.5        | 32.3         |
| 038        | -   | -     | 100.0       | 100.0   | 100.0   | -     | -     | 100.0 | -       | -     | 100.0   | -     | -            | 100.0 | 97.1          | 100.0 | 93.2        | 99.7         |
| 039        | -   | -     | 100.0       | -       | 96.2    | -     | -     | 100.0 | -       | -     | 100.0   | -     | -            | -     | 99.4          | 98.5  | 100.0       | 87.8         |
| 040        | -   | -     | -           | -       | 100.0   | -     | -     | 100.0 | -       | -     | -       | -     | -            | -     | 97.0          | 71.8  | -           | 16.2         |
| 041        | -   | -     | 100.0       | -       | 52.2    | -     | -     | 52.0  | -       | -     | 100.0   | -     | -            | -     | 55.0          | 58.3  | 100.0       | 23.4         |
| 042        | -   | -     | -           | -       | 3.4     | -     | -     | 21.8  | -       | -     | -       | -     | -            | 0.0   | 8.5           | 24.7  | -           | 25.1         |
| 043        | -   | -     | -           | -       | -       | -     | -     | -     | -       | -     | -       | -     | -            | -     | -             | -     | -           | 100.0        |
| 045        | -   | -     | -           | -       | 22.9    | -     | -     | 15.4  | -       | -     | -       | -     | -            | 0.0   | 35.1          | 29.4  | -           | 32.7         |
| 046        | -   | -     | -           | _       | 66.7    | _     | -     | 9.7   | -       | -     | -       | -     | -            | -     | 45.2          | 33.6  | _           | 43.5         |
| 047        | -   | -     | -           | -       | 84.1    | -     | 0.0   | 19.5  | -       | -     | -       | -     | -            | 0.0   | 47.6          | 27.4  | -           | 37.9         |
| 504        | 0.0 | -     | -           | -       | -       | -     | -     | -     | -       | -     | -       | 0.0   | -            | 0.0   | -             | -     | 0.0         | 0.0          |
| 801        | -   | -     | -           | -       | -       | -     | -     | -     | -       | -     | -       | -     | -            | -     | 77.7          | -     | -           | 21.1         |
| unk        | 0.0 | -     | 100.0       | -       | 100.0   | -     | 100.0 | 51.7  | 100.0   | -     | -       | 0.0   | 100.0        | 0.0   | 69.8          | 70.0  | 100.0       | 61.1         |
| All        | 0.0 | 29.0  | 97.8        | 100.0   | 78.7    | 0.0   | 60.0  | 54.5  | 92.6    | 96.6  | 99.7    | 2.3   | 98.6         | 12.2  | 76.1          | 40.4  | 78.2        | 65.6         |

| Target |       |       |       | ]     | No. of cell | s contacted | No. of tows |
|--------|-------|-------|-------|-------|-------------|-------------|-------------|
| code   | 2008  | 2009  | 2010  | 2011  | 2012        | 2008-12     | 2008-12     |
| BAR    | 3 022 | 2 641 | 2 477 | 2 504 | 2 605       | 4 948       | 11 203      |
| BCO    | 17    | 2     | 27    | 7     | 15          | 60          | 30          |
| BNS    | 32    | 6     | 0     | 7     | 0           | 32          | 18          |
| BYX    | 19    | 11    | 2     | 15    | 4           | 51          | 11          |
| ELE    | 537   | 660   | 636   | 721   | 628         | 1 168       | 3 598       |
| EMA    | 93    | 73    | 3     | 6     | 54          | 175         | 64          |
| FLA    | 2 184 | 2 204 | 2 207 | 2 017 | 2 1 3 1     | 3 298       | 83 284      |
| GSH    | 223   | 327   | 401   | 491   | 264         | 862         | 2716        |
| GUR    | 2 429 | 2 605 | 2 960 | 2 964 | 3 068       | 4 548       | 29 150      |
| HOK    | 254   | 326   | 343   | 280   | 262         | 911         | 1576        |
| HPB    | 105   | 89    | 111   | 120   | 61          | 291         | 165         |
| JDO    | 1 074 | 989   | 1 195 | 1 020 | 958         | 2 061       | 9 060       |
| JMA    | 1 551 | 1 480 | 1 452 | 1 343 | 1 291       | 2 302       | 7 869       |
| LEA    | 159   | 217   | 291   | 330   | 343         | 621         | 852         |
| LIN    | 282   | 243   | 312   | 270   | 179         | 797         | 483         |
| MOK    | 115   | 153   | 101   | 190   | 122         | 378         | 435         |
| PAD    | 24    | 10    | 9     | 14    | 5           | 42          | 118         |
| QSC    | 25    | 13    | 24    | 22    | 32          | 67          | 446         |
| RBT    | 30    | 46    | 42    | 10    | 46          | 143         | 52          |
| RBY    | 12    | 8     | 29    | 10    | 31          | 71          | 28          |
| RCO    | 1 768 | 1 618 | 1 675 | 1 807 | 1 746       | 2 770       | 13 517      |
| RSK    | 12    | 37    | 72    | 107   | 88          | 242         | 171         |
| SCH    | 295   | 390   | 324   | 451   | 380         | 1 229       | 439         |
| SCI    | 54    | 54    | 85    | 91    | 21          | 207         | 87          |
| SKI    | 55    | 89    | 124   | 203   | 103         | 326         | 277         |
| SNA    | 1 901 | 1 902 | 1 807 | 1 792 | 1 831       | 2 906       | 20 014      |
| SPD    | 448   | 484   | 469   | 298   | 186         | 845         | 1 330       |
| SPE    | 50    | 70    | 232   | 197   | 89          | 364         | 363         |
| SPO    | 68    | 160   | 344   | 271   | 423         | 733         | 483         |
| SQU    | 565   | 467   | 605   | 693   | 570         | 1 083       | 9 481       |
| STA    | 819   | 927   | 1 148 | 1 133 | 911         | 1 726       | 7 720       |
| SWA    | 570   | 445   | 414   | 459   | 397         | 1 1 1 9     | 1 044       |
| TAR    | 4 714 | 5 090 | 5 034 | 5 094 | 5 073       | 6 971       | 56 722      |
| TRE    | 1 772 | 2 001 | 1 792 | 1 748 | 1 504       | 2 979       | 14 532      |
| WAR    | 1 234 | 1 089 | 1 090 | 1 007 | 1 045       | 2 251       | 5 495       |
| All    | 8 967 | 9 023 | 9 009 | 8 925 | 8 875       | 10 283      | 282 833     |

Table 5.15: Number of cells with trawl effort, by fishing year, and the number of tows reported on TCERs and TCEPRs for each target species for 2008–12. Target species codes are given in Table 3.

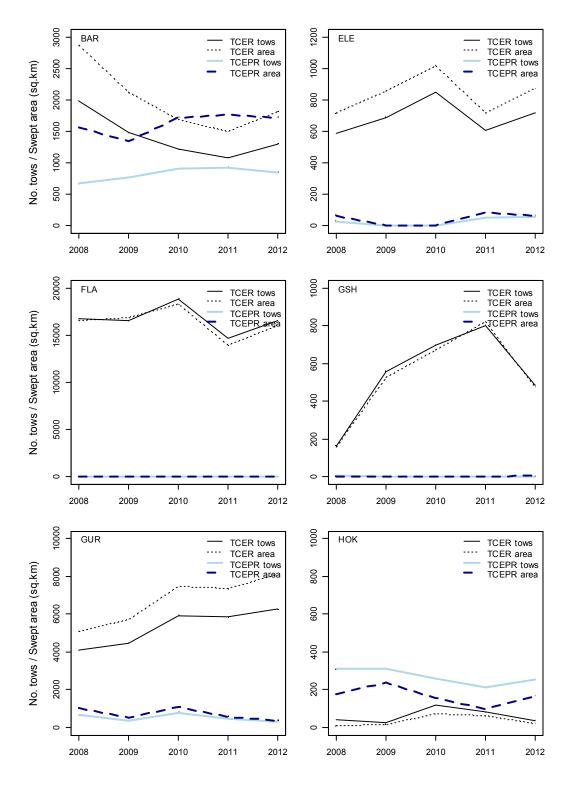



Figure 5.1: Number of tows contacted by trawl gear and the aggregated swept area, for a given target species, by fishing year and form type. Target species codes are defined in Table 3.

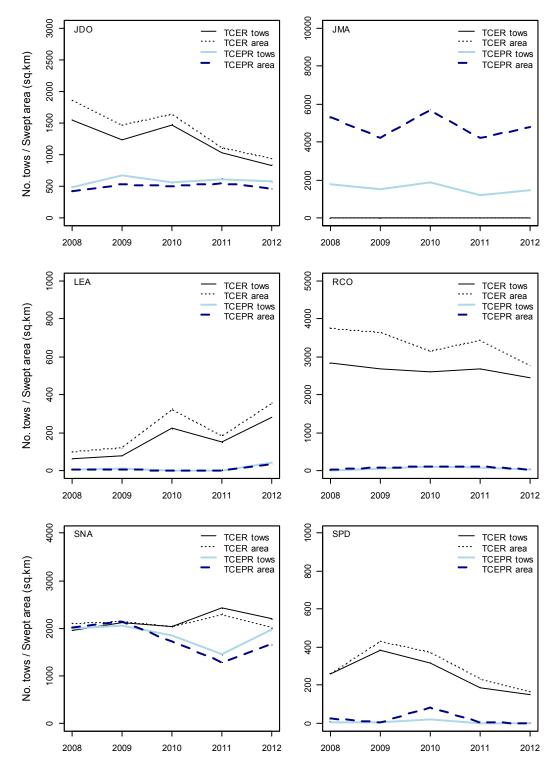



Figure 5.1 continued.

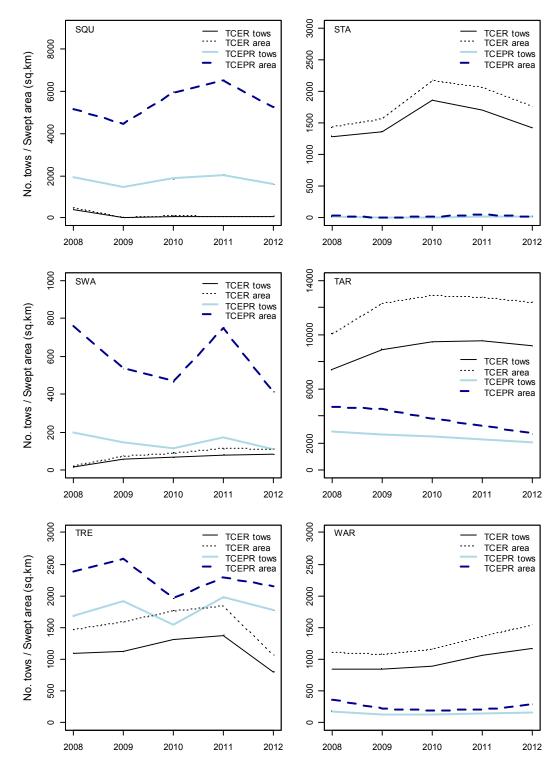



Figure 5.1 continued.

# **APPENDIX 6: TRAWL FOOTPRINT SUMMARY**

Table 6.1: Total cell footprint (km<sup>2</sup>), by fishing year, for each target species. Target species codes are given in Table 3.

| Target code | 2008     | 2009     | 2010     | 2011     | 2012     | 2008-12   |
|-------------|----------|----------|----------|----------|----------|-----------|
| BAR         | 3 892.2  | 3 096.6  | 2 941.2  | 2 852.6  | 3 092.1  | 12 875.0  |
| BCO         | 5.3      | 0.8      | 8.3      | 1.6      | 8.3      | 24.1      |
| BNS         | 14.4     | 1.7      | 0.0      | 1.4      | 0.0      | 17.0      |
| BYX         | 8.7      | 3.3      | 0.3      | 5.6      | 1.2      | 19.2      |
| ELE         | 686.5    | 762.6    | 886.5    | 707.5    | 794.7    | 2 958.5   |
| EMA         | 42.6     | 47.8     | 1.1      | 3.7      | 35.2     | 127.5     |
| FLA         | 8 285.9  | 8 808.9  | 9 144.7  | 7 689.4  | 8 413.2  | 18 485.3  |
| GSH         | 149.9    | 393.0    | 516.6    | 630.2    | 366.8    | 1 342.2   |
| GUR         | 4 736.7  | 4 864.1  | 6 251.8  | 5 906.9  | 6 586.3  | 17 926.8  |
| HOK         | 148.1    | 215.1    | 198.8    | 140.7    | 154.9    | 728.3     |
| HPB         | 38.3     | 32.6     | 45.4     | 45.4     | 24.7     | 181.6     |
| JDO         | 1 857.4  | 1 630.7  | 1 795.5  | 1 384.5  | 1 237.4  | 5 449.3   |
| JMA         | 4 606.6  | 3 722.3  | 4 616.8  | 3 566.5  | 3 993.3  | 13 847.8  |
| LEA         | 94.0     | 120.3    | 301.6    | 181.8    | 359.6    | 963.3     |
| LIN         | 126.5    | 113.0    | 130.7    | 105.9    | 56.3     | 511.8     |
| MOK         | 82.7     | 86.5     | 54.1     | 147.5    | 81.1     | 376.9     |
| PAD         | 16.1     | 3.5      | 2.0      | 5.5      | 3.9      | 28.5      |
| QSC         | 17.6     | 21.1     | 22.6     | 6.4      | 11.5     | 67.2      |
| RBT         | 11.5     | 33.9     | 17.3     | 5.0      | 21.7     | 89.0      |
| RBY         | 3.2      | 1.3      | 9.4      | 1.6      | 7.7      | 23.0      |
| RCO         | 2 969.5  | 2 856.1  | 2 644.6  | 2 850.6  | 2 383.0  | 10 255.5  |
| RSK         | 3.1      | 11.6     | 59.7     | 69.5     | 35.9     | 155.5     |
| SCH         | 120.7    | 167.4    | 110.9    | 176.2    | 173.2    | 727.2     |
| SCI         | 18.2     | 20.3     | 27.4     | 25.7     | 6.5      | 96.1      |
| SKI         | 24.3     | 81.7     | 66.2     | 150.2    | 39.6     | 333.2     |
| SNA         | 3 486.4  | 3 507.4  | 3 167.2  | 3 019.0  | 3 055.0  | 11 240.4  |
| SPD         | 276.1    | 414.2    | 416.1    | 224.3    | 155.5    | 1 309.5   |
| SPE         | 19.8     | 28.1     | 114.1    | 176.2    | 38.0     | 346.7     |
| SPO         | 22.3     | 90.2     | 165.6    | 161.5    | 219.1    | 635.3     |
| SQU         | 2 036.1  | 1 530.7  | 1 959.6  | 2 376.7  | 1 903.4  | 4 122.9   |
| STA         | 1 213.1  | 1 327.0  | 1 793.9  | 1 774.8  | 1 459.6  | 5 308.6   |
| SWA         | 690.9    | 525.8    | 481.1    | 745.4    | 469.9    | 2 276.2   |
| TAR         | 11 644.8 | 12 978.4 | 12 703.5 | 12 560.6 | 11 828.0 | 38 947.8  |
| TRE         | 3 286.2  | 3 568.1  | 3 132.5  | 3 472.4  | 2 766.9  | 11 087.9  |
| WAR         | 1 303.1  | 1 107.7  | 1 168.9  | 1 287.2  | 1 425.6  | 4 806.0   |
| All         | 45 901.0 | 46 074.4 | 48 322.7 | 46 300.2 | 45 349.6 | 113 779.4 |

Table 6.2: Change (%) in the total footprint from one year to the next (thus, 2009 column represents the percent change from the footprint area in 2008 to the footprint in 2009). Total annual footprints are given in Table 6.1. Target species codes are given in Table 3.

| Target |       | % cha  | inge from one y | ear to the next |
|--------|-------|--------|-----------------|-----------------|
| code   | 2009  | 2010   | 2011            | 2012            |
| BAR    | -20.4 | -5.0   | -3.0            | 8.4             |
| BCO    | -85.8 | 1000.0 | -80.3           | 411.7           |
| BNS    | -88.0 | -100.0 | 0.0             | -100.0          |
| BYX    | -61.8 | -90.5  | 1682.6          | -77.8           |
| ELE    | 11.1  | 16.2   | -20.2           | 12.3            |
| EMA    | 12.2  | -97.8  | 241.5           | 860.9           |
| FLA    | 6.3   | 3.8    | -15.9           | 9.4             |
| GSH    | 162.1 | 31.5   | 22.0            | -41.8           |
| GUR    | 2.7   | 28.5   | -5.5            | 11.5            |
| HOK    | 45.2  | -7.6   | -29.2           | 10.1            |
| HPB    | -14.9 | 39.3   | -0.2            | -45.5           |
| JDO    | -12.2 | 10.1   | -22.9           | -10.6           |
| JMA    | -19.2 | 24.0   | -22.7           | 12.0            |
| LEA    | 28.0  | 150.8  | -39.7           | 97.7            |
| LIN    | -10.7 | 15.7   | -18.9           | -46.9           |
| MOK    | 4.6   | -37.4  | 172.4           | -45.0           |
| PAD    | -78.6 | -41.7  | 174.2           | -30.2           |
| QSC    | 19.9  | 6.8    | -71.8           | 80.7            |
| RBT    | 196.2 | -48.9  | -71.2           | 333.7           |
| RBY    | -60.2 | 650.9  | -82.6           | 365.8           |
| RCO    | -3.8  | -7.4   | 7.8             | -16.4           |
| RSK    | 273.0 | 416.9  | 16.3            | -48.3           |
| SCH    | 38.7  | -33.8  | 58.8            | -1.7            |
| SCI    | 11.5  | 34.6   | -6.2            | -74.7           |
| SKI    | 235.9 | -19.0  | 127.0           | -73.6           |
| SNA    | 0.6   | -9.7   | -4.7            | 1.2             |
| SPD    | 50.0  | 0.5    | -46.1           | -30.7           |
| SPE    | 42.2  | 305.8  | 54.5            | -78.5           |
| SPO    | 305.1 | 83.5   | -2.5            | 35.7            |
| SQU    | -24.8 | 28.0   | 21.3            | -19.9           |
| STA    | 9.4   | 35.2   | -1.1            | -17.8           |
| SWA    | -23.9 | -8.5   | 54.9            | -37.0           |
| TAR    | 11.5  | -2.1   | -1.1            | -5.8            |
| TRE    | 8.6   | -12.2  | 10.9            | -20.3           |
| WAR    | -15.0 | 5.5    | 10.1            | 10.8            |
| All    | 0.4   | 4.9    | -4.2            | -2.1            |

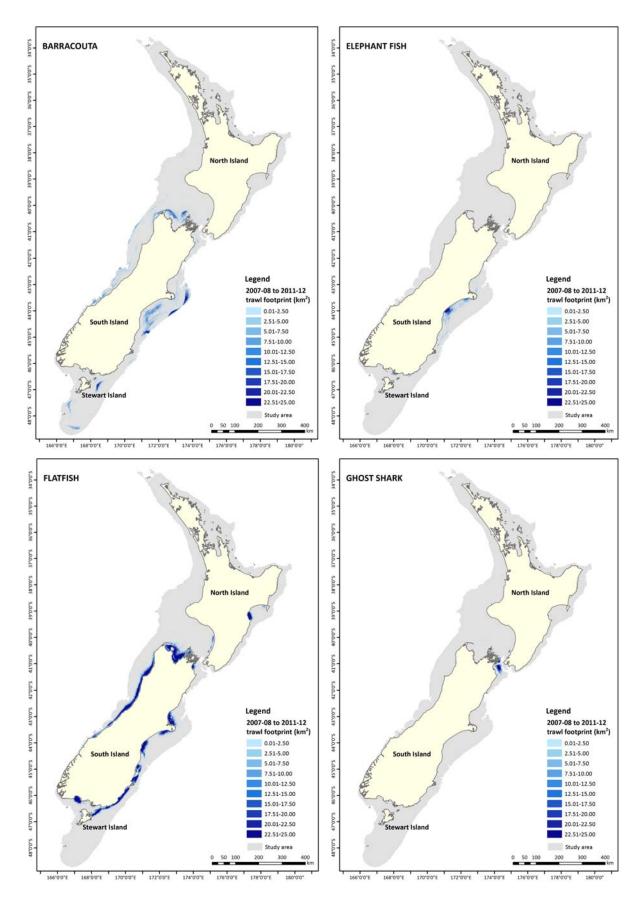



Figure 6.1: Cell-based trawl footprint for the five year data for the main target species.

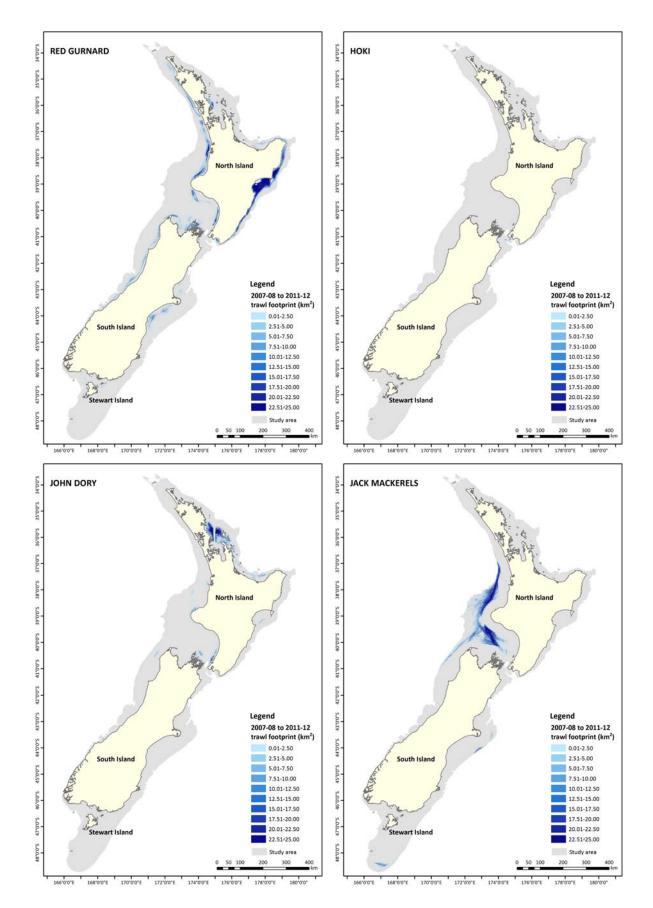



Figure 6.1 continued.



Figure 6.1 continued.

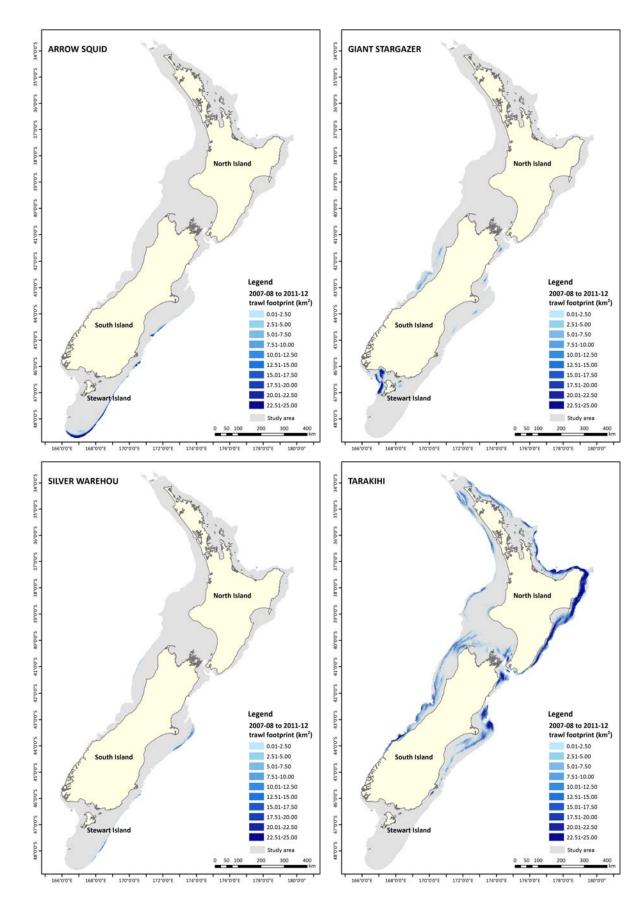
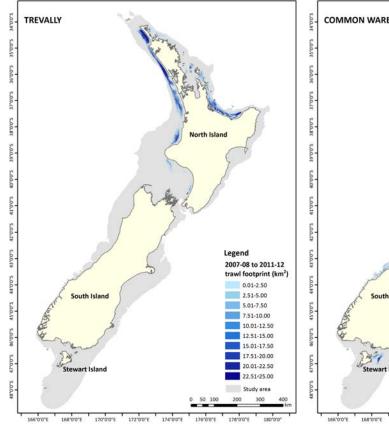




Figure 6.1 continued.



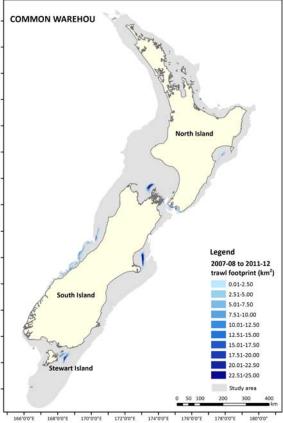



Figure 6.1 continued.

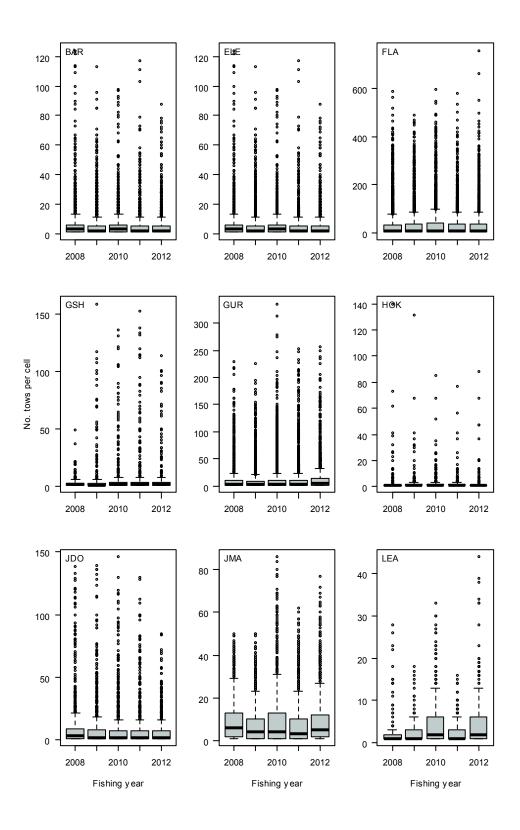



Figure 6.2: The distribution of the number of tows per cell and the cell footprint for the main target species by each fishing year, 2008–12. Target species codes are defined in Table 3.

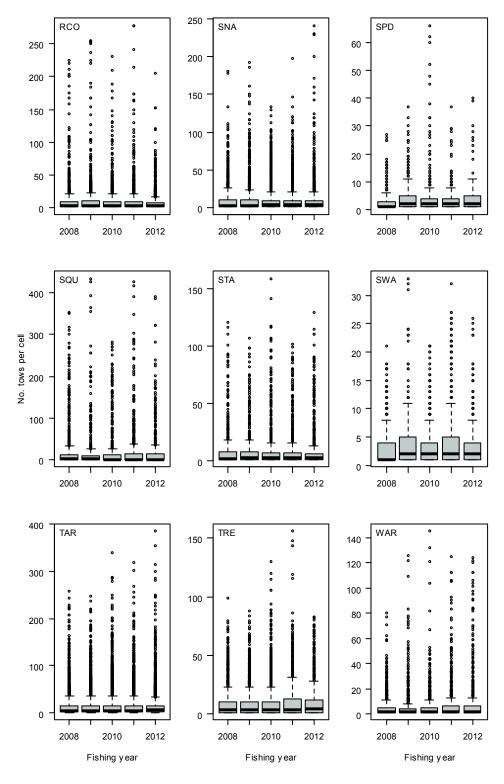



Figure 6.2 continued.

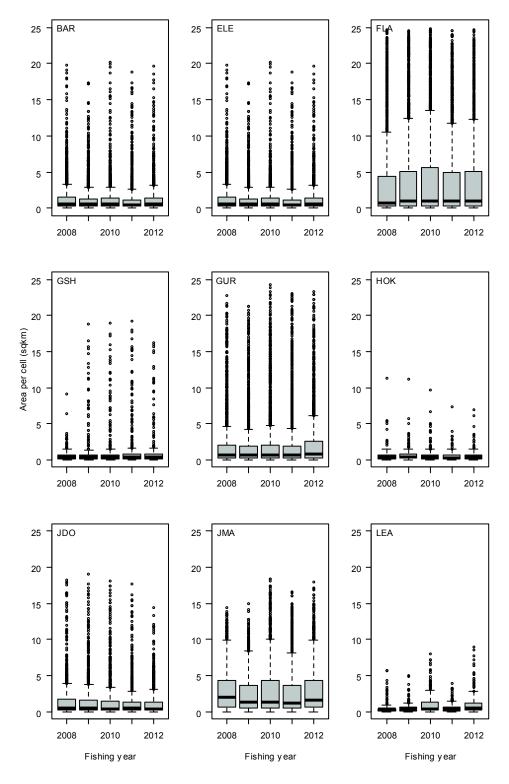



Figure 6.2 continued.

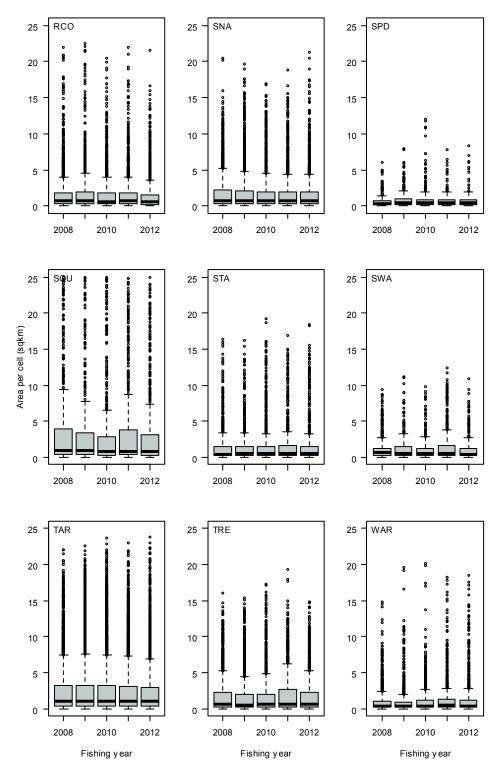



Figure 6.2 continued.

## APPENDIX 7: TRAWL FOOTPRINT- HABITAT OVERLAY

# Table 7.1: Summary of the BOMEC class-depth zone-sediment habitat area and the amount of the trawl footprint in each habitat, by fishing year and for the five years combined.

| Depth      | Sediment          | Habitat                 |          |          | ŀ        | Area of annu | al trawl foot | print (km <sup>2</sup> ) |
|------------|-------------------|-------------------------|----------|----------|----------|--------------|---------------|--------------------------|
| zone       | type              | area (km <sup>2</sup> ) | 2008     | 2009     | 2010     | 2011         | 2012          | 2008-12                  |
| BOMEC clas | s A               |                         |          |          |          |              |               |                          |
| < 50 m     | Mud               | 5 991.3                 | 1 916.2  | 1 968.0  | 2 154.7  | 1 931.2      | 1 899.0       | 3 424.6                  |
|            | Sand              | 10 756.0                | 2 205.2  | 2 243.7  | 2 124.7  | 2 117.4      | 2 213.1       | 5 038.2                  |
|            | Gravel            | 6 760.5                 | 1 373.3  | 1 360.3  | 1 429.6  | 1 328.9      | 1 500.5       | 2 896.1                  |
|            | Calcareous gravel | 557.8                   | 30.1     | 31.9     | 55.4     | 28.1         | 35.4          | 116.3                    |
|            | Calcareous sand   | 375.8                   | 46.4     | 58.5     | 71.1     | 63.3         | 63.5          | 159.7                    |
| 50–100 m   | Mud               | 1 241.8                 | 646.1    | 688.3    | 851.0    | 741.6        | 688.8         | 1 187.5                  |
|            | Sand              | 1 262.3                 | 447.6    | 438.4    | 375.2    | 409.2        | 419.4         | 954.3                    |
|            | Gravel            | 359.4                   | 95.3     | 92.0     | 95.5     | 91.1         | 113.8         | 237.4                    |
|            | Calcareous gravel | 36.8                    | 4.2      | 5.0      | 5.8      | 4.4          | 2.7           | 13.1                     |
|            | Calcareous sand   | 30.5                    | 8.1      | 10.9     | 11.0     | 12.9         | 10.4          | 19.5                     |
| 100–250 m  | Mud               | 0.8                     | 0.1      | 0.1      | 0.1      | 0.1          | 0.1           | 0.2                      |
|            | Sand              | 0.3                     | 0.1      | 0.1      | -        | 0.1          | _             | 0.2                      |
|            | Calcareous gravel | 1.9                     | _        | _        | _        | _            | _             | -                        |
|            |                   | 27 375.2                | 6 772.8  | 6 897.1  | 7 174.1  | 6 728.3      | 6 946.7       | 14 047.1                 |
| BOMEC clas | s B               |                         |          |          |          |              |               |                          |
| < 50 m     | Mud               | 2 898.4                 | 1 457.9  | 1 416.4  | 1 661.7  | 1 411.1      | 1 516.4       | 2 370.7                  |
|            | Sand              | 1 133.9                 | 417.9    | 432.0    | 486.2    | 401.5        | 443.8         | 878.8                    |
|            | Gravel            | 1 111.5                 | 669.8    | 667.5    | 666.4    | 581.6        | 614.0         | 893.5                    |
|            | Calcareous gravel | 6.0                     | 0.7      | 0.4      | 0.6      | 0.9          | 0.3           | 1.7                      |
| 50–100 m   | Mud               | 2 924.0                 | 894.2    | 875.8    | 1 004.8  | 841.6        | 1 097.8       | 2 250.9                  |
|            | Sand              | 894.1                   | 240.8    | 321.9    | 393.2    | 402.3        | 422.0         | 752.3                    |
|            | Gravel            | 286.4                   | 117.0    | 130.1    | 123.2    | 96.6         | 112.1         | 223.5                    |
|            | Calcareous gravel | 39.0                    | 8.3      | 5.2      | 9.8      | 8.3          | 5.8           | 25.4                     |
| 100–250 m  | Mud               | 2 892.5                 | 585.6    | 603.5    | 636.1    | 647.6        | 666.3         | 1 804.6                  |
|            | Sand              | 115.5                   | 21.4     | 63.2     | 73.2     | 83.3         | 76.4          | 109.6                    |
|            | Gravel            | 12.2                    | 3.3      | 4.4      | 4.6      | 5.1          | 4.9           | 9.1                      |
|            | Calcareous gravel | 5.3                     | 0.8      | 0.8      | 1.1      | 0.8          | 0.4           | 2.1                      |
|            |                   | 12 318.8                | 4 417.7  | 4 521.2  | 5 061.2  | 4 480.8      | 4 960.2       | 9 322.3                  |
| BOMEC clas | s C               |                         |          |          |          |              |               |                          |
| < 50 m     | Mud               | 1 656.3                 | 842.5    | 963.9    | 826.2    | 666.5        | 634.3         | 1 451.4                  |
|            | Sand              | 1 681.4                 | 473.6    | 562.8    | 525.7    | 479.2        | 451.4         | 1 168.1                  |
|            | Gravel            | 403.7                   | 85.9     | 68.3     | 71.3     | 72.6         | 66.8          | 166.7                    |
|            | Calcareous gravel | 72.2                    | 24.0     | 32.8     | 24.7     | 27.0         | 22.9          | 59.5                     |
|            | Calcareous sand   | 363.9                   | 97.3     | 151.7    | 146.3    | 123.4        | 121.9         | 283.7                    |
| 50–100 m   | Mud               | 10 080.0                | 3 453.5  | 3 634.2  | 3 641.6  | 3 332.0      | 2 902.6       | 7271.9                   |
|            | Sand              | 22 749.1                | 4 260.8  | 4 335.2  | 4 429.8  | 4 4 1 4.3    | 4 289.8       | 12 028.3                 |
|            | Gravel            | 1 240.2                 | 383.3    | 314.0    | 332.3    | 300.7        | 357.0         | 838.1                    |
|            | Calcareous gravel | 711.5                   | 68.4     | 72.6     | 135.8    | 133.1        | 102.5         | 316.0                    |
|            | Calcareous sand   | 1 583.5                 | 84.8     | 115.4    | 170.5    | 143.8        | 146.2         | 406.2                    |
| 100–250 m  | Mud               | 26 049.3                | 4 769.2  | 4 054.2  | 3 905.0  | 3 694.5      | 3 652.5       | 11 737.5                 |
|            | Sand              | 21 947.0                | 3 899.3  | 3 437.9  | 3 433.0  | 3 226.6      | 3 123.2       | 10 807.2                 |
|            | Gravel            | 352.1                   | 67.7     | 58.2     | 65.4     | 70.5         | 75.4          | 210.0                    |
|            | Calcareous gravel | 123.6                   | 18.8     | 13.3     | 18.0     | 23.6         | 14.6          | 60.8                     |
|            | Calcareous sand   | 546.6                   | 102.6    | 102.8    | 106.4    | 86.3         | 102.1         | 314.6                    |
|            |                   | 89 560.4                | 18 631.6 | 17 917.3 | 17 832.0 | 16 793.9     | 16 062.9      | 47 120.0                 |

### Table 7.1 continued.

| Depth      | Sediment          | Habitat                 |         |         | A       | rea of annua | al trawl foot | print (km <sup>2</sup> ) |
|------------|-------------------|-------------------------|---------|---------|---------|--------------|---------------|--------------------------|
| zone       | type              | area (km <sup>2</sup> ) | 2008    | 2009    | 2010    | 2011         | 2012          | 2008-12                  |
| BOMEC clas | ss D              |                         |         |         |         |              |               |                          |
| < 50 m     | Mud               | 2 459.6                 | 873.1   | 951.9   | 1 199.7 | 976.8        | 933.9         | 1 821.6                  |
|            | Sand              | 7 063.6                 | 2 338.7 | 2 677.5 | 2 924.4 | 2 720.2      | 2 649.5       | 5 303.8                  |
|            | Gravel            | 5 341.6                 | 1 102.0 | 1 213.2 | 1 232.8 | 1 249.2      | 1 300.9       | 2 688.2                  |
|            | Calcareous gravel | 1 261.5                 | 269.3   | 312.2   | 334.0   | 326.3        | 354.5         | 571.1                    |
|            | Calcareous sand   | 456.3                   | 39.6    | 50.2    | 57.0    | 39.1         | 40.5          | 120.0                    |
| 50–100 m   | Mud               | 1 830.0                 | 493.5   | 525.2   | 675.2   | 512.7        | 692.6         | 1 381.7                  |
|            | Sand              | 5 336.4                 | 1 238.9 | 1 492.2 | 1 373.3 | 1 300.9      | 1 208.1       | 3 544.4                  |
|            | Gravel            | 534.6                   | 135.0   | 146.7   | 172.6   | 157.8        | 172.6         | 297.1                    |
|            | Calcareous gravel | 156.1                   | 3.7     | 4.4     | 3.1     | 3.8          | 4.2           | 13.4                     |
|            | Calcareous sand   | 46.1                    | 11.3    | 10.3    | 9.2     | 8.9          | 6.7           | 22.2                     |
| 100–250 m  | Mud               | 242.2                   | 36.7    | 23.1    | 55.7    | 76.3         | 59.1          | 135.1                    |
|            | Sand              | 476.7                   | 124.3   | 92.8    | 148.6   | 189.3        | 173.7         | 383.1                    |
|            | Gravel            | 22.9                    | 6.0     | 12.8    | 12.1    | 15.7         | 9.3           | 21.2                     |
|            | Calcareous gravel | 285.6                   | 5.8     | 3.4     | 6.9     | 16.1         | 19.4          | 41.9                     |
|            |                   | 25 513.1                | 6 678.0 | 7 515.9 | 8 204.6 | 7 593.0      | 7 625.0       | 16 344.7                 |
| BOMEC clas | ss E              |                         |         |         |         |              |               |                          |
| < 50 m     | Mud               | 1.7                     |         |         |         |              |               |                          |
|            | Sand              | 79.7                    | 15.7    | 20.6    | 14.4    | 19.4         | 23.3          | 42.4                     |
|            | Gravel            | 15.6                    | 0.0     | 0.9     | 0.3     | 0.3          | 0.9           | 2.2                      |
|            | Calcareous gravel | 95.9                    | 0.3     | 2.0     | 1.3     | 1.2          | 1.6           | 4.6                      |
|            | Calcareous sand   | 9.2                     | 0.2     | 0.6     | 0.6     | 0.7          | 0.9           | 2.0                      |
| 50–100 m   | Mud               | 811.3                   | 77.0    | 98.4    | 142.0   | 240.1        | 318.3         | 559.6                    |
|            | Sand              | 8 115.1                 | 1 174.6 | 1 366.9 | 1 680.3 | 1 745.9      | 1 409.9       | 4 274.5                  |
|            | Gravel            | 1 021.8                 | 130.3   | 110.5   | 126.2   | 157.8        | 148.3         | 396.9                    |
|            | Calcareous gravel | 1 054.6                 | 16.3    | 12.9    | 13.7    | 6.7          | 17.2          | 55.8                     |
|            | Calcareous sand   | 403.7                   | 12.3    | 16.2    | 12.2    | 12.5         | 21.8          | 54.3                     |
| 100–250 m  | Mud               | 1 019.8                 | 82.1    | 165.4   | 165.9   | 327.4        | 165.7         | 608.1                    |
|            | Sand              | 8 864.6                 | 1 352.6 | 1 308.5 | 1 603.7 | 1 855.4      | 1 625.8       | 3 869.0                  |
|            | Gravel            | 189.5                   | 24.3    | 25.1    | 43.7    | 49.3         | 40.5          | 67.9                     |
|            | Calcareous gravel | 22 930.5                | 1 353.8 | 1 250.4 | 1 462.3 | 1 545.3      | 1 504.5       | 3 219.3                  |
|            | Calcareous sand   | 2 391.4                 | 167.0   | 145.7   | 232.3   | 185.8        | 177.9         | 551.7                    |
|            | Sandy Mud         | 182.2                   | 175.3   | 171.6   | 173.9   | 178.5        | 166.3         | 182.3                    |
|            | •                 | 47 186.8                | 4 581.7 | 4 695.7 | 5 672.9 | 6 326.3      | 5 622.8       | 13 890.6                 |
| BOMEC clas | ss F              |                         |         |         |         |              |               |                          |
| < 50 m     | Calcareous gravel | 1.3                     | 0.1     | 0.0     |         |              |               | 0.1                      |
| 100–250 m  | Calcareous gravel | 380.4                   | 35.4    | 7.3     | 22.2    | 46.1         | 17.8          | 73.1                     |
|            |                   |                         |         |         |         |              |               |                          |

### Table 7.1 continued.

| Depth       | Sediment          | Habitat                 |            |            | A          | Area of annu | al trawl foot | print (km <sup>2</sup> ) |
|-------------|-------------------|-------------------------|------------|------------|------------|--------------|---------------|--------------------------|
| zone        | type              | area (km <sup>2</sup> ) | 2008       | 2009       | 2010       | 2011         | 2012          | 2008-12                  |
| BOMEC cla   | ss G              |                         |            |            |            |              |               |                          |
| < 50 m      | Mud               | 90.9                    | 8.8        | 14.2       | 17.6       | 25.5         | 14.1          | 43.2                     |
|             | Sand              | 67.9                    | 6.7        | 2.4        | 3.6        | 5.2          | 5.1           | 15.0                     |
|             | Gravel            | 28.3                    | 0.6        | 0.6        | 0.4        | 2.1          | 1.4           | 4.4                      |
|             | Calcareous gravel | 17.2                    | 0.4        | 0.5        | 0.3        | 0.8          | 0.7           | 1.6                      |
| 50–100 m    | Mud               | 329.3                   | 41.9       | 46.5       | 64.6       | 71.1         | 64.0          | 139.9                    |
|             | Sand              | 103.7                   | 15.2       | 14.3       | 14.7       | 14.0         | 18.3          | 41.0                     |
|             | Gravel            | 116.3                   | 6.6        | 9.0        | 10.3       | 14.4         | 13.8          | 35.8                     |
|             | Calcareous gravel | 22.9                    | 5.2        | 2.9        | 6.9        | 5.5          | 2.8           | 13.3                     |
| 100–250 m   | Mud               | 1 690.9                 | 271.1      | 308.9      | 306.6      | 345.9        | 310.4         | 825.1                    |
| 100 200 111 | Sand              | 676.3                   | 139.2      | 167.5      | 171.4      | 197.3        | 211.7         | 429.5                    |
|             | Gravel            | 721.0                   | 111.6      | 146.0      | 150.6      | 153.0        | 150.8         | 342.7                    |
|             | Calcareous gravel | 33.6                    | 3.9        | 3.3        | 3.5        | 5.0          | 5.4           | 11.4                     |
|             | Culculous Bruver  | 3 898.4                 | 611.2      | 716.1      | 750.5      | 839.8        | 798.5         | 1 902.9                  |
| BOMEC cla   | ss H              | 5 670.4                 | 011.2      | /10.1      | 750.5      | 057.0        | 170.5         | 1 702.7                  |
| < 50  m     | Mud               | 0.004                   | _          | _          | _          | _            | _             | 0.0                      |
| < 50 m      | Sand              | 6.8                     | 0.01       | _          | _          | _            | _             | 0.01                     |
|             | Calcareous gravel | 15.4                    | 0.01       | _          | _          | 0.1          | 0.1           | 0.2                      |
|             | Calcareous sand   | 0.2                     |            |            |            | 0.1          | 0.1           | 0.2                      |
| 50–100 m    | Mud               | 2.5                     | 0.4        | 0.8        | 0.7        | 0.7          | 0.7           | 1.2                      |
| 30–100 m    | Sand              | 2.3<br>118.0            | 0.4<br>9.2 | 0.8<br>8.3 | 0.7<br>6.4 | 0.7<br>6.1   | 0.7<br>6.6    | 1.2                      |
|             |                   |                         |            |            |            |              |               |                          |
|             | Gravel            | 0.0                     | _          | _          | _          | 0.0          | - 0.1         | 0.0                      |
| 100 050     | Calcareous gravel | 49.3                    | -          | -          | 1 2 4 4 2  | 0.2          | 0.1           | 0.3                      |
| 100–250 m   | Mud               | 10 212.3                | 1 550.3    | 1 333.5    | 1 244.3    | 1 162.0      | 1 041.5       | 3 959.4                  |
|             | Sand              | 13 014.8                | 1 761.2    | 1 638.0    | 1 451.0    | 1 426.3      | 1 426.1       | 4 994.2                  |
|             | Gravel            | 12.4                    | 4.8        | 2.9        | 2.2        | 3.3          | 2.4           | 8.6                      |
|             | Calcareous gravel | 1 217.6                 | 25.1       | 20.9       | 32.8       | 26.5         | 25.2          | 98.8                     |
|             | Calcareous sand   | 555.0                   | 60.6       | 44.9       | 53.2       | 29.8         | 40.7          | 146.0                    |
|             | Sandy Mud         | 0.1                     | -          |            |            | -            | -             |                          |
|             |                   | 25 204.4                | 3 411.7    | 3 049.3    | 2 790.6    | 2 655.0      | 2 543.4       | 9 228.1                  |
| BOMEC cla   |                   |                         |            |            |            |              |               |                          |
| 50–100 m    | Sand              | 0.01                    | _          | -          | 0.001      | -            | -             | 0.001                    |
| 100–250 m   |                   | 1.0                     | 0.1        | _          | _          | -            | -             | 0.1                      |
|             | Sand              | 325.2                   | 83.2       | 86.1       | 63.7       | 120.2        | 75.5          | 194.9                    |
|             | Calcareous gravel | 124.5                   | 116.1      | 115.2      | 118.5      | 119.5        | 117.6         | 124.0                    |
|             | Calcareous sand   | 1.4                     | 0.4        | 0.2        | 0.2        | 0.4          | 0.4           | 0.7                      |
|             | Sandy Mud         | 21.1                    | 18.3       | 20.7       | 20.3       | 20.8         | 20.0          | 21.1                     |
|             |                   | 473.2                   | 218.2      | 222.2      | 202.7      | 260.8        | 213.5         | 340.8                    |
| BOMEC cla   | ss J              |                         |            |            |            |              |               |                          |
| 50–100 m    | Mud               | 3.2                     | _          | 0.0001     | -          | 0.05         | _             | 0.05                     |
|             | Sand              | 0.4                     | _          | _          | -          | _            | _             | -                        |
| 100–250 m   | Mud               | 88.8                    | 7.1        | 7.5        | 12.2       | 12.9         | 7.8           | 27.5                     |
|             | Sand              | 41.4                    | 1.7        | 0.5        | 1.0        | 0.7          | 0.4           | 3.8                      |
|             | Calcareous gravel | 0.09                    | _          | _          | _          | _            | _             | _                        |
|             | Calcareous sand   | 0.06                    | 0.01       | _          | _          |              | _             | 0.01                     |
|             |                   | 133.9                   | 8.8        | 7.9        | 13.3       | 13.8         | 8.2           | 31.3                     |
| BOMEC cla   | ss L              |                         |            |            |            |              |               |                          |
| 100–250 m   | Calcareous gravel | 188.9                   | 81.8       | 72.2       | 97.0       | 92.9         | 84.5          | 121.5                    |
|             | -                 |                         |            |            |            |              |               |                          |

# APPENDIX 8: SUMMARY OF DREDGE OYSTER AND SCALLOP EFFORT DATA WITHIN 250 M, 1 OCTOBER 2007–30 SEPTEMBER 2012

Other bottom contact effort in waters shallower than 250 m included dredge effort that targeted the dredge oyster *Ostrea chilensis* and the scallop *Pecten novaezelandiae*. This dredge effort is reported under the primary method code of "D" on CELR forms. Thus, each record represents the daily number of dredge tows by a vessel within the individual target fishery statistical areas: the Northland scallop fishery, the Coromandel scallop fishery, the Challenger scallop and oyster fishery, and the Foveaux Strait oyster fishery. These areas are shown in Figures 8.1–8.3.

Dredge fishers are required to report the fishing duration as the total time the dredge is at the target depth for tows completed on the day; the total number of tows completed per day; and the width of the dredge used. It does appear that fishers complete the forms differently in the some of the fishery areas, and this is identified in the fishery sections below. Note that this summary does not attempt to estimate the area swept by the dredge gear used in these fisheries.

The primary data grooming on the daily CELR dredge records concentrated on the daily number of tows. Other variables that could contribute to measures of fishing effort, such as the effort width and fishing duration, were checked (and amended where obvious outliers or typographical errors were present) and summarised to describe the extent of the values reported. Fishing duration (hours fished) is likely to be reported differently by different fishers (Hartill & Williams 2014) and may represent a range of definitions from the hours spent away from port to the time that the gear was actually fishing. Summary distributions of these three effort variables are given in Figures 8.4–8.8. The data relating to vessels and Statistical Areas were used as reported by the fishers.

This summary provides data for the 2007–08 to 2011–12 fishing years. Similar data for 1989–90 to 2004–05 were summarised by Baird et al. (2011). Gear descriptions of the dredges used in these fisheries are described by Beentjes & Baird (2004).

## Oyster dredge data

Dredge effort for oysters is primarily carried out in two major fisheries: Foveaux Strait and Challenger (Nelson-Marlborough). The fisheries operate under different rules and use different gear (Ministry for Primary Industries 2013). The Foveaux Strait fishery is reported by calendar year (with the season from 1 March to 31 August), but the Challenger fishery is reported by the 1 October to 30 September fishing year. For the summary purposes of this study, for which the data extract was from 1 October 2007 to 30 September 2012, all oyster data are summarised by the October–September fishing year.

### Foveaux Strait dredge oyster data

The Foveaux fishery is divided into 18 areas (Figure 8.1). Fourteen vessels were in the original five year dataset. However, 11 vessels operate each year in this fishery and the small number of records for two vessels (n = 1, n = 6) have been treated as errors and ignored here, to give a final total of 3341 daily CELR records. The total of 12 vessels occurs because one vessel was replaced by another during the 2007–08 to 2011–12 time period. The density of vessels fishing in each area varied by year, and areas E7, G8, and S7 had consistently higher number of vessels each year during 2007–08 to 2011–12 (Table 8.1).

Fishers in this fishery use two heavy double bit, double ring-bag dredges of up to 3.35 m width per fishing event in the Foveaux Strait fishery (Ministry for Primary Industries 2013). Fishers undertake 4–5 fishing events per hour, and each event is recorded as two 'tows' to represent the use of two dredges (Keith Michael, NIWA, pers. comm.). The effort width data give the width of one dredge (up to 3.35 m). The number of hours fished as recorded on the CELRs are likely to represent the actual fishing time. Investigation of the effort width data and the effort number data relative to the fishing duration data, for each of the 12 vessels, indicated that effort number and effort width data were swapped for two vessels. These data were amended, and no further grooming was done on the effort number data. The spread of the number of tows relative to the fishing duration is shown in Figure 8.6.

The total number of tows by fishing year and month are given in Table 8.2. The annual totals (18 700–21 311 tows) represent about 75% (range 70–82%) of the tows reported in industry data for the same years (Keith Michael, NIWA, pers. comm.). Over all the data, the median number of tows reported per day was 26 (range 1–96), but the median by year indicates less daily activity in the later years of the five year dataset (see Figure 8.4).

The dredge oyster season in this area is from 1 March to 31 August. Over the five fishing years, 28.4% of the total effort was during March, 23.4% in April, 20.8% in May, 15.2% on June and another 10% in July and August (Table 8.2).

Between about 9000–10 000 dredge tows were made each year in the main fishery area (G8), which accounted for about 50% of the total dredge tows over the five year period (Table 8.3). Other important areas were E7 and S7, and to a lesser extent, E6, G9, D7, and A. The spread of this effort throughout the season is given in Table 8.4.

## Challenger dredge oyster data

Dredge oysters in the Challenger fishery area are treated as two different stocks: fishery areas 7AA–7LL comprise the OYS7 fish stock and 7MM is the OYS 7C fish stock (see Figure 8.2). Vessels in this fishery use the same gear to target both dredge oysters and scallops, as well as green-lipped mussels (*Perna canaliculus*) – generally two ring bag dredges for each fishing event, that are (by legislation) no more than 2.4 m wide (per dredge). All but two of the fishers reported the total dredge width (that is, of the two dredges) on the CELR (median 4.4 m from range of 2.4 m to 4.8 m), which is contrary to the reporting in the Foveaux Strait fishery. The spread of the effort data suggests that these fishers report each fishing event as one tow, also in contrast to the fishers in the Foveaux fishery (see Figures 8.4–8.6). The only changes were made to the Challenger oyster data were to tidy up typographical errors and NAs in the effort width data.

Of the 406 dredge oyster records, 1.2% were ignored because they were reported using the larger General Statistical Area 017 which includes the fishery specific areas 7JJ, 7KK, 7LL, and 7MM. Two records in 7MM by a vessel targeting oysters were reported as 'SCA' in 2009; these records were changed to OYS target species code. It may be that some other effort is reported as scallop when in fact it was for oyster, and vice versa.

The number of vessels fishing in the area has varied from year to year (Table 8.5). For 2007–08 to 2011–12, 12 vessels reported dredge oyster fishing activity in this area; however, 74% of the effort was reported from two vessels that fished each year. The remaining 10 vessels fished in either one year (7 vessels) or in two years (3 vessels).

About 32% of the 7154 tows were from 2008, and since then the annual effort has varied between 695 (in 2009) and 1964 (in 2011) (Table 8.6). About 68% of the effort reported during the five year period came from the most eastern areas, 7LL and 7MM (Table 8.7). In 2008 the effort was distributed in seven areas, but in 2009, 2010, and 2012, effort was restricted to one or two areas (7LL and/or 7MM).

Currently, there is no seasonal restriction on the commercial take of oysters from this area (Ministry for Primary Industries 2013). The data indicate that in the 2008–2010 fishing years, the fishing was mainly in the summer months, but in 2011 and 2012, the effort was spread throughout most of the year, with the winter months, especially August, having relatively high effort (see Table 8.6). Area 7LL had effort in each month, 7MM had effort in most months, but the other areas tended to operate in the summer months, apart from the August effort in 7FF, 7GG, and 7II (Table 8.8).

# Scallop dredge data

Dredge effort for scallops was reported from three fisheries: Challenger (Nelson-Marlborough), Coromandel, and Northland (see Figures 8.2 and 8.3). The fisheries operate under spatial and temporal management regimes (Cryer & Parkinson 2006, Williams et al. 2014) and the northern and southern fisheries use different gear. Williams et al. (2014) provide a comprehensive review of the SCA 7 fishery, and Hartill & Williams (2014) provide a characterisation of the Northland scallop fishery (SCA 1).

Note: the fishing year for these scallop fisheries is from 1 April to 31 March, and the scallop data presented here are summarised by the scallop fishing years. However, the full data extract was for 1 October 2007 to 30 September 2012, so data in both the 1 April 2007–31 March 2008 (2008) and 1 April 2012–31 March 2013 (2013) fishing years will be incomplete.

### Challenger Scallop dredge data

Commercial fishing usually occurs in the SCA 7 fishery from August to December, although management regimes may change these dates (Ministry for Primary Industries 2013). Two ring-bag dredges of 2.0–2.4 m width are used per fishing event in the Challenger fishery (Williams et al. 2014). These dredges use tickler chains and have a maximum width limit of 2.5 m under the MPI (Challenger Area Commercial Fishing) Regulations 1986 (see Beentjes & Baird 2004). This is evident in the distribution of the effort width data shown in Figure 8.7. Fishers in this fishery report the summed width of the dredges used in the effort width column on the CELR, though it also appears that some vessels either used one dredge occasionally or the fisher recorded the width of one dredge only. A fishing day is rarely longer than 12 hours and fishers report the fishing duration as the time between the start of the first tow and the end of the last tow, in a day (James Williams, NIWA, pers. comm.). The median number of daily tows for any one year has varied between about 16 and 24 for the complete fishing years (2009–2012), and the median time spent fishing varied between about 6.5 and 10 h (Figures 8.4 and 8.5). The data suggest that tows are generally about 25 minutes long (see Figure 8.8).

There were 2401 daily CELR records assigned to this fishery area for the time period. Of the 41 vessels that reported scallop effort in the Challenger fishery, 10 fished in every fishing year, 4 in five fishing years, 8 in four fishing years, 3 in three fishing years, 7 in two fishing years, and 9 in one fishing year. During this period, there was no effort in three of the fishery areas important in earlier years of the SCA 7 fishery (see Williams et al. 2014), and most vessels operated in 7BB, 7CC, 7KK, and 7LL (Table 8.9).

The number of tows reported per fishing year was greatest in 2009, at about 43% of the total of 48 740 tows, with most effort in September, October, and November (Table 8.10) in 7KK and 7BB (Tables 8.11 and 8.12). Effort was distributed in different areas over time, especially in areas 7CC and 7LL.

# Coromandel scallop dredge data

The commercial Coromandel scallop fishing season is from 15 July to 21 December each year (Ministry for Primary Industries 2013), and the areas are shown in Figure 8.3. Fishers in the Northland and Coromandel scallop fisheries prefer the self-tipping "box" dredges to fish discrete beds within the fishery areas (Cryer & Parkinson 2006). The legislation allows fishers to use either one dredge of up to 2.5 m width or two dredges which should not exceed 1.4 m in width each specified by MPI (Auckland and Kermadec Areas Commercial Fishing) Regulations 1986. Unlike the dredges used in the Challenger fishery, these dredges are fitted with rigid tines on the leading bottom edge. The effort width data suggest that a variety of dredge widths are used (Figure 8.7), though most are reported at about 2 m width. The data suggest tows are about 15 minutes long (see Figure 8.8). The daily effort in terms of the number of dredge tows and the fishing duration has halved over the five year period, from median values of 29 tows in 2009 (7.5 h duration) to 15 tows in 2012 (3.25 h in 2012) (Figures 8.4 and 8.5).

The 2463 daily CELR records represented the effort of 12 vessels, with about 8 vessels fishing regularly in 2L, 2R, and 2W (Table 8.13). Seven vessels fished consistently in this fishery and accounted for 96% of the reported effort in the dataset. Four of these vessels also fished in the Northland scallop fishery, but only one fished consistently in the Northland fishery.

Although the effort reported was maintained at about 8 000–11 000 tows per year for fishing years 2010–2012, the number reported in 2012 was about half that reported for 2009 (Table 8.14). Fishing mainly took place during August–November in areas 2L, 2R, and 2W (Tables 8.15 and 8.16).

### Northland scallop dredge data

The fishing season in this fishery is from 15 July to 14 February each year (Ministry for Primary Industries 2013), and the fishery areas are shown in Figure 8.3. The data indicate that the box dredges used (see above Coromandel fishery description) are generally between 1.8 and 2.5 m wide (Figure 8.7), with one dredge used each tow. The data suggest that tows are generally between 15 and 30 minutes long. The median number of daily tows was around 20 tows per season; and the median time spent fishing has remained close to 10 h (Figures 8.4 and 8.5).

There were 1277 daily CELR records in this fishery area. Of the 17 vessels that reported scallop effort, 8 fished during three to five fishing years, with the remaining vessels reporting effort only in one or two years. There has been a large drop in the number reporting effort in recent years, with 4 or 5 vessels in 2011 and 2012 (Table 8.17). Overall, 24% of the tows were from one vessel; and 7 vessels accounted for 88% of the effort in the dataset. From a total of almost 25 000 tows, about 90% were from the 2008–2010 fishing years (Table 8.18). Substantial drops in effort occurred in subsequent years, to about 1000 tows each in 2011 and 2012. Fishery area 1D was consistently fished and accounted for about 90% of the total effort in the dataset.

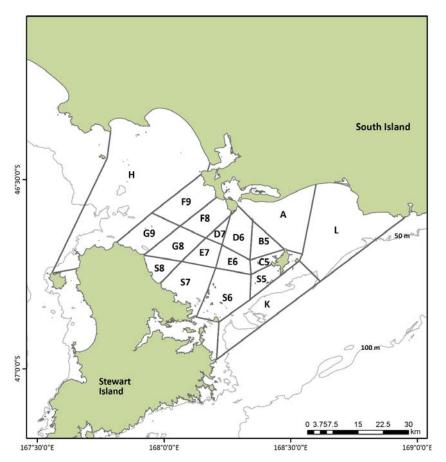



Figure 8.1: Fishery reporting areas in the Foveaux Strait dredge oyster fishery.

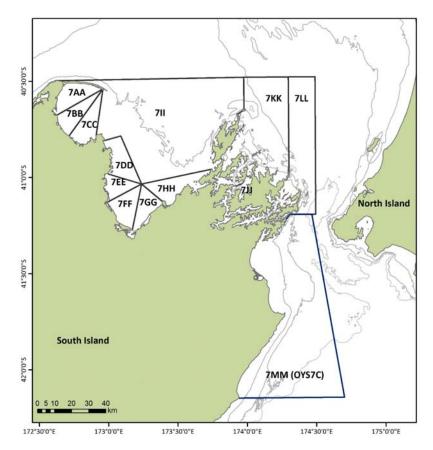



Figure 8.2: Fishery reporting areas in the Challenger scallop fishery (7AA–7LL) and the Challenger oyster fishery (7AA–7MM). The contours shown represent 50 m, 100 m, and 250 m.

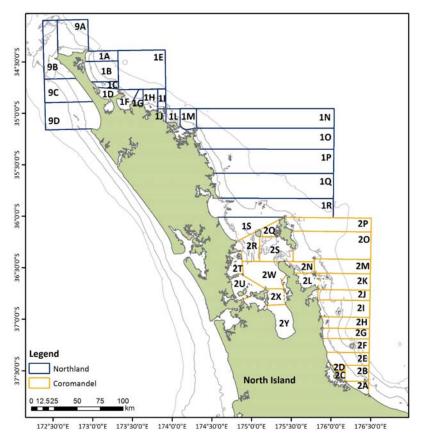



Figure 8.3: Fishery reporting areas in the Northland (9A–9D and 1A–1S) and the Coromandel (2A–2Y) scallop fisheries. The contours shown represent 50 m, 100 m, and 250 m.

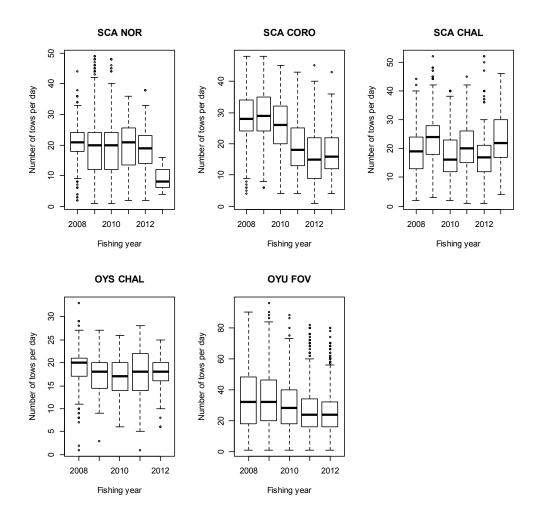



Figure 8.4: The distribution of the reported number of daily dredge tows in the main fishery areas, by fishing year, where SCA is scallop in the NOR (Northland), CORO (Coromandel), and CHAL (Challenger) fisheries, and OYS is dredge oyster in the Challenger fishery, and OYU is the dredge oyster in the FOV (Foveaux Strait) fishery. Scallop fishing years (1 April to 31 March) are used for the scallop data and the 1 October to 30 September fishing year is used for the oyster data.

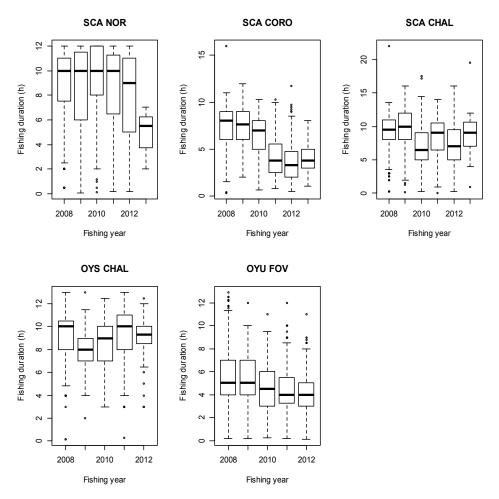



Figure 8.5: The distribution of the reported daily fishing duration in the main fishery areas, by fishing year, where SCA is scallop in the NOR (Northland), CORO (Coromandel), and CHAL (Challenger) fisheries, and OYS is dredge oyster in the Challenger fishery, and OYU is the dredge oyster in the FOV (Foveaux Strait) fishery. Scallop fishing years (1 April to 31 March) are used for the scallop data and the 1 October to 30 September fishing year is used for the oyster data.

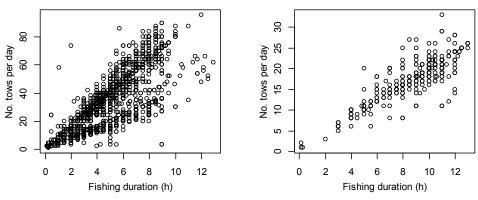



Figure 8.6: Relationship between effort number and fishing duration for data from the Foveaux Strait oyster fishery (left) and the Challenger oyster fishery (right).

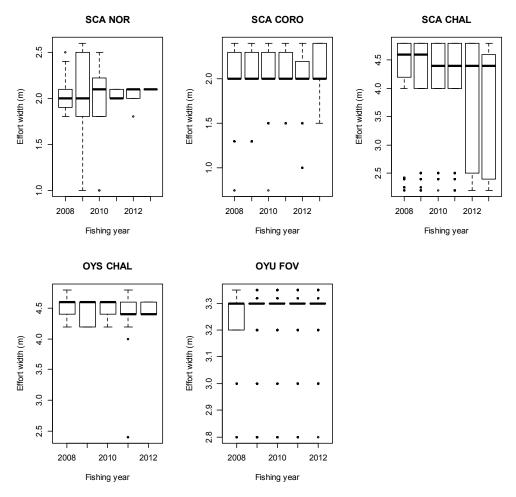



Figure 8.7: The distribution of the effort width data from the main fishery areas, by fishing year, where SCA is scallop in the NOR (Northland), CORO (Coromandel), and CHAL (Challenger) fisheries, and OYS is dredge oyster in the Challenger fishery, and OYU is the dredge oyster in the FOV (Foveaux Strait) fishery. Scallop fishing years (1 April to 31 March) are used for the scallop data and the 1 October to 30 September fishing year is used for the oyster data.

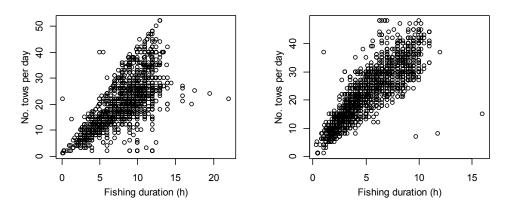



Figure 8.8: Relationship between effort number and fishing duration for data from the Challenger scallop fishery (left) and the Coromandel scallop fishery (right).

| Statistical Area | 2008 | 2009 | 2010 | 2011 | 2012 | All years |
|------------------|------|------|------|------|------|-----------|
| А                | 1    | 2    | 2    | 6    | 7    | 7         |
| B5               | 0    | 2    | 5    | 3    | 3    | 8         |
| C5               | 2    | 2    | 3    | 2    | 3    | 7         |
| D6               | 0    | 1    | 0    | 0    | 1    | 2         |
| D7               | 2    | 0    | 0    | 1    | 3    | 5         |
| E6               | 3    | 4    | 4    | 1    | 3    | 6         |
| E7               | 7    | 6    | 6    | 5    | 5    | 10        |
| F8               | 1    | 2    | 0    | 0    | 0    | 4         |
| F9               | 0    | 0    | 0    | 0    | 1    | 1         |
| G8               | 9    | 10   | 9    | 9    | 8    | 12        |
| G9               | 3    | 4    | 2    | 2    | 1    | 6         |
| Н                | 0    | 1    | 0    | 0    | 0    | 1         |
| S5               | 2    | 1    | 2    | 2    | 2    | 4         |
| S6               | 2    | 6    | 2    | 4    | 4    | 7         |
| S7               | 6    | 7    | 5    | 9    | 9    | 11        |
| S8               | 1    | 1    | 2    | 3    | 0    | 3         |
| All areas        | 11   | 11   | 11   | 11   | 11   | 11        |

Table 8.1: Number of vessels targeting dredge oysters in Foveaux Strait fishery, by fishing year 2007–08 (2008) to 2011–12 (2012). Areas are shown in Figure 8.1.

Table 8.2: Number of dredge oyster tows reported from the Foveaux Strait fishery, by month for each fishing year 2007–08 (2008) to 2011–12 (2012). The oyster season is from 1 March to 31 August (grey highlight). Note the effort in September and October represents special permit effort to provide catch for the 2011 Rugby World Cup (Ministry for Primary Industries 2013).

| Month | 2008   | 2009   | 2010   | 2011   | 2012    | All    |
|-------|--------|--------|--------|--------|---------|--------|
| Oct   | 0      | 0      | 0      | 0      | 480     | 480    |
| Nov   | 0      | 11     | 0      | 0      | 2       | 13     |
| Dec   | 0      | 0      | 0      | 0      | 0       | 0      |
| Jan   | 0      | 0      | 0      | 0      | 0       | 0      |
| Feb   | 0      | 3      | 5      | 3      | 0       | 11     |
| Mar   | 6 270  | 6 923  | 4 610  | 4 752  | 5 766   | 28 321 |
| Apr   | 6 038  | 5 605  | 3 538  | 4 012  | 4 1 3 3 | 23 326 |
| May   | 4 175  | 4 543  | 4 352  | 3 204  | 4 498   | 20 772 |
| Jun   | 2 047  | 3 792  | 3 608  | 2 988  | 2 7 5 2 | 15 187 |
| Jul   | 144    | 418    | 2 199  | 1 485  | 3 022   | 7 268  |
| Aug   | 16     | 16     | 408    | 823    | 1 332   | 2 595  |
| Sep   | 0      | 0      | 0      | 1 754  | 0       | 1 754  |
| All   | 18 690 | 21 311 | 18 720 | 19 021 | 21 985  | 99 727 |

 Table 8.3: Number of dredge oyster tows in Foveaux Strait fishery, by fishery area for each fishing year

 2007–08 (2008) to 2011–12 (2012). Areas are shown in Figure 8.1.

| Area       | 2008   | 2009    | 2010   | 2011    | 2012   | All    |
|------------|--------|---------|--------|---------|--------|--------|
| А          | 32     | 142     | 110    | 1 921   | 418    | 2 623  |
| B5         | 0      | 90      | 292    | 18      | 246    | 646    |
| C5         | 215    | 86      | 168    | 64      | 261    | 794    |
| D6         | 0      | 140     | 0      | 0       | 170    | 310    |
| D7         | 1 912  | 0       | 0      | 66      | 724    | 2 702  |
| E6         | 906    | 2 3 3 7 | 2 295  | 450     | 509    | 6 497  |
| E7         | 2 523  | 4 731   | 3 270  | 2 390   | 2 842  | 15 756 |
| F8         | 4      | 72      | 0      | 44      | 0      | 120    |
| F9         | 0      | 0       | 0      | 0       | 312    | 312    |
| G8         | 10 001 | 9 421   | 10 210 | 9 281   | 8 678  | 47 591 |
| G9         | 1 436  | 898     | 276    | 263     | 26     | 2 899  |
| Н          | 0      | 6       | 0      | 0       | 0      | 6      |
| S5         | 210    | 52      | 133    | 116     | 433    | 944    |
| S6         | 310    | 587     | 169    | 202     | 330    | 1 598  |
| <b>S</b> 7 | 1 107  | 2 565   | 1 697  | 4 1 3 8 | 7 036  | 16 543 |
| <b>S</b> 8 | 34     | 184     | 100    | 68      | 0      | 386    |
| All        | 18 690 | 21 311  | 18 720 | 19 021  | 21 985 | 99 727 |

Table 8.4: Number of dredge oyster tows in Foveaux Strait fishery, by fishery area for each month with effort, for all years combined (2007–08 to 2011–12). Areas are shown in Figure 8.1.

| Area       | Oct | Nov | Feb | Mar     | Apr    | May    | Jun    | Jul   | Aug   | Sep   | All    |
|------------|-----|-----|-----|---------|--------|--------|--------|-------|-------|-------|--------|
| А          | 104 | 0   | 0   | 249     | 338    | 376    | 160    | 237   | 430   | 729   | 2 623  |
| B5         | 0   | 0   | 5   | 0       | 8      | 80     | 231    | 194   | 120   | 8     | 646    |
| C5         | 0   | 0   | 0   | 6       | 36     | 154    | 361    | 156   | 81    | 0     | 794    |
| D6         | 0   | 0   | 0   | 0       | 26     | 144    | 140    | 0     | 0     | 0     | 310    |
| D7         | 0   | 0   | 0   | 898     | 724    | 486    | 294    | 282   | 2     | 16    | 2 702  |
| E6         | 29  | 0   | 0   | 3 1 1 6 | 1 290  | 1 051  | 527    | 333   | 151   | 0     | 6 497  |
| E7         | 22  | 13  | 6   | 6 223   | 4 054  | 2 800  | 1 967  | 477   | 65    | 129   | 15 756 |
| F8         | 0   | 0   | 0   | 4       | 20     | 0      | 52     | 0     | 44    | 0     | 120    |
| F9         | 0   | 0   | 0   | 0       | 58     | 254    | 0      | 0     | 0     | 0     | 312    |
| G8         | 295 | 0   | 0   | 11 369  | 10 526 | 10 485 | 8 652  | 4 539 | 1 024 | 701   | 47 591 |
| G9         | 0   | 0   | 0   | 254     | 1 606  | 649    | 355    | 35    | 0     | 0     | 2 899  |
| Н          | 0   | 0   | 0   | 0       | 0      | 6      | 0      | 0     | 0     | 0     | 6      |
| S5         | 0   | 0   | 0   | 120     | 187    | 116    | 250    | 94    | 177   | 0     | 944    |
| S6         | 10  | 0   | 0   | 428     | 72     | 533    | 279    | 224   | 18    | 34    | 1 598  |
| S7         | 20  | 0   | 0   | 5 528   | 4 381  | 3 402  | 1 895  | 697   | 483   | 137   | 16 543 |
| <b>S</b> 8 | 0   | 0   | 0   | 126     | 0      | 236    | 24     | 0     | 0     | 0     | 386    |
| All        | 480 | 13  | 11  | 28 321  | 23 326 | 20 772 | 15 187 | 7 268 | 2 595 | 1 754 | 99 727 |

Table 8.5: Number of vessels targeting dredge oysters in the Challenger fishery, by fishing year 2007–08 (2008) to 2011–12 (2012). Areas are shown in Figure 8.3. Note: no effort was reported from areas 7AA–7CC.

| Area | 2008 | 2009 | 2010 | 2011 | 2012 | All |
|------|------|------|------|------|------|-----|
| 7DD  | 3    | 1    | 0    | 0    | 0    | 4   |
| 7EE  | 4    | 0    | 0    | 0    | 0    | 4   |
| 7FF  | 4    | 0    | 0    | 7    | 0    | 8   |
| 7GG  | 4    | 0    | 0    | 1    | 0    | 5   |
| 7HH  | 3    | 0    | 0    | 0    | 0    | 3   |
| 7II  | 1    | 0    | 0    | 1    | 0    | 1   |
| 7KK  | 0    | 0    | 2    | 0    | 0    | 2   |
| 7LL  | 0    | 0    | 1    | 3    | 2    | 3   |
| 7MM  | 2    | 2    | 2    | 0    | 0    | 4   |
| All  | 7    | 2    | 3    | 9    | 2    | 12  |

Table 8.6: Number of dredge oyster tows in Challenger fishery, by month for each fishing year 2007–08 (2008) to 2011–12 (2012). Areas are shown in Figure 8.3.

| Month | 2008  | 2009 | 2010  | 2011  | 2012 | All   |
|-------|-------|------|-------|-------|------|-------|
| Oct   | 0     | 0    | 0     | 140   | 0    | 140   |
| Nov   | 0     | 0    | 173   | 201   | 91   | 465   |
| Dec   | 75    | 0    | 192   | 206   | 118  | 591   |
| Jan   | 349   | 264  | 296   | 166   | 100  | 1 175 |
| Feb   | 431   | 230  | 257   | 165   | 156  | 1 239 |
| Mar   | 804   | 131  | 236   | 182   | 16   | 1 369 |
| Apr   | 651   | 67   | 77    | 85    | 87   | 967   |
| May   | 18    | 3    | 0     | 96    | 30   | 147   |
| Jun   | 1     | 0    | 0     | 178   | 48   | 227   |
| Jul   | 0     | 0    | 0     | 134   | 50   | 184   |
| Aug   | 0     | 0    | 0     | 411   | 182  | 593   |
| Sep   | 0     | 0    | 0     | 0     | 57   | 57    |
| All   | 2 329 | 695  | 1 231 | 1 964 | 935  | 7 154 |

Table 8.7: Number of dredge oyster tows in Challenger fishery, by fishery area for each fishing year 2007–08 (2008) to 2011–12 (2012). Areas are shown in Figure 8.3. Note: no effort was reported for areas 7AA–7CC.

| Area | 2008  | 2009 | 2010  | 2011  | 2012 | All   |
|------|-------|------|-------|-------|------|-------|
| 7DD  | 194   | 3    | 0     | 0     | 0    | 197   |
| 7EE  | 760   | 0    | 0     | 0     | 0    | 760   |
| 7FF  | 443   | 0    | 0     | 366   | 0    | 809   |
| 7GG  | 198   | 0    | 0     | 24    | 0    | 222   |
| 7HH  | 114   | 0    | 0     | 0     | 0    | 114   |
| 7II  | 21    | 0    | 0     | 21    | 0    | 42    |
| 7KK  | 0     | 0    | 129   | 0     | 0    | 129   |
| 7LL  | 0     | 0    | 470   | 1 553 | 935  | 2 958 |
| 7MM  | 599   | 692  | 632   | 0     | 0    | 1 923 |
| All  | 2 329 | 695  | 1 231 | 1 964 | 935  | 7 154 |

Table 8.8: Number of dredge oyster tows in the Challenger fishery, by month for each fishery area. Areas are shown in Figure 8.3. Note: no effort was reported for areas 7AA–7CC.

| Month | 7DD | 7EE | 7FF | 7GG | 7HH | 7II | 7KK | 7LL   | 7MM   | All   |
|-------|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|
| Oct   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 140   | 0     | 140   |
| Nov   | 0   | 0   | 0   | 0   | 0   | 0   | 13  | 337   | 115   | 465   |
| Dec   | 0   | 0   | 0   | 0   | 0   | 0   | 60  | 324   | 207   | 591   |
| Jan   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 380   | 795   | 1 175 |
| Feb   | 0   | 128 | 88  | 43  | 0   | 0   | 0   | 442   | 538   | 1 239 |
| Mar   | 115 | 382 | 208 | 99  | 0   | 0   | 31  | 336   | 198   | 1 369 |
| Apr   | 79  | 250 | 147 | 56  | 98  | 21  | 25  | 224   | 67    | 967   |
| May   | 3   | 0   | 0   | 0   | 16  | 0   | 0   | 126   | 2     | 147   |
| Jun   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 226   | 1     | 227   |
| Jul   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 184   | 0     | 184   |
| Aug   | 0   | 0   | 366 | 24  | 0   | 21  | 0   | 182   | 0     | 593   |
| Sep   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 57    | 0     | 57    |
| All   | 197 | 760 | 809 | 222 | 114 | 42  | 129 | 2 958 | 1 923 | 7 154 |

Table 8.9: Number of vessels targeting scallops in the Challenger fishery, by fishery area for each scallop fishing year, 1 April 2007–31 March 2008 (2008) to 2012–13 (2013). Note: data for the 2008 and the 2013 fishing years will not be complete because the data extract was from 1 October 2007 to 30 September 2012. Areas are shown in Figure 8.2. Note: no effort was reported from areas 7EE, 7HH, or 7JJ.

| Area | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | All |
|------|------|------|------|------|------|------|-----|
| 7AA  | 0    | 0    | 8    | 0    | 0    | 0    | 8   |
| 7BB  | 0    | 31   | 13   | 5    | 1    | 0    | 32  |
| 7CC  | 30   | 6    | 7    | 0    | 1    | 0    | 30  |
| 7DD  | 0    | 0    | 1    | 1    | 0    | 0    | 2   |
| 7FF  | 1    | 1    | 0    | 0    | 0    | 0    | 2   |
| 7GG  | 0    | 1    | 0    | 0    | 0    | 0    | 1   |
| 7II  | 0    | 0    | 1    | 1    | 1    | 0    | 3   |
| 7KK  | 0    | 20   | 23   | 22   | 17   | 10   | 34  |
| 7LL  | 5    | 2    | 9    | 13   | 16   | 11   | 25  |
| All  | 32   | 32   | 26   | 22   | 18   | 14   | 41  |

Table 8.10: Number of scallop tows in the Challenger fishery, by month for each scallop fishing year. Note: see Table 8.9 caption for fishing year comments on data completeness for 2008 and 2013. The fishing season is generally from August to December.

| Month | 2008  | 2009   | 2010   | 2011  | 2012    | 2013  | All    |
|-------|-------|--------|--------|-------|---------|-------|--------|
| Aug   | 0     | 0      | 95     | 0     | 0       | 0     | 95     |
| Sep   | 0     | 0      | 4 882  | 4 037 | 643     | 2 263 | 11 825 |
| Oct   | 5 857 | 6 202  | 5 179  | 3 511 | 4 988   | 0     | 25 737 |
| Nov   | 479   | 7 707  | 172    | 0     | 488     | 0     | 8 846  |
| Dec   | 0     | 1 532  | 0      | 0     | 0       | 0     | 1 532  |
| Jan   | 6     | 615    | 3      | 0     | 0       | 0     | 624    |
| Feb   | 0     | 72     | 10     | 0     | 0       | 0     | 82     |
| All   | 6 342 | 16 128 | 10 341 | 7 548 | 6 1 1 9 | 2 263 | 48 741 |

Table 8.11: Number of scallop tows in the Challenger fishery, by fishery area for each scallop fishing year. Note: see Table 8.9 caption for fishing year comments on data completeness for 2008 and 2013. Areas are shown in Figure 8.2. Note: no effort was reported from areas 7EE, 7HH, or 7JJ.

| Area | 2008  | 2009   | 2010   | 2011  | 2012    | 2013  | All    |
|------|-------|--------|--------|-------|---------|-------|--------|
| 7AA  | 0     | 0      | 385    | 0     | 0       | 0     | 385    |
| 7BB  | 0     | 10 939 | 1 666  | 1 288 | 96      | 0     | 13 989 |
| 7CC  | 5 293 | 138    | 469    | 0     | 76      | 0     | 5 976  |
| 7DD  | 0     | 0      | 10     | 22    | 0       | 0     | 32     |
| 7FF  | 6     | 20     | 0      | 0     | 0       | 0     | 26     |
| 7GG  | 0     | 37     | 0      | 0     | 0       | 0     | 37     |
| 7II  | 0     | 0      | 4      | 54    | 16      | 0     | 74     |
| 7KK  | 0     | 4 964  | 7 467  | 5 449 | 3 857   | 940   | 22 677 |
| 7LL  | 1 043 | 30     | 340    | 735   | 2 074   | 1 323 | 5 545  |
| All  | 6 342 | 16 128 | 10 341 | 7 548 | 6 1 1 9 | 2 263 | 48 741 |

Table 8.12: Number of scallop tows in the Challenger fishery, by month for each month of the data extract (1 October 2007 to 30 September 2012). The fishing season is generally from August to December. Areas are shown in Figure 8.2. Note: no effort was reported for March–July inclusive or for 7EE, 7HH, or 7JJ.

| Month | 7AA | 7BB    | 7CC   | 7DD | 7FF | 7GG | 7II | 7KK     | 7LL   | All    |
|-------|-----|--------|-------|-----|-----|-----|-----|---------|-------|--------|
| Aug   | 0   | 91     | 0     | 0   | 0   | 0   | 4   | 0       | 0     | 95     |
| Sep   | 88  | 610    | 74    | 22  | 0   | 0   | 16  | 8 445   | 2 570 | 11 825 |
| Oct   | 297 | 6 665  | 5 299 | 0   | 20  | 37  | 54  | 10 415  | 2 950 | 25 737 |
| Nov   | 0   | 5 128  | 566   | 0   | 0   | 0   | 0   | 3 1 3 0 | 22    | 8 846  |
| Dec   | 0   | 1 495  | 37    | 0   | 0   | 0   | 0   | 0       | 0     | 1 532  |
| Jan   | 0   | 0      | 0     | 0   | 6   | 0   | 0   | 615     | 3     | 624    |
| Feb   | 0   | 0      | 0     | 10  | 0   | 0   | 0   | 72      | 0     | 82     |
| All   | 385 | 13 989 | 5 976 | 32  | 26  | 37  | 74  | 22 677  | 5 545 | 48 741 |

Table 8.13: Number of vessels targeting scallops in the Coromandel fishery, by fishery area for each scallop fishing year, 1 April 2007–31 March 2008 (2008) to 2012–13 (2013). Note: data for the 2008 and the 2013 fishing years will not be complete because the data extract was from 1 October 2007 to 30 September 2012. Areas are shown in Figure 8.3. Note: no effort was reported from areas 2B, 2D, 2G, 2I, 2J, 2M–2P, 2T–2V, or 2Y.

| Area | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | All |
|------|------|------|------|------|------|------|-----|
| 2A   | 1    | 0    | 0    | 1    | 0    | 0    | 2   |
| 2C   | 0    | 1    | 0    | 0    | 0    | 0    | 1   |
| 2E   | 1    | 0    | 0    | 0    | 0    | 0    | 1   |
| 2F   | 0    | 1    | 0    | 0    | 0    | 0    | 1   |
| 2H   | 1    | 0    | 0    | 0    | 0    | 0    | 1   |
| 2K   | 5    | 0    | 3    | 2    | 0    | 0    | 6   |
| 2L   | 8    | 7    | 7    | 7    | 7    | 0    | 9   |
| 2Q   | 0    | 0    | 0    | 0    | 1    | 0    | 1   |
| 2R   | 5    | 6    | 7    | 7    | 8    | 0    | 9   |
| 2S   | 2    | 1    | 0    | 2    | 1    | 0    | 4   |
| 2W   | 4    | 3    | 8    | 3    | 7    | 7    | 10  |
| 2X   | 2    | 0    | 0    | 0    | 1    | 0    | 2   |
| All  | 8    | 7    | 8    | 7    | 8    | 7    | 12  |

Table 8.14: Number of scallop tows in the Coromandel fishery, by month for each scallop fishing year. Note: see Table 8.13 caption for fishing year comments on data completeness for 2008 and 2013. The fishing season is 15 July–21 December.

| Month | 2008  | 2009   | 2010    | 2011  | 2012  | 2013  | All    |
|-------|-------|--------|---------|-------|-------|-------|--------|
| Jul   | 0     | 1 472  | 0       | 0     | 449   | 788   | 2 709  |
| Aug   | 0     | 3 613  | 1 925   | 1 703 | 3 461 | 2 622 | 13 324 |
| Sep   | 0     | 4 179  | 3 311   | 2 361 | 2 782 | 2 276 | 14 909 |
| Oct   | 3 548 | 3 889  | 3 584   | 1 991 | 1 396 | 0     | 14 408 |
| Nov   | 2 767 | 2 722  | 2 2 4 7 | 2 038 | 372   | 0     | 10 146 |
| Dec   | 9     | 0      | 0       | 0     | 0     | 0     | 9      |
| Jan   | 0     | 0      | 0       | 0     | 5     | 0     | 5      |
| Feb   | 0     | 0      | 0       | 0     | 9     | 0     | 9      |
| All   | 6 324 | 15 875 | 11 067  | 8 093 | 8 474 | 5 686 | 55 519 |

Table 8.15: Number of scallop tows in the Coromandel fishery, by fishery area for each scallop fishing year. Note: see Table 8.13 caption for fishing year comments on data completeness for 2008 and 2013. Areas are shown in Figure 8.3. Note: no effort was reported from areas 2B, 2D, 2G, 2I, 2J, 2M–2P, 2T–2V, or 2Y.

| Area | 2008  | 2009   | 2010   | 2011  | 2012  | 2013  | All    |
|------|-------|--------|--------|-------|-------|-------|--------|
| 2A   | 38    | 0      | 0      | 32    | 0     | 0     | 70     |
| 2C   | 0     | 897    | 0      | 0     | 0     | 0     | 897    |
| 2E   | 6     | 0      | 0      | 0     | 0     | 0     | 6      |
| 2F   | 0     | 48     | 0      | 0     | 0     | 0     | 48     |
| 2H   | 7     | 0      | 0      | 0     | 0     | 0     | 7      |
| 2K   | 1 056 | 0      | 319    | 143   | 0     | 0     | 1 518  |
| 2L   | 3 452 | 14 203 | 8 529  | 4 304 | 5 290 | 0     | 35 778 |
| 2Q   | 0     | 0      | 0      | 0     | 21    | 0     | 21     |
| 2R   | 585   | 372    | 1 767  | 3 219 | 640   | 0     | 6 583  |
| 2S   | 36    | 25     | 0      | 58    | 14    | 0     | 133    |
| 2W   | 1 098 | 330    | 452    | 337   | 2 493 | 5 686 | 10 396 |
| 2X   | 46    | 0      | 0      | 0     | 16    | 0     | 62     |
| All  | 6 324 | 15 875 | 11 067 | 8 093 | 8 474 | 5 686 | 55 519 |

Table 8.16: Number of scallop tows in the Coromandel fishery, by month for each month of the data extract (1 October 2007 to 30 September 2012). The fishing season is from 15 July to 21 December. Note: no effort was reported from areas 2B, 2D, 2G, 2I, 2J, 2M–2P, 2T–2V, or 2Y.

| Month | 2A | 2C  | 2E | 2F | 2H | 2K    | 2L     | 2Q | 2R      | 2S  | 2W      | 2X | All    |
|-------|----|-----|----|----|----|-------|--------|----|---------|-----|---------|----|--------|
| Jul   | 0  | 224 | 0  | 0  | 0  | 0     | 1 697  | 0  | 0       | 0   | 788     | 0  | 2 709  |
| Aug   | 0  | 0   | 0  | 0  | 0  | 12    | 9 389  | 0  | 1 301   | 0   | 2 622   | 0  | 13 324 |
| Sep   | 0  | 0   | 0  | 0  | 0  | 0     | 9 084  | 0  | 2 5 5 2 | 0   | 3 257   | 16 | 14 909 |
| Oct   | 0  | 673 | 6  | 48 | 7  | 133   | 10 022 | 21 | 1 340   | 25  | 2 1 3 3 | 0  | 14 408 |
| Nov   | 70 | 0   | 0  | 0  | 0  | 1 373 | 5 577  | 0  | 1 376   | 108 | 1 596   | 46 | 10 146 |
| Dec   | 0  | 0   | 0  | 0  | 0  | 0     | 9      | 0  | 0       | 0   | 0       | 0  | 9      |
| Jan   | 0  | 0   | 0  | 0  | 0  | 0     | 0      | 0  | 5       | 0   | 0       | 0  | 5      |
| Feb   | 0  | 0   | 0  | 0  | 0  | 0     | 0      | 0  | 9       | 0   | 0       | 0  | 9      |
| All   | 70 | 897 | 6  | 48 | 7  | 1 518 | 35 778 | 21 | 6 583   | 133 | 10 396  | 62 | 55 519 |

Table 8.17: Number of vessels targeting scallops in the Northland fishery, by fishery area for each scallop fishing year 1 April 2007–31 March 2008 (2008) to 2012–13 (2013). Note: data for the 2008 and the 2013 fishing years will not be complete because the data extract was from 1 October 2007 to 30 September 2012. Areas are shown in Figure 8.3. Note: no effort was reported from areas 1B, 1C, 1E–1H, 1J, 1L–1P, 9B–9D.

| Area       | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | All |
|------------|------|------|------|------|------|------|-----|
| 1A         | 0    | 1    | 0    | 0    | 0    | 0    | 1   |
| 1D         | 8    | 8    | 9    | 4    | 4    | 0    | 11  |
| 1I         | 1    | 1    | 0    | 0    | 0    | 0    | 1   |
| 1Q         | 1    | 0    | 0    | 0    | 0    | 0    | 1   |
| 1R         | 3    | 0    | 0    | 1    | 1    | 1    | 5   |
| 1 <b>S</b> | 0    | 0    | 0    | 1    | 0    | 0    | 1   |
| 9A         | 5    | 6    | 1    | 0    | 0    | 0    | 7   |
| All        | 13   | 9    | 9    | 5    | 4    | 1    | 17  |

Table 8.18: Number of scallop tows in the Northland fishery, by month for each scallop fishing year. The fishing season is from 15 July to 14 February each year. Note: see Table 8.17 caption for fishing year comments on data completeness for 2008 and 2013.

|     | 2008  | 2009  | 2010  | 2011  | 2012 | 2013 | All     |
|-----|-------|-------|-------|-------|------|------|---------|
| Jul | 0     | 327   | 1 034 | 158   | 0    | 0    | 1 519   |
| Aug | 0     | 685   | 1 402 | 127   | 51   | 0    | 2 265   |
| Sep | 0     | 1 514 | 1 196 | 22    | 80   | 28   | 2 840   |
| Oct | 1 122 | 1 783 | 905   | 124   | 88   | 0    | 4 0 2 2 |
| Nov | 1 441 | 1 728 | 1 475 | 235   | 263  | 0    | 5 142   |
| Dec | 924   | 1 200 | 808   | 217   | 109  | 0    | 3 258   |
| Jan | 1 651 | 1 573 | 724   | 195   | 339  | 0    | 4 482   |
| Feb | 808   | 394   | 244   | 0     | 20   | 0    | 1 466   |
| Mar | 0     | 4     | 0     | 0     | 0    | 0    | 4       |
| All | 5 946 | 9 208 | 7 788 | 1 078 | 950  | 28   | 24 998  |

Table 8.19: Number of scallop tows in the Northland fishery, by fishery area for each scallop fishing year. Note: see Table 8.17 caption for fishing year comments on data completeness for 2008 and 2013. See Figure 8.3 for areas. There was no effort reported from areas 1B, 1C, 1E–1H, 1J, 1L–1P, 9B–9D.

| Area       | 2008  | 2009  | 2010  | 2011  | 2012 | 2013 | All    |
|------------|-------|-------|-------|-------|------|------|--------|
| 1A         | 0     | 21    | 0     | 0     | 0    | 0    | 21     |
| 1D         | 4 894 | 8 312 | 7 786 | 1 004 | 948  | 0    | 22 944 |
| 1I         | 13    | 10    | 0     | 0     | 0    | 0    | 23     |
| 1Q         | 63    | 0     | 0     | 0     | 0    | 0    | 63     |
| 1R         | 152   | 0     | 0     | 31    | 2    | 28   | 213    |
| 1 <b>S</b> | 0     | 0     | 0     | 43    | 0    | 0    | 43     |
| 9A         | 824   | 865   | 2     | 0     | 0    | 0    | 1 691  |
| All        | 5 946 | 9 208 | 7 788 | 1 078 | 950  | 28   | 24 998 |

Table 8.20: Number of scallop tows in the Northland fishery, by fishery area for each month of the data extract (1 October 2007 to 30 September 2012). Areas are shown in Figure 8.3. No effort was reported from areas 1B, 1C, 1E–1H, 1J, 1L–1P, 9B–9D.

| Month | 1A | 1D     | 1I | 1Q | 1 <b>R</b> | 1 <b>S</b> | 9A    | All    |
|-------|----|--------|----|----|------------|------------|-------|--------|
| Jul   | 0  | 1 519  | 0  | 0  | 0          | 0          | 0     | 1 519  |
| Aug   | 0  | 2 252  | 0  | 0  | 13         | 0          | 0     | 2 265  |
| Sep   | 0  | 2 798  | 2  | 0  | 40         | 0          | 0     | 2 840  |
| Oct   | 0  | 3 873  | 0  | 0  | 0          | 43         | 106   | 4 022  |
| Nov   | 21 | 4 673  | 3  | 63 | 156        | 0          | 226   | 5 142  |
| Dec   | 0  | 2 453  | 3  | 0  | 0          | 0          | 802   | 3 258  |
| Jan   | 0  | 4 086  | 4  | 0  | 4          | 0          | 388   | 4 482  |
| Feb   | 0  | 1 290  | 7  | 0  | 0          | 0          | 169   | 1 466  |
| Mar   | 0  | 0      | 4  | 0  | 0          | 0          | 0     | 4      |
| All   | 21 | 22 944 | 23 | 63 | 213        | 43         | 1 691 | 24 998 |

## **APPENDIX 9: SUMMARY OF DANISH SEINE EFFORT**

A Danish seine net is defined as "any net or part of a net (including any warp, rope, chain, material, or device used in conjunction with or attached to the net) that — (a) has a buoyancy system on the top edge; and (b) is weighted on the bottom edge; and (c) is operated, without the use of any horizontal net opening device, by surrounding any fish and being drawn over the bed of any waters, or through any waters, to 1 or more vessels" (Fisheries (Auckland and Kermadec Areas Commercial Fishing) Regulations 1986).

A total of 11 053 daily records from CELR data for 2007–08 to 2011–12 equated to 26 768 Danish seine sets reported from a total of 36 vessels. Twenty-one vessels made at least 500 sets over the five year period, which equates to about 90% of the total Danish seine effort. Minimal grooming has been carried out on these data, other than to check target species and amend a very small percentage of the fishing duration data.

The median number of daily sets was 2 (range of 1-10 sets per day). For the records where fishing duration was reported (as the number of hours fished per day), the data suggest that each set was generally between 2 and 4 hours long: note, almost 37% of records had no fishing duration data.

The number of sets per fishing year has been relatively steady over the five year period (Table 9.1). At least 31 different target species were reported for Danish seine effort, seven of which accounted for 98% of the total effort. The main targets were: snapper (36.2% of the sets), red gurnard (20.8%), flatfish species (19.2%), tarakihi (7.6%), red cod (6.2%), John dory (5.8%), and rig (2.2%). The annual effort has been reasonably steady from year to year for snapper and red gurnard, whereas relatively large fluctuations are evident in effort targeted at flatfish species and John dory. Tarakihi and rig effort has increased over the five year period, whereas red cod effort has steadily declined.

Effort for the main targets was primarily in Statistical Area 047 off the northern west coast North Island; 003 off the Bay of Islands; 006, 008, and 009 in the Hauraki Gulf and Bay of Plenty; 038 in Nelson-Marlborough waters; and 020 and 022 off the east coast South Island (Tables 9.2 and 9.3). Snapper was targeted consistently in 006 (38% of all snapper sets) and in 008 and 009 (37% of snapper sets), with lesser effort in 003, 010, and 005. Red gurnard was targeted mainly in waters around the northern North Island, in 003, 005, 008, 009, 010, 012, and 013 off the east coast and in 039,041,042, 045, 046, and 047 off the west coast. Area 047 accounted for 23% of all red gurnard sets.

Almost 77% of the flatfish effort was in 038, though there was large interannual variation (range: 422 in 2011 to 1128 sets in 2010). The remainder of the flatfish effort was mainly in 020 and 022. Statistical Areas 020 and 022 were also important for tarakihi, accounting for 56% of the Danish seine sets. Areas 009 (22%) was the next most important area, with 003 and 008 accounting for another 13% of sets. Effort for the remaining species was less widespread. Red cod was almost exclusively targeted in 020 and 022; John dory in 006; and rig in 020 and 022.

| Target species  | 2008  | 2009  | 2010  | 2011  | 2012    | All    |
|-----------------|-------|-------|-------|-------|---------|--------|
| Barracouta      | 0     | 0     | 0     | 0     | 1       | 1      |
| Elephant fish   | 79    | 16    | 9     | 67    | 36      | 207    |
| Blue mackerel   | 0     | 0     | 0     | 5     | 5       | 10     |
| Flatfish        | 1 218 | 972   | 1 262 | 613   | 1 093   | 5 158  |
| Garfish         | 0     | 0     | 5     | 0     | 0       | 5      |
| Grey mullet     | 0     | 0     | 2     | 0     | 2       | 4      |
| Ghost shark     | 2     | 9     | 0     | 0     | 3       | 14     |
| Red gurnard     | 915   | 1 163 | 1 182 | 1 210 | 1090    | 5 560  |
| Hoki            | 0     | 0     | 4     | 45    | 4       | 53     |
| John dory       | 435   | 262   | 202   | 329   | 335     | 1 563  |
| Spotted gurnard | 0     | 0     | 0     | 0     | 1       | 1      |
| Jack mackerel   | 0     | 0     | 0     | 0     | 2       | 2      |
| Kahawai         | 0     | 1     | 0     | 0     | 5       | 6      |
| Mirror dory     | 0     | 0     | 0     | 1     | 0       | 1      |
| Parore          | 0     | 0     | 1     | 0     | 0       | 1      |
| Pilchard        | 3     | 0     | 0     | 0     | 0       | 3      |
| Red cod         | 435   | 390   | 328   | 308   | 190     | 1 651  |
| School shark    | 0     | 0     | 0     | 3     | 12      | 15     |
| Gemfish         | 0     | 0     | 1     | 0     | 0       | 1      |
| Skipjack        | 0     | 0     | 0     | 1     | 0       | 1      |
| Snapper         | 2 035 | 1 871 | 1 859 | 1 810 | 2 1 2 0 | 9 695  |
| Spiny dogfish   | 0     | 0     | 38    | 4     | 0       | 42     |
| Sea perch       | 0     | 3     | 0     | 0     | 0       | 3      |
| Rig             | 19    | 25    | 113   | 194   | 248     | 599    |
| Arrow squid     | 0     | 0     | 0     | 0     | 2       | 2      |
| Tarakihi        | 207   | 417   | 441   | 425   | 539     | 2 029  |
| Trevally        | 2     | 0     | 9     | 49    | 81      | 141    |
| All             | 5 350 | 5 129 | 5 456 | 5 064 | 5 769   | 26 768 |

Table 9.1: Target species reported for Danish seine effort on CELR forms, 2007–08 (2008) to 2011–12 (2012).

Table 9.2: Number of Danish seine sets for the main species (snapper, red gurnard, flatfish, tarakihi, red cod, John dory, and rig) in each statistical area, by fishing years 2007–08 (2008) to 2011–12 (2012). These species account for 95% of the total number of sets.

| Statistical |         |       |       |       |         |         |
|-------------|---------|-------|-------|-------|---------|---------|
| Area        | 2008    | 2009  | 2010  | 2011  | 2012    | All     |
| 001         | 0       | 3     | 0     | 0     | 1       | 4       |
| 002         | 38      | 28    | 33    | 20    | 7       | 126     |
| 003         | 338     | 233   | 338   | 227   | 313     | 1 449   |
| 004         | 2       | 0     | 12    | 2     | 14      | 30      |
| 005         | 152     | 245   | 331   | 143   | 246     | 1 1 1 7 |
| 006         | 1 288   | 869   | 851   | 828   | 1 2 3 4 | 5 070   |
| 007         | 8       | 3     | 9     | 0     | 0       | 20      |
| 008         | 414     | 417   | 379   | 388   | 374     | 1 972   |
| 009         | 395     | 648   | 809   | 777   | 536     | 3 165   |
| 010         | 97      | 107   | 168   | 442   | 314     | 1 128   |
| 011         | 4       | 1     | 3     | 31    | 11      | 50      |
| 012         | 10      | 0     | 69    | 131   | 187     | 397     |
| 013         | 24      | 0     | 13    | 47    | 220     | 304     |
| 015         | 0       | 1     | 0     | 0     | 0       | 1       |
| 016         | 0       | 15    | 0     | 0     | 0       | 15      |
| 017         | 20      | 15    | 7     | 5     | 28      | 75      |
| 018         | 4       | 14    | 3     | 20    | 27      | 68      |
| 020         | 510     | 499   | 441   | 574   | 591     | 2 615   |
| 021         | 6       | 0     | 0     | 0     | 0       | 6       |
| 022         | 377     | 323   | 296   | 294   | 461     | 1 751   |
| 023         | 0       | 0     | 0     | 5     | 0       | 5       |
| 024         | 0       | 0     | 0     | 3     | 4       | 7       |
| 030         | 0       | 3     | 0     | 0     | 0       | 3       |
| 033         | 0       | 0     | 0     | 0     | 2       | 2       |
| 035         | 0       | 21    | 8     | 36    | 3       | 68      |
| 036         | 0       | 0     | 1     | 1     | 0       | 2       |
| 037         | 5       | 6     | 8     | 3     | 11      | 33      |
| 038         | 922     | 778   | 1 141 | 448   | 740     | 4 029   |
| 039         | 79      | 61    | 16    | 55    | 44      | 255     |
| 040         | 4       | 25    | 0     | 1     | 0       | 30      |
| 041         | 39      | 88    | 2     | 2     | 24      | 155     |
| 042         | 77      | 139   | 8     | 116   | 44      | 384     |
| 045         | 59      | 95    | 34    | 101   | 89      | 378     |
| 046         | 24      | 89    | 23    | 25    | 0       | 161     |
| 047         | 353     | 361   | 374   | 159   | 87      | 1 334   |
| 101         | 2       | 0     | 0     | 0     | 0       | 2       |
| 106         | 2       | 0     | 3     | 0     | 0       | 5       |
| 107         | 0       | 4     | 0     | 0     | 0       | 4       |
| 608         | 0       | 0     | 0     | 3     | 0       | 3       |
| All         | 5 2 5 3 | 5 091 | 5 380 | 4 887 | 5 612   | 26 223  |

Table 9.3: Number of Danish seine sets for the main target species in each Statistical Area, for 2007–08 to 2011–2102 combined. FLA is flatfish, GUR is red gurnard, JDO is John dory, RCO is red cod, SNA is snapper, SPO is rig, TAR is tarakihi.

| Statistical Area FLA GU | R JDO    | RCO   | SNA   | SPO | TAR   | All    |
|-------------------------|----------|-------|-------|-----|-------|--------|
| 001 0                   | 1 0      | 0     | 3     | 0   | 0     | 4      |
| 002 0 5                 | 57 0     | 0     | 29    | 0   | 40    | 126    |
| 003 7 50                | 9 32     | 0     | 753   | 0   | 148   | 1 449  |
| 004 0                   | 9 0      | 0     | 2     | 0   | 19    | 30     |
| 005 4 49                | 9 51     | 0     | 535   | 0   | 28    | 1 117  |
| 006 1 4                 | 6 1 374  | 0     | 3 640 | 9   | 0     | 5 070  |
| 007 8                   | 0 1      | 0     | 11    | 0   | 0     | 20     |
| 008 0 49                | 18       | 0     | 1 341 | 2   | 118   | 1 972  |
| 009 0 44                | 5 27     | 0     | 2 253 | 0   | 440   | 3 165  |
| 010 0 27                | 48       | 0     | 766   | 1   | 42    | 1 128  |
| 011 0 2                 | 2 0      | 0     | 24    | 0   | 4     | 50     |
| 012 0 25                | 52 0     | 0     | 134   | 0   | 11    | 397    |
| 013 3 28                | 32 0     | 0     | 19    | 0   | 0     | 304    |
| 015 0                   | 0 0      | 0     | 1     | 0   | 0     | 1      |
| 016 15                  | 0 0      | 0     | 0     | 0   | 0     | 15     |
| 017 11 5                | 51 0     | 13    | 0     | 0   | 0     | 75     |
| 018 0 2                 | .9 0     | 8     | 0     | 5   | 26    | 68     |
| 020 760                 | 7 0      | 987   | 0     | 424 | 437   | 2 615  |
| 021 0                   | 0 0      | 6     | 0     | 0   | 0     | 6      |
| 022 270                 | 5 0      | 633   | 0     | 144 | 699   | 1 751  |
| 023 0                   | 0 0      | 0     | 0     | 5   | 0     | 5      |
| 024 4                   | 0 0      | 3     | 0     | 0   | 0     | 7      |
| 030 3                   | 0 0      | 0     | 0     | 0   | 0     | 3      |
| 033 0                   | 2 0      | 0     | 0     | 0   | 0     | 2      |
| 035 65                  | 3 0      | 0     | 0     | 0   | 0     | 68     |
| 036 0                   | 0 1      | 0     | 1     | 0   | 0     | 2      |
| 037 1 3                 | 0        | 0     | 0     | 0   | 0     | 33     |
| 038 3 948               | 0 2      | 1     | 65    | 3   | 0     | 4 029  |
| 039 44 20               | 0 1      | 0     | 0     | 6   | 4     | 255    |
| 040 0 3                 | 30 O     | 0     | 0     | 0   | 0     | 30     |
| 041 8 14                | 15 0     | 0     | 2     | 0   | 0     | 155    |
| 042 6 37                | 0 /2     | 0     | 6     | 0   | 0     | 384    |
| 045 0 35                | 57 0     | 0     | 17    | 0   | 4     | 378    |
| 046 0 16                | 61 0     | 0     | 0     | 0   | 0     | 161    |
| 047 0 1 26              | 6 0      | 0     | 60    | 0   | 8     | 1 334  |
| 101 0                   | 0 0      | 0     | 2     | 0   | 0     | 2      |
| 106 0                   | 0 5      | 0     | 0     | 0   | 0     | 5      |
| 107 0                   | 0 0      | 0     | 4     | 0   | 0     | 4      |
| 608 0                   | 3 0      | 0     | 0     | 0   | 0     | 3      |
| All 5 158 5 55          | 59 1 560 | 1 651 | 9 668 | 599 | 2 028 | 26 223 |