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EXECUTIVE SUMMARY 

McGregor, V.; Horn, P.L. (2015). Factors affecting the distribution of highly migratory species 
in New Zealand waters. 

New Zealand Aquatic Environment and Biodiversity Report No. 146. 119 p. 

Distributional data from the New Zealand long-line fishery were fitted with BRT (Boosted Regression 
Tree) models using remote sensing datasets as predictors, to examine the extent to which large-scale 
biological and physical environmental forces might predict the potential distribution of highly 
migratory species. 

While temporal and spatial variables and sea surface temperature were available, temperature at 
capture depth, chlorophyll-a, dissolved oxygen, and distance from a thermal front were not. Hence, 
the conclusions drawn here may comprise an incomplete explanation of what influences the species 
distributions. 

BRT models were fitted to presence/absence data using the Binomial distribution and the number 
caught per set data using the Poisson distribution. 

Predictive ability of all models was tested for each combination of species, response variable 
(presence/absence or number caught) and year. Predictive ability was found to range from poor to 
good, with models fitting to presence/absence generally better than those predicting the number 
caught. 

Species that had either small datasets in terms of numbers caught or presences, or those with limited 
spatial distributions tended to have poorer predictive ability. 

The species with the most predictive power in the Binomial models were albacore, big-eye tuna, 
butterfly tuna and long-snouted lancetfish. The species with the most predictive power in the Poisson 
models were butterfly tuna, mako shark, southern bluefin tuna and broadbill swordfish. Shortsnouted 
lancet fish had poor predictive ability in the Binomial and Poisson models. Big-eye tuna and 
yellowfin tuna had poor predictive ability in the Poisson models.  

The predictive power was reduced when a model was applied outside the main range for a predictor 
variable of which it was fitted. 

Variable effects were generally consistent for all models for each species. They sometimes became 
inconsistent where the data in one year were outside the range for one or more predictor variables in 
the other years.  

The variables with the most influence in the Binomial models were sea surface temperature, latitude 
and subarea. The variables influencing the Poisson models varied greatly. 

BRT models are usually fitted using temporal and environmental variables, and do not include spatial 
variables. Latitude and subarea were often selected as highly influential in these models and it is 
likely that these are a proxy for environmental variables. 

Ministry for Primary Industries Distribution of highly migratory species  1 



 

  
 

 

 
     

 
   

   

 
 

   
  

 
     

   
 

 

 
  

 
   

 
     

 
 

   

 
      

  
  

 
    

 
  

 
    

  
 

 
  

1. INTRODUCTION 

The new National Fisheries Plan for Highly Migratory Species (Ministry of Fisheries 2010) has 
identified the importance of using an ecosystem approach to fisheries management. In particular 
Objective 7 of the National Fisheries Plan for Highly Migratory Species aims to implement an 
ecosystem approach to fisheries management and aims to maintain food chain relationships and 
conserve trophic linkages. 

The first steps in attempting to maintain food chain relationships and conserve trophic linkages were 
determining what they are, and what each species eats. The research reported here aimed to take 
distributional data and, using remote sensing datasets, examine the extent to which large-scale 
biological and physical environmental forces (i.e., at the scale of some kilometres resolution) 
influence the distribution of highly migratory species. The key database that formed the basis for this 
research was the data on the composition of the catch of highly migratory species from about 6500 
surface longline sets, collected by observers between 1994 and 2012. 

The research is part of a wider programme, in which we first established diet composition for the most 
abundant fish caught in the surface longline fishery, and evaluated whether there were any spatio-
temporal patterns in diet (Horn et al. 2013). Then, in the research reported here, we assessed and 
determined potential linkages with wider biological and oceanographic characteristics and processes 
by examining the variance in univariate descriptors of the distribution of selected highly migratory 
species. The results of these analyses will indicate the feasibility of developing a focussed ecosystem 
model centred on Highly Migratory Species, their key prey species and the ecosystem resources 
needed to support their prey.  

This document reports on Objective 3 of Project ZBD2011-01 “Evaluation of ecotrophic and 
environmental factors affecting the distribution and abundance of highly migratory species in New 
Zealand waters”. Project objectives are as follows: 

1. Assess the dietary composition of highly migratory teleosts and elasmobranchs using the data 
collected by the Observer Services. 

2. Assess spatio-temporal patterns in dietary composition and changes in food utilisation with 
fish size. 

3. Identify biological and physical environmental forces that can be used to explain highly 
migratory species distribution. 

4. Develop an ecosystem model for the pelagic environment in New Zealand waters. 

Objectives 1 and 2 were reported on by Horn et al. (2013). An examination of the results from 
Objectives 1–3 will determine whether it is viable to complete Objective 4, and, if so, what methods 
will be used to complete it. 

2  Distribution of highly migratory species Ministry for Primary Industries 



 

   
 

 
 

 
  

     
  

   
  

 
 

  
  

   
  

  

  

 
    

       
  

 
 

                                                                                                           

      

 
  

2. METHODS 

2.1 Fishery data 

Information collected by observers on commercial surface longline vessels is stored in the centralised 
observer database (cod) administered by NIWA for the Ministry for Primary Industries (MPI). 
Sampling of individual surface longline sets involves the observers identifying and counting all 
longline catch brought on board the vessel during the time they are observing. The data available from 
cod for this analysis comprised information from 6515 observed surface longline sets collected 
between 25 March 1994 and 28 August 2012. 

Information about commercial catch recorded by fishers on Tuna Longline Catch Effort Return 
(TLCER) forms is stored on the database (warehou) administered by MPI. For the current analysis, 
however, the Observer data was used in preference to TLCER data, because the commercial data 
tends to underestimate bycatch and catch of non-quota species because much of it is discarded at sea 
and not recorded (Francis et al. 2000). Several of the most abundant species were only introduced into 
the QMS in 2004 (e.g., southern bluefin and big-eye tunas, swordfish, mako, porbeagle and blue 
sharks, moonfish, Ray’s bream), so QMS data on the distribution and abundance of these species 
would not be comprehensive or reliable.  

An ‘absence’ for a species was where an observed set did not catch that species (the number observed 
for the species was zero). A presence for a species was where an observed set did catch that species 
(the number observed was greater than zero). The numbers of presences and absences for each species 
for each year are in Tables 1 and 2 respectively. 

Table 1: Number of presences for each species for each year. 

  Species code 

ABR ALB BIG BTU BWS LAT MAK MOO POS RBM STN SWO YFN 

1994 1 110 14 60 228 12 66 52 164 208 217 29 2 

1995 0 137 26 72 260 49 84 90 228 260 258 20 31 

1996 0 97 28 7 136 58 51 57 98 83 70 36 30 

1997 0 222 53 117 400 99 154 190 286 293 304 124 71 

1998 43 329 105 146 425 103 183 240 340 266 306 184 57 

1999 12 284 31 164 381 63 144 160 348 294 335 172 22 

2000 12 184 37 126 269 52 84 113 203 202 210 115 25 

2001 99 261 77 72 271 139 142 152 122 145 134 182 92 

2002 35 223 20 68 334 77 104 127 164 294 275 100 15 

2003 69 460 131 86 545 138 185 211 225 350 316 121 112 

2004 35 274 30 56 531 72 144 124 282 465 427 127 5 

2005 16 255 36 55 311 84 131 120 160 219 214 130 18 

2006 9 151 60 48 264 105 90 80 127 203 194 106 17 

2007 26 358 80 99 404 192 184 213 252 293 292 184 21 

2008 21 201 85 39 233 114 118 91 121 127 135 123 18 

2009 58 255 97 98 395 130 171 136 230 308 284 137 7 

2010 63 210 58 53 291 107 121 147 143 222 214 124 8 

2011 21 205 76 60 315 104 152 112 168 212 229 162 2 

2012 5 158 14 54 280 26 95 61 164 225 241 115 0 

Ministry for Primary Industries Distribution of highly migratory species  3 



 

  
 

                                                                                                            

      

 
  

  
 

 

    
  

 
 

  
 

Table 2: Number of absences for each species for each year. 

 Species Code 

ABR ALB BIG BTU BWS LAT MAK MOO POS RBM STN SWO YFN 

1994 237 128 224 178 10 226 172 186 74 30 21 209 236 

1995 312 175 286 240 52 263 228 222 84 52 54 292 281 

1996 140 43 112 133 4 82 89 83 42 57 70 104 110 

1997 419 197 366 302 19 320 265 229 133 126 115 295 348 

1998 397 111 335 294 15 337 257 200 100 174 134 256 383 

1999 374 102 355 222 5 323 242 226 38 92 51 214 364 

2000 265 93 240 151 8 225 193 164 74 75 67 162 252 

2001 212 50 234 239 40 172 169 159 189 166 177 129 219 

2002 315 127 330 282 16 273 246 223 186 56 75 250 335 

2003 505 114 443 488 29 436 389 363 349 224 258 453 462 

2004 506 267 511 485 10 469 397 417 259 76 114 414 536 

2005 300 61 280 261 5 232 185 196 156 97 102 186 298 

2006 266 124 215 227 11 170 185 195 148 72 81 169 258 

2007 381 49 327 308 3 215 223 194 155 114 115 223 386 

2008 214 34 150 196 2 121 117 144 114 108 100 112 217 

2009 338 141 299 298 1 266 225 260 166 88 112 259 389 

2010 238 91 243 248 10 194 180 154 158 79 87 177 293 

2011 296 112 241 257 2 213 165 205 149 105 88 155 315 

2012 275 122 266 226 0 254 185 219 116 55 39 165 280 

For each set, available data included date, location (at the start of the set, to the nearest 0.1 degree of 
latitude and longitude), time at start of set and start of haul, number of hooks observed and the catch 
from them, and hook depth. Hook depth was derived for each longline set as the mean of the 
estimated maximum and minimum depths of hooks set, as recorded by the vessel skipper. The number 
of each species caught can be standardised as a catch per hook to give an index of relative abundance 
for that species at the location of the set. Rather than standardising, the BRT models were fitted to the 
number of each species caught, with the number of hooks offered as an explanatory variable. This 
approach avoids assuming a relationship between the number caught and the number of hooks, but 
allows for the relationship to exist. This was the approach also used for the Antarctic toothfish 
longline CPUE (catch per unit effort) (Hanchet et al. (2013)). Associated environmental parameters 
were applied to each set start date and location as described in Section 2.2. Each set was allocated to 
an area (one of four categories) and a sub-area (one of nine categories) as defined in Figure 1. 

4  Distribution of highly migratory species Ministry for Primary Industries 



 

   
 

 
 

  
 

 

 
   

  
  

 
  

 
  

  
   

 

   
    

     
 

  
 

Figure 1: Subarea boundaries. 

Distributional analyses are provided for the 13 species chosen for detailed dietary analyses by the 
Aquatic Environment Working Group. The set of species comprises the 14 most commonly caught 
species, excluding school shark. 

2.2 Environmental data 

A value of sea surface temperature (SST) for each landing location was derived from the Reynold’s 
Optimum Interpolation (OI) Sea Surface Temperature Analysis. This analysis is produced daily on a 
¼ degree grid. The analysis uses in situ and satellite SSTs plus SSTs simulated by sea ice cover. 
Before the analysis is computed, the satellite data is adjusted for biases using the method of Reynolds 
(1988) and Reynolds & Marsico (1993). A description of the OI analysis can be found in Reynolds & 
Smith (1994). The bias correction improves the large scale accuracy of the OI. The version used here 
(OI.v2) has an improved sea-ice simulation as described in Reynolds et al. (2002). The SST value 
relevant to the fisheries data was found by finding the nearest SST datapoint to the fisheries location 
for the same day. The ¼ degree SST grid means effectively 25 km resolution. 

The sea surface height (SSH) values were found using an AVISO product for sea surface height (see 
http://www.aviso.oceanobs.com/en/altimetry.html). The product used was the reference version of the 
MADT (Maps of Absolute Topography) dataset. This is a spatially objectively-analysed (mapped) 
combination of 10-day repeat measurements of sea surface height anomaly with the Mean Dynamic 
Topography (MDT). The MDT is the part of mean SSH due to permanent currents, and so 
corresponds to the mean SSH minus the geoid. More information about the MDT used in 
SSALTO/DUACS system can be found on the AVISO web site at: 
http://www.aviso.oceanobs.com/en/data/products/auxiliary-products/mdt/. The SSH data are related to 

Ministry for Primary Industries Distribution of highly migratory species  5 
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the integrated density of the water at that point through the depth of the ocean; this is because less-
dense water stands taller. Around New Zealand there is a north-south gradient in salinity that impacts 
SSH because saltier water is denser, with Subtropical Water (warm and salty) north of the Subtropical 
Front and Sub-Antarctic water (cold and fresh) south of the Subtropical Front. The nature of 
variability around New Zealand is that almost all of the variability in SSH results from changes in 
temperature. Thus, highs in SSH correspond to areas with higher mean temperatures, and vice versa. 

The slopes in the sea surface result in currents that run along the lines of constant height, in the same 
way that winds flow along isobars in weather maps. This means that the estimates of MADT can also 
supply estimates of the surface current field. In this study, the magnitude of the current was extracted 
for comparison with the fisheries data. The MADT mapped height and velocity products have 
resolutions of 0.2–0.3° of latitude, 0.33° of longitude, and 7 days. The SSH and current speed values 
relevant to the fisheries data were determined by finding the nearest datapoint to the fisheries location 
on the nearest day. 

Because moon phase is known to influence the feeding behaviour of some pelagic species, including 
southern bluefin tuna and Ray’s bream (Kemps et at. 1998, Horn et al. 2013), the date-time of fish 
capture was referenced to moon phase as follows. The mean lunar cycle of 29.5 days was divided into 
four equal bins, each about 7.4 days long using a moon phase calculator at: 
http://www.timeanddate.com. Bin 1 was the 7.4 days centred on the actual date-time of the full moon, 
bin 2 encompassed the 7.4 days around the third quarter, bin 3 encompassed new moon, and bin 4 the 
first quarter. 

2.3 Data analyses 

A powerful method that is gaining widespread support for extrapolation of the distribution of a single 
species (or single group of species) is the statistical technique of boosted regression trees (BRT: 
Leathwick et al. 2006). We used a set of predictor variables (Table 3) to explain the variance in 
univariate descriptors of distribution of each HMS species using BRT. Models for presence-absence 
(binomial) and for number caught (Poisson) were investigated (Pinkerton et al. 2010) based on catch 
and effort data from the cod database. 

Table 3: Data used for these analyses, with descriptions of variable names. 

Fishing 
Data 
fishing_event_key 

Description 
Unique combination of trip_no and set_no (not offered as a 
predictor variable) 

duration Time (in hours) between start of set and start of haul 
hook_depth Average estimated depth (m) of hooks set 
hook_no Number of hooks set on the longline 

Location start_latitude Latitude at start of set 
start_longitude Longitude at start of set 
area Gross area split (four areas: KR, NE, SE, SW) 
sub_area More refined area split (nine areas) 

Time/date set_date 
set_time 

Date longline was set 
Start time of set (24 hr clock, decimalised) 

time_haul Start time of haul 
haul_date Date haul started 
haul_month Month haul started 
haul_yr Year haul started 

Environmental SST Sea surface temperature 
SST_anomaly Sea surface temperature anomaly 
SSH Sea surface height (cm) 

6  Distribution of highly migratory species Ministry for Primary Industries 
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SSH_mag_uv Surface current (cm/second) 
moon_ph Moon phase (four bins, each about 7.4 days long) 

Catch by species 
ABR 

Number of this species caught on this longline set 
Shortsnouted lancetfish 

ALB Albacore 
BIG Big-eye tuna 
BTU Butterfly tuna 
BWS Blue shark 
LAT Longsnouted lancetfish 
MAK Mako shark 
MOO Moonfish 
POS Porbeagle shark 
RBM Ray's bream 
STN Southern bluefin tuna 
SWO Broadbill swordfish 
YFN Yellowfin tuna 

The Boosted Regression Trees (BRT) modelling technique is a method used for modelling single 
response variables using several predictors (Leathwick et al. 2006; Ridgeway 2006; De'ath 2007; Elith 
et al. 2008). BRT is an ensemble method, meaning that a large number of relatively simple models, in 
this case, binary regression trees, are combined and averaged to give a model that generally 
outperforms traditional multivariate fitting methods in terms of the explanatory power of the resulting 
model (Friedman & Meulman 2003; Hastie et al. 2001). BRT automatically fits complex, non-linear 
interactions between variables. The fitting of a BRT model is controlled by three factors: (1) the 
learning rate; (2) the tree complexity (how many independent variables can interact to determine each 
split); (3) the number of trees that are used. These parameters, and the cross-validation method 
explained below, were chosen so as to generate models with a high degree of generality because we 
want to potentially use the fitted model to extend spatial predictions of species presence or abundance 
into unsampled areas (Hastie et al. 2001). The relative importance of predictor variables was 
calculated as developed by Friedman (2001), and implemented in the R-gbm library (Ridgeway 
2006). 

For each BRT model developed, the optimal learning rate (lr), tree complexity (tc) and number of 
trees (nt) were selected using a step-wise process as described in Elith et al. (2008). 

To test the predictive power of the models, a separate model was developed for each year, from 1994 
were selected, then the data ݏto 2012, and each of the 13 species. For each model, the data for species 

for year ݕ removed. The model was fitted to the resulting dataset. This model was then used to predict 
. The resulting fitted values were compared with ݏ, species ݕthe response variable in the data for year 

the observed values. The predictive ability of a model was assessed by analysing various plots and 
calculating the predictive deviance, as defined by Elith et al. (2008). A smaller predictive deviance 
indicates that a model has greater predictive power. A plot of fitted versus observed values was 
created for each model. If the model fitted well, the points were close to the line ݕ ൌ  Plots were .ݔ
also created on the New Zealand map to show spatially the observed responses and the fitted 
responses. For the presence-absence (Binomial) models, each point is coloured according to the fitted 
probability of a presence. These were compared to the plot of observed presences and absences. For 
the number present (Poisson) models, separate maps are presented for observed data and fitted data, 
with the colour of each point indicating the number present. These figures are presented in Appendix 
C and key figures are also in the Results section.  

For each predictor variable, its relative contribution (influence) was calculated as developed by 
Friedman (2001). This, and the consistency of a variable effect as viewed in the partial dependence 
plots were used to assess a variable’s usefulness and reliability in the model.  

Ministry for Primary Industries Distribution of highly migratory species  7 



 

  
 

 

 
 

 
 

   
   

 

 
     

  
 

 
   

   

  
  

 
  

  
  

  
 

    

  
  

   

3. RESULTS 

3.1 Selecting controlling factors and assessing predictive power 

Initially, all models were fitted using tc=2 and tc=3, which corresponds to allowing either one level 
interactions (e.g. SST × depth) or two level interactions (e.g. SST × depth × moon phase). The 
calculated predictive deviance for each model for a species with tc=2 and tc=3 were compared, with 
an increase in the predictive deviance required to justify increasing the tc from 2 to 3. Increasing the 
tc to 4 was not considered due to minimal improvements resulting from increasing from 2 to 3. For 
the SWO Poisson models, there was sufficient improvement in predictive ability to justify using tc=3. 
For all other models, tc=2 was sufficient.  

For each tc, the optimal learning rate (lr) and number of trees (nt) were found by decreasing lr and 
increasing nt until either the minimum predictive deviance was found (full description of this method 
in Elith et al. (2008)) or the limit was exceeded for either lr or nt. The limits set were 0.0005 for lr and 
2000 for nt. The resulting values are in Error! Reference source not found.. As all models exceed 
the limit of 2000 for nt, the most extreme cases (BTU Poisson and RBM Poisson) were rerun with a 
limit of 10 000 for nt. The improvement in terms of predictive ability are insufficient to warrant the 
additional number of trees (Figure 2). 

Predictive power of the models varies between species and whether it is the count data or 
presence/absence data being modelled. Four of the species (ALB, BIG, BTU and LAT) had fair-good 
predictive power across all Binomial (presence/absence) models (Error! Reference source not 
found.). For these species, the Binomial models can be used with reasonable confidence. There are 
some cases where the models should not be used; ABR had poor-fair predictive power in the 
Binomial models and poor predictive power in the Poisson (count) models, and BIG and YFN both 
had poor predictive power in the Poisson models. The rest of the models have poor-good or poor-fair 
predictive ability, and while they can be of use, the possibility of poor predictive ability from them 
should be remembered.  

The deviance explained is generally higher for the Poisson models than the Binomial models, even 
though the Binomial models fit the data better based on visual analysis of the comparison plots.  

8  Distribution of highly migratory species Ministry for Primary Industries 



 

   
 

 

  

   
 

   
  

   
       
     

    
    
   

     
     
     

      
     

    
     

   
 

 
 

 
 

  
    

   
   
    

   
   
    

    
     

  
   

    
 

 
  

  

Table 4: Summary of Binomial (a) and Poisson (b) models for each species. The blue rows indicate models 
with sufficient predictive power such that the variable effects were analysed. A darker shade of blue 
indicates greater predictive power based on analysis of comparison plots (as follows in the remainder of 
this section. 

a.) 
Binomial (presence/absence) models 
Species tc lr nt Predictive Proportion deviance Number of Number of 

ability explained presences absences 
ABR 2 0.05 220 Poor-fair 0.49 530 5 990 
ALB 2 0.02 245 Fair-good 0.36 4 370 2 140 
BIG 2 0.01 2300 Fair-good 0.58 1 060 5 460 
BTU 2 0.01 3000 Fair-good 0.22 1 480 5 040 
BWS 2 0.01 2550 Poor-good 0.23 6 270 240 
LAT 2 0.02 2600 Fair-very good 0.58 1 720 4 790 
MAK 2 0.01 2350 Poor-fair 0.25 2 400 4 110 
MOO 2 0.02 2250 Poor-fair 0.16 2 480 4 040 
POS 2 0.05 2600 Poor-fair 0.25 3 830 2 690 
RBM 2 0.02 3000 Poor-good 0.51 4 670 1 850 
STN 2 0.02 2300 Poor-good 0.64 4 660 1 860 
SWO 2 0.02 2250 Poor-fair 0.41 2 290 4 220 
YFN 2 0.01 3000 Poor-good 0.68 550 5960 
b.) 
Poisson (number caught) 
Species tc lr nt Predictive Proportion Number caught 

ability deviance explained 
ABR 2 0.02 2750 Poor 0.65 2 240 
ALB 2 0.05 5050 Poor-fair 0.83 85 020 
BIG 2 0.05 2550 Poor 0.75 3 760 
BTU 2 0.05 2800 Poor-good 0.50 3 140 
BWS 2 0.05 7800 Poor-fair 0.56 166 060 
LAT 2 0.05 3200 Poor-good 0.80 12 370 
MAK 2 0.04 2400 Fair 0.45 5 610 
MOO 2 0.05 3100 Poor-fair 0.57 7 820 
POS 2 0.05 5900 Poor-fair 0.51 16 100 
RBM 2 0.05 6950 Poor-fair 0.66 106 050 
STN 2 0.05 6750 Poor-good 0.62 43 670 
SWO 3 0.02 2850 

poor 
Poor-good 0.63 7 750 

YFN 2 0.02 2500 0.83 3 210 

Figure 2: Observed and predicted counts of BWS (left) and RBM (right) for each year/subarea bin with 
the original limit of 1000 trees and the extended limit of 10 000 trees. 

Ministry for Primary Industries Distribution of highly migratory species  9 



 

   
 

 

   
 
 

   
  

 

 
 

      

  

3.1.1 ABR
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 decreases the predictive deviance in the 2010 model (Figure 3), but is 
almost the same in all other models. For both tc=2 and tc=3, most of the predictive deviance in the 
2010 model is coming from subarea NE1, and while there appears to be a significant drop in 
predictive deviance in Figure 3, the difference is unnoticeable in Figure 4. It is not likely that further 
increasing the tc would significantly improve predictive ability and for the remainder of the analyses 
tc=2 has been used for all ABR Poisson models. 

Figure 3: Predictive deviance for Poisson model using tree complexity of 2 and 3 across all years (left) and 
for the 2010 model (right) for species ABR. 

10  Distribution of highly migratory species Ministry for Primary Industries 



 

    
 

 
   

 

    

 
 

 

  

a.) Observed
	

b.) Predicted (tc=2) c.) Predicted (tc=3) 

Figure 4: Observed (a) and predicted using tc=2 (b) and tc=3 (c) numbers of ABR caught with the 2010 

Poisson model.
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Binomial 

Increasing the tc from 2 to 3 causes little change in the predictive deviance in all models, with slight 
increases or decreases in some (Figure 5). It is not likely that further increasing the tc would 
significantly improve the predictive ability and for the remainder of the analyses tc=2 has been used 
for all ABR Binomial models. 

Figure 5: Predictive deviance for Binomial model using tree complexity of 2 and 3 across all years (left) 
and for the 2006 model (right) for species ABR. 

Predictive ability 

Poisson 

The predictive ability was generally poor (Figures 6 and 7). The models omitting year 2001, 2003 or 
2010 had the highest predictive deviance (Figure 3). In all these years, the predicted numbers caught 
were almost entirely unmatched with the observed in both location and numbers (Figures 8, 9 and 11). 
The 1999, 2005 and 2010 models had three of the lowest predictive deviances. The predicted numbers 
caught using the 1999 model were similar to those observed (Figure 7), but the 2012 model (Figure 
12) and the 2005 model (Figure 10) had fairly poor predictability. Due to poor predictive ability, and 
hence irrelevance of the models, no further analyses are presented for ABR Poisson models.  
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Figure 6: Observed and predicted counts from ABR Poisson models for each year/subarea bin. Green 
dots are tc=2, purple dots are tc=3. 

Figure 7: 1999 Poisson model observed (left) and predicted (right) numbers of ABR caught. 
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Figure 8: 2001 Poisson model observed (left) and predicted (right) numbers of ABR caught. 


Figure 9: 2003 Poisson model observed (left) and predicted (right) numbers of ABR caught. 


14  Distribution of highly migratory species Ministry for Primary Industries 



 

    
 

 
  

 
  

Figure 10: 2005 Poisson model observed (left) and predicted (right) numbers of ABR caught.
	

Figure 11: 2010 Poisson model observed (left) and predicted (right) numbers of ABR caught.
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Figure 12: 2012 Poisson model observed (left) and predicted (right) numbers of ABR caught. 

Binomial 

The predictive ability was generally poor (Figure 13), but fair in models predicting 1999, 2009 or 
2011 data (Figures 15, 18 and 19). With the exception of these years, the predicted presence and 
absences were almost entirely unmatched with the observed (e.g. Figures 14, 16 and 17). 

Figure 13: Observed and predicted probability of the presence of ABR for each year/subarea bin.
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Figure 14: 1998 Binomial model observed (left) and predicted (right) ABR presence/absence. 


Figure 15: 1999 Binomial model observed (left) and predicted (right) ABR presence/absence. 


Ministry for Primary Industries Distribution of highly migratory species  17
 



 

   
 

 
 

 
 

Figure 16: 2001 Binomial model observed (left) and predicted (right) ABR presence/absence. 


Figure 17: 2003 Binomial model observed (left) and predicted (right) ABR presence/absence. 
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Figure 18: 2009 Binomial model observed (left) and predicted (right) ABR presence/absence. 


Figure 19: 2011 Binomial model observed (left) and predicted (right) ABR presence/absence. 


Ministry for Primary Industries Distribution of highly migratory species  19
 



 

   
 

 

      
    

 

  

 

 
   

 

  

3.1.2 ALB
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 actually increased the predictive deviance noticeably in the 2003 model 
(Figure 20). The 2003 data had more points in the KR1 subarea than the other years. The model fitted 
using tc=3 was perhaps over fitting to the data from the other years, causing it to be too specific and 
hence a poorer predictor for the 2003 data than the tc=2 model, especially in subarea KR1 (Figure 21). 
It was not likely that increasing the tc would significantly improve the predictive ability and tc=2 has 
been used for the remainder of the analyses for all ALB Binomial models. 

Figure 20: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2003 
model (right) for species ALB. 
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a.) Observed
	

b.) Predicted (tc=2) c.) Predicted (tc=3) 

Figure 21: Observed (a) and predicted using tc=2 (b) and tc=3 (c) numbers of ALB caught with the 2003 
Poisson model. 

Binomial 

Increasing the tc from 2 to 3 actually increased the predictive deviance slightly in the 2000 and 2007 
models, but otherwise caused little change (Figure 22). It was not likely that increasing the tc further 
would significantly improve the predictive ability and tc=2 has been used for the remainder of the 
analyses for all ALB Binomial models. 
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Figure 22: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2003 
model (right) for species ALB. 

Predictive ability 

Poisson 

The predictive ability was generally fair in many of the models (Figure 23), although quite 
underestimated in several. The models omitting year 1996, 1998, 2001 or 2003 had the highest 
deviance (Figure 22). In all these years, the predictions underestimated the numbers caught, but the 
locations of positive numbers caught were fairly well matched with those observed (Figures 24, 25, 26 
and 27). The 2012 model had one of the lowest predictive deviances. In this model, the predicted 
numbers caught were higher in subarea NE3 than the observed numbers caught, lower in SW1 and 
well matched in the other areas.  

Figure 23: Observed and predicted counts of ALB for each year/subarea bin. 
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Figure 24: 1996 Poisson model observed (left) and predicted (right) numbers of ALB caught. 


Figure 25: 1998 Poisson model observed (left) and predicted (right) numbers of ALB caught. 
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Figure 26: 2001 Poisson model observed (left) and predicted (right) numbers of ALB caught. 


Figure 27: 2003 model observed (left) and predicted (right) numbers of ALB caught. 

Binomial 
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The predictive ability was fair across most models and good in some (Figure 28). Where there were a 
few absences off the north east coast of New Zealand, these were often mis-predicted as presences 
(Figures 29 and 30). This could be a latitude effect, as latitude was the second most influential 
predictor variable for all the ALB binomial models (see Figure 141).  

Figure 28: Observed and predicted probability of the presence of ALB for each year/subarea bin. 


Figure 29: 1996 Binomial model observed (left) and predicted (right) presence/absence of ALB in the 
catch. 
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Figure 30: 2011 Binomial model observed (left) and predicted (right) presence/absence of ALB in the 
catch. 

3.1.3 BIG 


Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 decreased the predictive deviance in the 2003 model (Figure 31), but 
made no difference to the other models. It was not likely that increasing the tc would significantly 
improve the predictive ability and tc=2 has been used for the remainder of the analyses for all BIG 
Binomial models. 
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Figure 31: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2003 
Poisson model (right) for species BIG. 

Binomial 

Increasing the tc from 2 to 3 made little change to the predictive deviance of the models (Figure 32). 
It was unlikely that increasing the tc further would improve predictive ability and tc=2 has been used 
for the remainder of the analyses for all BIG Binomial models. 

Figure 32: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2003 
Binomial model (right) for species BIG. 

Predictive ability 

Poisson 

The predictive ability was a mixture of fair and poor (Figure 33). The models omitting year 2003, 
2006 or 2007 had the highest predictive deviance (Figure 32). In all these years, the observed numbers 
caught were not well predicted (Figure 35, 37 and 38). The 2007 model slightly underestimated 
numbers in subarea NE1, the 2003 model overestimated the numbers caught in subarea KR1, and the 
2002 model slightly overestimated in subarea NE1. The 2002, 2004 and 2012 models had three of the 
lowest predictive deviances. The predicted numbers caught using all these models were fairly well 
matched to those observed (Figure 34, 36 and 39). 

Ministry for Primary Industries Distribution of highly migratory species  27 



 

   
 

 
 

 

 
  

 

Figure 33: Observed and predicted counts of BIG for each year/subarea bin. 


Figure 34: 2002 Poisson model observed (left) and predicted (right) numbers of BIG caught.
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Figure 35: 2003 Poisson model observed (left) and predicted (right) numbers of BIG caught.
	

Figure 36: 2004 Poisson model observed (left) and predicted (right) numbers of BIG caught.
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Figure 37: 2006 Poisson model observed (left) and predicted (right) numbers of BIG caught.
	

Figure 38: 2007 Poisson model observed (left) and predicted (right) numbers of BIG caught.
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Figure 39: 2012 Poisson model observed (left) and predicted (right) numbers of BIG caught.
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Binomial 

The predictive ability was fair to good across all models (Figure 40). Two of the models had some 
poor predictive ability; the model fitted to year 2000 had some false misses in subarea NE1 (Figure 
41), and the model fitted to year 2003 had some false hits off the north east coast and in subarea KR1 
(Figure 42). 

Figure 40: Observed and predicted probability of the presence of BIG for each year/subarea bin. 


Figure 41: 2000 Binomial model observed (left) and predicted (right) presence/absence of BIG in the 
catch. 
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Figure 42: 2003 Binomial model observed (left) and predicted (right) presence/absence of BIG in the 
catch. 
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3.1.4 BTU
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years, with slight 
increases or decreases in some models (Figure 43). It was not likely that increasing the tc would 
significantly improve the predictive ability and tc=2 has been used for the remainder of the analyses 
for all BTU Binomial models. 

Figure 43: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2012 
Poisson model (right) for species BTU. 

Binomial 

Increasing the tc from 2 to 3 made little difference to the predictive deviance, with a very slight  
decrease in 2012 (Figure 44). It was not likely that increasing the  tc further would improve the 
predictive ability and tc=2 has been used for the remainder of the analyses for all BTU Binomial 
models. 

Figure 44: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2012 
Binomial model (right) for species BTU. 
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Predictive ability 

Poisson 

The predictive ability was fair in most models (Figure 45) but quite poor in the 2008 and 2009 models 
(Figures 48 and 49) and quite good in the 1997 and 2001 models (Figures 46 and 47). The 2008 and 
2009 models both underestimated the numbers caught.  

Figure 45: Observed and predicted counts of BTU for each year/subarea bin. 

Figure 46: 1997 Poisson model observed (left) and predicted (right) numbers of BTU caught.
	

Ministry for Primary Industries Distribution of highly migratory species  35 



 

   
 

 
  

 
  

Figure 47: 2001 Poisson model observed (left) and predicted (right) numbers of BTU caught.
	

Figure 48: 2008 Poisson model observed (left) and predicted (right) numbers of BTU caught.
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Figure 49: 2009 Poisson model observed (left) and predicted (right) numbers of BTU caught.
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Binomial 

Predictive ability was generally fair (Figure 50), although in several of the models, the predictions 
underestimated presences, especially in subareas NE2, SW1, SW2 and SW3. Two of the most 
extreme examples of this were the 2000 and 2009 models (Figures 51 and 52). 

Figure 50: Observed and predicted probability of the presence of BTU for each year/subarea bin. 


Figure 51: 2000 Binomial model observed (left) and predicted (right) presence/absence of BTU in the 
catch. 
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Figure 52: 2009 Binomial model observed (left) and predicted (right) presence/absence of BTU in the 
catch. 
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3.1.5 BWS
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most models, with 
slight increases or decreases in some (Figure 53). It was not likely that increasing the tc would 
significantly improve the predictive ability and tc=2 has been used for the remainder of the analyses 
for BWS Poisson models. 

Figure 53: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2005 
Poisson model (right) for species BWS. 

Binomial 

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years, with slight 
decreases in the 1998 and 2008 models (Figure 54). It was not likely that increasing the tc would 
significantly improve the predictive ability and tc=2 has been used for the remainder of the analyses 
for all BWS Binomial models. 

Figure 54: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2008 
Binomial model (right) for species BWS. 

Predictive ability 
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Poisson 

The predictive ability was fair in most models (Figure 55) but poor in the 1995, 1996 and 1997 
models. In all these years, the models underestimated the numbers caught (Figures 56, 57 and 58). 
The 1999, 2001 and 2006 models had quite good predictive power, with predicted numbers caught 
fairly well matched to those observed (Figures 59, 60 and 61). 

Figure 55: Observed and predicted counts of BWS for each year/subarea bin. 

Figure 56: 1995 Poisson model observed (left) and predicted (right) numbers of BWS caught.
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Figure 57: 1996 Poisson model observed (left) and predicted (right) numbers of BWS caught.
	

Figure 58: 1997 Poisson model observed (left) and predicted (right) numbers of BWS caught.
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Figure 59: 1999 Poisson model observed (left) and predicted (right) numbers of BWS caught.
	

Figure 60: 2001 Poisson model observed (left) and predicted (right) numbers of BWS caught.
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Figure 61: 2006 Poisson model observed (left) and predicted (right) numbers of BWS caught.
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Binomial 

Generally, the predictive ability was good (Figure 62), but this was partly because BWS were nearly 
always present. When they are absent, the predictions often get it wrong, such as in the 2001 and 2006 
models (Figures 63 and 64).  

Figure 62: Observed and predicted probability of the presence of BWS for each year/subarea bin.
	

Figure 63: 2001 Binomial model observed (left) and predicted (right) presence/absence of BWS in the 
catch. 
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Figure 64: 2006 Binomial model observed (left) and predicted (right) presence/absence of BWS. 

3.1.6 LAT 


Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years, except in 
1997 where it made it higher (Figure 65). It was not likely that increasing the tc would significantly 
improve the predictive ability and tc=2 has been used for the remainder of the analyses for all LAT 
Poisson models. 

Figure 65: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2005 
Poisson model (right) for species LAT. 
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Binomial 

Increasing the tc from 2 to 3 made little difference to the predictive deviance (Figure 66). There was a 
very slight decrease in some years such as 2001. It was not likely that further increasing the tc would 
improve the predictive ability and tc=2 has been used for the remainder of the analyses for all LAT 
Binomial models. 

Figure 66: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2001 
Binomial model (right) for species LAT. 

Predictive ability 

Poisson 

The predictive ability was fair in most models (Figure 67). The 2011 model had the highest predictive 
deviance, and the numbers caught were underestimated (Figure 70). The 2006 and 2009 models had 
good predictive power, with predicted numbers caught well matched to those observed (Figures 68 
and 69). 

Figure 67: Observed and predicted counts of LAT for each year/subarea bin. 
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Figure 68: 2006 Poisson model observed (left) and predicted (right) numbers of LAT caught. 


Figure 69: 2009 Poisson model observed (left) and predicted (right) numbers of LAT caught. 
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Figure 70: 2010 Poisson model observed (left) and predicted (right) numbers of LAT caught. 

Binomial 

Predictive ability was generally very good (Figure 71), although only fair in some models, the worst 
of which were 2001 and 2006 (Figures 73 and 74). There were quite strong subarea and latitude 
effects, which were likely to be the cause of more false misses in subareas SW1, SW2 and SW3 and 
more false hits in KR1, KR2, NE1 and NE2 (Figure 72).  

Figure 71: Observed and predicted probability of the presence of LAT for each year/subarea bin. 
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Figure 72: False misses (absences) and false hits (presences) by subarea for LAT Binomial models.
	

Figure 73: 2001 Binomial model observed (left) and predicted (right) presence/absence of LAT in the 
catch. 
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Figure 74: 2006 Binomial model observed (left) and predicted (right) presence/absence of LAT in the 
catch. 
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3.1.7 MAK
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years, with slight 
decreases in some models (Figure 75). It was not likely that increasing the tc further would 
significantly improve the predictive ability and tc=2 has been used for the remainder of the analyses 
for all MAK Poisson models. 

Figure 75: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2010 
Poisson model (right) for species MAK. 

Binomial 

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years, with a 
very slight increase in the 2006 model (Figure 76). It was not likely that increasing the tc further  
would improve the predictive ability and tc=2 has been used for the remainder of the analyses for all 
MAK Binomial models. 

Figure 76: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2006 
Binomial model (right) for species MAK. 
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Predictive ability 

Poisson 

The numbers caught were very small (usually less than 10 per year), but the predictive ability was 
generally fair and sometimes quite good (Figure 77) (e.g. the 1997 model, Figure 78). Generally the 
numbers were underestimated rather than overestimated, such as the 1999 model (Figure 79). 

Figure 77: Observed and predicted counts of MAK for each year/subarea bin. 

Figure 78: 1997 Poisson model observed (left) and predicted (right) numbers of MAK caught. 
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Figure 79: 1999 Poisson model observed (left) and predicted (right) numbers of MAK caught. 

Binomial 

Predictive ability was generally fair (Figure 80). Where there were often presences and absences quite 
close together in the observations, the model often predicted all points to be around 50% likely, rather 
than being able to specify to as fine a detail as the observations (e.g. 2007 model, Figure 82). Some of 
the models had difficulty predicting subareas KR1 and KR2, such as the 2006 model which 
underestimated the probability of presences in KR1 and KR2 (Figure 81), and the 2008 model which 
overestimated the probability of presences in KR2 (Figure 83). The 2007 model fairly correctly 
predicted the probability of presences in subarea KR2 (Figure 82). 
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Figure 80: Observed and predicted probability of the presence of MAK for each year/subarea bin. 


Figure 81: 2006 Binomial model observed (left) and predicted (right) presence/absence of MAK in the 
catch. 
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Figure 82: 2007 Binomial model observed (left) and predicted (right) presence/absence of MAK in the 
catch. 

Figure 83: 2008 Binomial model observed (left) and predicted (right) presence/absence of MAK in the 
catch. 
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3.1.8 MOO 


Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years, with slight 
increases or decreases in some models (Figure 84). It was not likely that increasing the tc further  
would improve the predictive ability and tc=2 has been used for the remainder of the analyses for all 
MOO Poisson models. 

Figure 84: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2010 
Poisson model (right) for species MOO. 

Binomial 

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years, with a 
very slight decrease in the 2005 model and a slight increase in the 2003 model (Figure 85). It was not 
likely that increasing the tc further would improve the predictive ability and tc=2 has been used for 
the remainder of the analyses for all MOO Binomial models. 

Figure 85: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2010 
Poisson model (right) for species MOO. 
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Predictive ability 

Poisson 

Predictive ability was generally fair-good (Figure 86), but poor in some models. The 1998 model 
underestimated numbers caught in subareas NE1 and NE2 (Figure 88). In the 2001 and 1997 models, 
the numbers caught were underestimated in SW2 and SW3 (Figures 87 and 89). In the 2003 model, 
the numbers caught were overestimated in subarea NE3 (Figure 90).  

Figure 86: Observed and predicted counts of MOO for each year/subarea bin. 

Figure 87: 1997 Poisson model observed (left) and predicted (right) numbers of MOO caught. 
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Figure 88: 1998 Poisson model observed (left) and predicted (right) numbers of MOO caught. 


Figure 89: 2001 Poisson model observed (left) and predicted (right) numbers of MOO caught. 


Ministry for Primary Industries Distribution of highly migratory species  59
 



 

   
 

 
  

  

Figure 90: 2003 Poisson model observed (left) and predicted (right) numbers of MOO caught. 
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Binomial 

Predictive ability was generally fair (Figure 91). The 2003 model was an exception, with some 
absences in the KR1 subarea falsely predicted as hits (Figure 92). The 2009 model was fairly typical 
in terms of predictive ability for these models (Figure 93). 

Figure 91: Observed and predicted probability of the presence of MOO for each year/subarea bin. 


Figure 92: 2003 Poisson model observed (left) and predicted (right) presence/absence of MOO in the 
catch. 
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Figure 93: 2009 Poisson model observed (left) and predicted (right) presence/absence of MOO. 

3.1.9 POS
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most models, with 
slight increases or decreases in some models (Figure 94). It was not likely that increasing the tc 
further would improve the predictive ability and tc=2 has been used for the remainder of the analyses 
for all POS Poisson models. 

Figure 94: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 1996 
Poisson model (right) for species POS. 
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Binomial 

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years and 
slightly increased the predictive deviance in the 2003 model (Figure 95). It was not likely that 
increasing the tc further would improve the predictive ability and tc=2 has been used for the  
remainder of the analyses for all POS Binomial models. 

Figure 95: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2003 
Poisson model (right) for species POS. 

Predictive ability 

Poisson 

Predictive ability was generally fair (Figure 96), such as the 1997 and 2000 models (Figures 99 and 
100). There were some models that were poorly predicted; the 1994 and 1995 models underestimated 
the numbers caught in subarea NE2 (Figures 97 and 98), and the 2002 model overestimated the 
numbers caught in subareas NE3 and SE1 (Figure 101).  

Figure 96: Observed and predicted counts of POS for each year/subarea bin. 
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Figure 97: 1994 Poisson model observed (left) and predicted (right) numbers of POS caught.
	

Figure 98: 1995 Poisson model observed (left) and predicted (right) numbers of POS caught.
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Figure 99: 1997 Poisson model observed (left) and predicted (right) numbers of POS caught.
	

Figure 100: 2000 Poisson model observed (left) and predicted (right) numbers of POS caught.
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Figure 101: 2002 Poisson model observed (left) and predicted (right) numbers of POS caught. 

Binomial 

Predictive ability was generally fair (Figure 102), with some exceptions. The 1997, 1998 and 1999
	
models all wrongly predicted the south-western subareas. The 1997 model overestimated the
	
presences in SW1 and SW, and the 1998 and 1999 models underestimated presences in SW1, SW2 

and SW3 (Figures 103, 104 and 105). 

Figure 102: Observed and predicted probability of the presence of POS for each year/subarea bin.
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Figure 103: 1997 Binomial model observed (left) and predicted (right) presence/absence of POS. 


Figure 104: 1998 Binomial model observed (left) and predicted (right) presence/absence of POS in the 
catch. 
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Figure 105: 1999 Binomial model observed (left) and predicted (right) presence/absence of POS in the 
catch. 

3.1.10 RBM
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made a slight increase or decrease to the predictive deviance in some 
years (Figure 106). It was not likely that increasing the tc further would significantly improve the 
predictive ability and tc=2 has been used for the remainder of the analyses for all RBM Poisson 
models. 

68  Distribution of highly migratory species Ministry for Primary Industries 



 

    
 

    
 

    
    

   
 

 
    

 

     
 

 
 

Figure 106: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 1999 
Poisson model (right) for species RBM. 

Binomial 

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years (Figure 
107). There was a slight decrease in the 2008 model. It was not likely that increasing the tc further 
would improve the predictive ability and tc=2 has been used for the remainder of the analyses for all 
RBM Binomial models. 

Figure 107: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2008 
Binomial model (right) for species RBM. 

Predictive ability 

Poisson 

Predictive ability was generally fair-poor (Figure 108). The poor fits were generally over or 
underestimated numbers caught in subareas SW2 and SW3. The 2007 model was an example of the 
numbers caught being underestimated (Figure 110) and the 2001 model was an example of the 
numbers caught being overestimated (Figure 109). 
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Figure 108: Observed and predicted counts of RBM for each year/subarea bin. 


Figure 109: 2001 Poisson model observed (left) and predicted (right) numbers of RBM caught.
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Figure 110: 2007 Poisson model observed (left) and predicted (right) numbers of RBM caught. 

Binomial 

Predictive ability was generally fair-good (Figure 111). There were a few models (1999, 2000 and 
2003) where the probability of a presence is overestimated south of -40o latitude. The 1999 model is 
the most extreme case of this (Figure 112).  

Figure 111: Observed and predicted probability of the presence of RBM for each year/subarea bin.
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Figure 112: 1999 Binomial model observed (left) and predicted (right) presence/absence of RBM in the 
catch. 

3.1.11 STN
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made very little difference to the predictive deviance (Figure 113). It was 
not likely that increasing the tc further would significantly improve the predictive ability and tc=2 has 
been used for the remainder of the analyses for all STN Poisson models. 
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Figure 113: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 1999 
Poisson model (right) for species STN. 

Binomial 

Increasing the tc from 2 to 3 made little difference to the predictive deviance in most years (Figure 
114). There was a slight increase in the 2007 model. It was not likely that increasing the tc further  
would improve the predictive ability and tc=2 has been used for the remainder of the analyses for all 
STN Binomial models. 

Figure 114: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2007 
Binomial model (right) for species STN. 
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Predictive ability 

Poisson 

Predictive ability was fair-good in most models (Figure 115). There were several models where the 
numbers caught were either overestimated (2001, 2003, 2004 and 2005) or underestimated (2009, 
2010, 2011 and 2012) in subareas SW1, SW2 or SW3. The 2003 model was the most extreme case of 
overestimated numbers caught in the SW1 and SW2 subareas (Figure 116) and the 2010 model was 
the most extreme case of underestimated numbers caught in the SW2 and SW3 subareas (Figure 117). 
The 2003 model also overestimated numbers caught in subarea NE3. 

Figure 115: Observed and predicted counts of STN for each year/subarea bin. 
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Figure 116: 2003 Poisson model observed (left) and predicted (right) numbers of STN caught.
	

Figure 117: 2010 Poisson model observed (left) and predicted (right) numbers of STN caught.
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Binomial 

Predictive ability was generally fair-good (Figure 118). A few models failed to predict some observed 
absences in SW1, SW2, SW3 or SE1 (2003, 2004, 2005 and 2006). The 2003 model was the most 
extreme example of this (Figure 119). 

Figure 118: Observed and predicted probability of the presence of STN for each year/subarea bin.
	

Figure 119: 2003 Binomial model observed (left) and predicted (right) presence/absence of STN in the 
catch.  
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3.1.12 SWO 


Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made very little difference to the predictive deviance in most models, but 
did increase it slightly in the 1998 and 2007 models and decrease it in the 2003 model (Figure 120). 
The decrease in predictive deviance in the 2003 model was sufficient such that it seemed appropriate 
to use tc=3 to fit these models (Figure 120). The increase in the 1998 and 2007 models was much less 
than the decrease in the 2003 model (Figure 121). It was not likely that increasing the tc further would 
significantly improve the predictive ability and tc=3 has been used for the remainder of the analyses 
for all SWO Poisson models. 

Figure 120: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2003 
Poisson model (right) for species SWO. 

Figure 121: Predictive deviance using tree complexity of 2 and 3 for the 1998 (left) and 2007 (right) 
Poisson models for species SWO. 
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Binomial 

Increasing the tc from 2 to 3 made very little difference to the predictive deviance in all models 
(Figure 122). It was not likely that increasing the tc further would improve the predictive ability and 
tc=2 has been used for the remainder of the analyses for all SWO Binomial models. 

Figure 122: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2003 
Poisson model (right) for species SWO. 

Predictive ability 

Poisson 

Predictive ability was generally fair-good (Figure 123), except for a few of the models; the 2003 
model overestimated the numbers caught in subareas KR1, KR2, NE2 and NE3 (Figure 126), the 
2006 model underestimated numbers caught in subareas KR1 and KR2 (Figure 127), the 1995 model 
overestimated numbers caught in subarea KR2 (Figure 124), and the 1996 model overestimated 
numbers caught in subarea NE2 (Figure 125). 

Figure 123: Observed and predicted counts of SWO for each year/subarea bin. 
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Figure 124: 1995 Poisson model observed (left) and predicted (right) numbers of SWO caught. 


Figure 125: 1996 Poisson model observed (left) and predicted (right) numbers of SWO caught. 
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Figure 126: 2003 Poisson model observed (left) and predicted (right) numbers of SWO caught. 


Figure 127: 2006 Poisson model observed (left) and predicted (right) numbers of SWO caught. 
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Binomial 

Predictive ability was generally fair (Figure 128), except for the 2003 model which overestimated the 
probability of a presence north of -40o latitude (Figure 129). 

Figure 128: Observed and predicted probability of the presence of SWO for each year/subarea bin.
	

Figure 129: 2003 Binomial model observed (left) and predicted (right) presence/absence of SWO in the 
catch. 
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3.1.13 YFN
 

Selecting tree complexity (tc) 


Poisson  

Increasing the tc from 2 to 3 made very little difference to the predictive deviance in all models, with 
a very slight increase in the 2006 model (Figure 130). It was not likely that increasing the tc further 
would improve the predictive ability and tc=2 has been used for the remainder of the analyses for all 
YFN Poisson models. 

Figure 130: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2003 
Poisson model (right) for species YFN. 

Binomial 

Increasing the tc from 2 to 3 made very little difference to the predictive deviance in all models, with 
a very slight decrease in the 2005, 2007 and 2008 models (Figure 131). It was not likely that 
increasing the tc further would improve the predictive ability and tc=2 has been used for the  
remainder of the analyses for all YFN Binomial models. 

Figure 131: Predictive deviance using tree complexity of 2 and 3 across all years (left) and for the 2005 
Poisson model (right) for species YFN. 
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Predictive ability 

Poisson 

Predictive ability was generally poor, and although sometimes fair this was generally when there were 
very small numbers observed (Figure 132). The 1999 model was one that seems fair, but there are few 
positive catches of YFN and only small numbers (Figure 134). The 1996 and 2003 models were 
typical levels of prediction for these models (Figure 133 and Figure 135). 

Figure 132: Observed and predicted counts of YFN for each year/subarea bin. 
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Figure 133: 1996 Poisson model observed (left) and predicted (right) numbers of YFN caught. 


Figure 134: 1999 Poisson model observed (left) and predicted (right) numbers of YFN caught. 
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Figure 135: 2003 Poisson model observed (left) and predicted (right) numbers of YFN caught. 

Binomial 

Predictive ability was generally fair (Figure 136), except the 2005 and 2011 models which had poor 
predictive ability (Figure 137, Figure 138).   

Figure 136: Observed and predicted probability of the presence of YFN for each year/subarea bin.
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Figure 137: 1996 Binomial model observed (left) and predicted (right) presence/absence of YFN in the 
catch. 

Figure 138: 2011 Binomial model observed (left) and predicted (right) presence/absence of YFN in the 
catch. 
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The effects of sea surface temperature (SST), latitude and subarea are summarised in Table 5. The 
species that seemed to prefer warm temperatures were big-eye tuna, longsnouted lancet fish, 
moonfish, broadbill swordfish and Yellowfin tuna. The species that seemed to prefer cooler 
temperatures were butterfly tuna, porbeagle shark, Ray’s bream and southern bluefin tuna. Albacore, 
blue shark and mako seemed to prefer a mid-temperature range.  
 
Table 5: Summary of variable effects for SST, latitude and subarea for each species. Shaded red indicates 
that a species prefers warmer waters, shaded blue indicates that it prefers colder waters. 

Species SST  Latitude  Subarea 
ALB 15–20 oC >-43 o latitude KR1, NE1, NE2, NE3 
BIG >17 oC >-37 o latitude KR1, NE1, NE2, NE3 

 
 

 

4. Variable influence and effects 

The Binomial models were more consistent in terms of most influential variables than the Poisson 
models (Figures 139, 140 and Appendix B). In the Binomial models, sea surface temperature (SST) 
was the most influential variable for 9 out of the 13 species, subarea (sub_area) for 2 species, and start 
latitude (start_latitude) for 2 species. Also often influential in the Binomial models were hook number 
(hook_no), month (haul_month), time (time_haul), duration, and sea surface height (SSH).  

In the Poisson models, the most influential variable was start latitude for 3 of the species, sea surface 
temperature, subarea, and time, each for 2 species, and duration, month, hook number and depth 
(hook_depth), each for 1 species. Sea surface height (SSH) and start longitude (start_longitude) were 
also often influential in the Poisson models.  

In the Poisson and Binomial models moon phase (moon_ph) was rarely influential. It had a small 
influence in the BWS Binomial, POS Poisson and STN Poisson models (see Figures Figure, Figure 
and Figure). Sea surface temperature anomaly (SST_anomaly) and sea surface current (SST_mag_uv) 
were sometimes slightly influential in Binomial and Poisson models, such as the BWS models 
(Figure). Pie charts of the mean influence of each variable for each species and model type are in 
Figures Figure –Figure (Appendix B). 

Figure 139: First (left) and second (right) most influential variables for Binomial models for all species across 
al years. 

Figure 140: First (left) and second (right) most influential variables for Poisson models for all species across 
all years. 



 

   
 

 
  

  
 

 
   
   

  
  

   
 

 
 

 
 

 
 

 
  

 
 

 
 

  

BTU <17 oC NA SE1 
BWS 12–17 oC >-46 o latitude -
LAT >18oC >-40 KR2, SW1 
MAK 13–20oC >-40o latitude NE1, NE2, NE3 
MOO >14oC -35 to -32o latitude KR2, NE1, NE3 
POS <17oC <-42o latitude NE2, NE3, SE1 
RBM <16oC <-40o latitude NE3 
STN <17oC <-40o latitude NE2, SW2, SW3 
SWO >14oC >-42o latitude KR2, NE1, NE2, NE3 
YFN >17oC >-30o latitude KR1, KE2 

4.1 ALB 
Sea surface temperature was the most influential variable in the Binomial models, contributing around 
40% relative influence, and start latitude was the second most influential variable (Figure 141). The 
Poisson models had duration as the most influential variable followed by hook number and sea 
surface temperature.  

The variable effect of sea surface temperature in both the Binomial and Poisson models increased 
from around 12–13oC, peaked at around 17–20oC and then dropped off (Figure 142). The variable 
effect of start latitude in the Binomial model indicated that ALB were more likely to be present at 
latitudes greater than -45o and less than -34o (Figure 143). 

Figure 141: Relative influence of variables in ALB Binomial (left) and Poisson (right) models. 
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Figure 142: Variable effect of sea surface temperature in the ALB 2012 Binomial model (left) and ALB 
2012 Poisson model (right). 

Figure 143: Variable effect of start latitude in the ALB 2012 Binomial model. 

4.2 BIG 

Sea surface temperature was the most influential variable in the Binomial models, contributing around 
50% of the relative influence, and start latitude was the second most influential variable (Figure 144). 
The Poisson models had start latitude as the most influential variable, contributing around 50% of the 
relative influence, and sea surface temperature generally the second most influential variable, but it 
was much less influential than start latitude (Figure 144). 

The effect of sea surface temperature suggested that BIG were most likely to be caught at 
temperatures greater than 16oC (Figure 145). The start latitude effect suggested that BIG were most 
likely to be caught at latitudes greater than -36o and less than -28o (Figure 146). 
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Figure 144: Relative influence of variables in BIG Binomial (left) and Poisson (right) models. 


Figure 145: Variable effect of sea surface temperature in the BIG 2012 Binomial model (left) and BIG 
2012 Poisson model (right). 

Figure 146: Variable effect of start latitude in the BIG 2012 Binomial model (left) and BIG 2012 Poisson 
model (right). 
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4.3 BTU 
Subarea was the most influential variable for both the Binomial and Poisson models (Figure 147). Sea 
surface temperature was the second most influential variable for the Binomial models.  

The variable effect for subarea suggested that subarea SE1 was by far most likely to have BTU 
present and with the greatest numbers caught (Figure 148). Subarea KR1 had a higher effect in the 
Binomial models than in the Poisson models.  

The variable effect for sea surface temperature suggested that BTU were most likely at temperatures 
less than 18oC (Figure 149). 

Figure 147: Relative influence of variables in BIG Binomial (left) and Poisson (right) models. 


Figure 148: Variable effect of subarea in the BTU 2012 Binomial model (left) and BTU 2012 Poisson 
model (right). 
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Figure 149: Variable effect of sea surface temperature in the BTU 2012 Binomial model (left) and BTU 
2012 Poisson model (right). 

4.4 BWS 
Sea surface temperature was the most influential variable for the Binomial models, followed by start 
latitude. The Poisson models had sea surface temperature and start longitude as the most influential 
variables (Figure 150). 

The variable effect for sea surface temperature suggested that BWS were more likely present and 
caught in larger numbers when the sea surface temperature was between 12oC and 17oC (Figure 151). 

The variable effect for start latitude suggested BWS were most likely present north of -46o latitude 
(Figure 152). 

The variable effect for start longitude suggested BWS were caught in larger numbers around 180o 

longitude (Figure 153). 

Figure 150: Relative influence of variables in BWS Binomial (left) and Poisson (right) models. 
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Figure 151: Variable effect of sea surface temperature in the BWS 2012 Binomial model (left) and BWS 
2012 Poisson model (right). 

Figure 152: Variable effect of start latitude in the BWS 2012 Binomial model. 


Figure 153: Variable effect of start longitude in the BWS 2012 Poisson model. 

4.5 LAT 
Start latitude was the most influential variable for the Binomial models, followed by subarea then sea 
surface temperature. The Poisson models were influenced most by month (Figure 154). 
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The variable effects of the Binomial models suggested LAT were most likely present at latitudes north 
of -45o latitude, in subareas KR2, SW1 and NE2 and somewhat more likely where the sea surface 
temperature was greater than 15oC and much more likely when it was over 20oC (Figures 155, 156 
and 157). 

The variable effects in the Poisson models suggested that LAT were caught in the greatest numbers in 
August-December (Figure 158). 

Figure 154: Relative influence of variables in BIG Binomial (left) and Poisson (right) models. 


Figure 155: Variable effect of start latitude in the LAT 2012 Binomial model. 


Figure 156: Variable effect of subarea in the LAT 2012 Binomial model. 
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Figure 157: Variable effect of sea surface temperature in the LAT 2012 Binomial model. 


Figure 158: Variable effect of month in the LAT 2012 Binomial model. 

4.6 MAK 
Start latitude was the most influential variable for the Binomial models and subarea was most 
influential for the Poisson models (Figure 159). Subarea and sea surface height were the next most 
influential variables for the Binomial models. The Poisson models were influenced by start longitude, 
sea surface temperature, sea surface current and hook depth with fairly even influences. 

In the Binomial and Poisson models, the effect of start latitude suggested that MAK were most likely 
north of about -42o latitude (Figure 160). The subarea effect suggested MAK were most likely in NE1, 
NE2 and NE3 (Figure 161). In the Binomial models, the sea surface height effect suggested MAK 
were more likely to be present when the sea surface height was greater than 50 cm (Figure 162). 
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Figure 159: Relative influence of variables in MAK Binomial (left) and Poisson (right) models. 


Figure 160: Variable effect of start latitude in the MAK 2012 Binomial model (left) and MAK 2012 
Poisson model (right). 

Figure 161: Variable effect of subarea in the MAK 2012 Binomial model (left) and MAK 2012 Poisson 
model (right). 
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Figure 162: Variable effect of sea surface height in the MAK 2012 Poisson model. 

4.7 MOO 
Sea surface temperature was the most influential variable in the Binomial models, followed by 
subarea and hook number (Figure 163). The Poisson models were most influenced by hook number, 
then subarea and start latitude. 

In the Binomial models, sea surface effects suggested that MOO were most likely present when the 
sea surface was greater than about 12oC (Figure 164). 

The subarea effect was fairly consistent across Poisson models and suggested that MOO were caught 
in higher numbers in subareas NE3, KR2, NE1 and NE2 (decreasing order) (Figure 165). The subarea 
effect in the Binomial models was a bit more varied, sometimes matching that of the Poisson models 
such as the 2006 model (Figure 166) and sometimes with subarea NE1 more likely to have MOO 
present than KR2, such as in the 2012 model (Figure 165). 

The start latitude effect for Binomial and Poisson models suggested that MOO were most likely to be 
present, and with highest catch numbers, at latitudes greater than -36o latitude and less than -32o 

latitude (Figure 167). 

The hook number effect in the Poisson models suggested that MOO are more likely to be caught when 
more than 2000 hooks were set (Figure 168). 

Figure 163: Relative influence of variables in MOO Binomial (left) and Poisson (right) models. 
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Figure 164: Variable effect of sea surface temperature in the MOO 2012 Binomial model. 


Figure 165: Variable effect of subarea in the MOO 2012 Binomial model (left) and MOO 2012 Poisson 
model (right). 

Figure 166: Variable effect of subarea in the MOO 2006 Binomial model.
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Figure 167: Variable effect of start latitude in the MOO 2012 Binomial model (left) and MOO 2012 
Poisson model (right). 

Figure 168: Variable effect of hook number in the MOO 2012 Poisson model. 

4.8 POS 
Sea surface temperature was the most influential variable for the Binomial models, followed by 
subarea. The Poisson models had start latitude as the most influential variable, followed by sea 
surface temperature and sea surface height (Figure 169). 

The sea surface temperature effect from the Binomial and Poisson models suggested that POS were 
most likely to be present, and caught in higher numbers, when the sea surface temperature was less 
than 17oC (Figure 170). 

The variable effect of subarea in the Binomial models suggested that POS were most likely to be 
present in subareas NE2, NE3 and SE1 and least likely in subareas KR1, KR2 and NE1 (Figure 171). 
The start latitude effect in the Poisson models suggests POS were in greatest numbers south of -35o 

latitude (Figure 172). This corresponds with POS being less likely in subareas KR1, KR2 and NE1, 
but doesn’t differentiate between the west subareas SW1, SW2 and SW3 and the east subareas NE2, 
NE3 and SE1 as the Binomial models did. 

The sea surface height effect in the Poisson models suggested that POS were caught in smaller 
numbers when the sea surface height was around 50 cm (Figure 173). 
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Figure 169: Relative influence of variables in POS Binomial (left) and Poisson (right) models.
	

Figure 170: Variable effect of start latitude in the POS 2012 Binomial model (left) and POS 2012 Poisson 
model (right). 

Figure 171: Variable effect of subarea in the POS 2012 Binomial model. 
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Figure 172: Variable effect of start latitude in the POS 2012 Poisson model.
	

Figure 173: Variable effect of sea surface height in the POS 2012 Poisson model. 

4.9 RBM 
Sea surface temperature and start latitude were the most influential variables in the Binomial models. 
Hook depth, then start latitude and start longitude were the most influential variables in the Poisson 
models (Figure 174). 

The variable effect of start latitude in the Binomial and Poisson models suggested that RBM were 
least likely to be caught around -40o to -32o latitude (Figure 175). 

The variable effect of sea surface temperature in the Binomial and Poisson models suggested that 
RBM were most likely to be caught when the sea surface temperature was less than around 19oC 
(Figure 176). 

The variable effect of hook depth in the Poisson models was quite jagged, but suggested that the 
numbers of RBM caught were generally highest when the hook depth was 80–150 m (Figure 177). 

The variable effect of start longitude in the Poisson models suggested that RBM were caught in higher 
numbers west of around 172o longitude (Figure 178). 

The variable effect of hook depth in the Poisson models suggested that the number caught increased 
when the hook depth was 50–150 m (Figure 177). 
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The variable effect of start longitude in the Poisson models was jagged, but suggested that RBM were 
least likely to be caught east of about 172o longitude and at around 168o longitude (Figure 178).  

Figure 174: Relative influence of variables in RBM Binomial (left) and Poisson (right) models. 


Figure 175: Variable effect of start latitude in the RBM 2012 Binomial model (left) and RBM 2012 
Poisson model (right). 
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Figure 176: Variable effect of sea surface temperature in the RBM 2012 Binomial model (left) and RBM 
2012 Poisson model (right). 

Figure 177: Variable effect of hook depth in the RBM 2012 Poisson model.
	

Figure 178: Variable effect of start longitude in the RBM 2012 Poisson model. 

4.10 STN 
Sea surface temperature was by far the biggest contributor in terms of relative influence in the 
Binomial models (Figure 179). Start latitude was the second most influential variable in the Binomial 
models. The Poisson models were influenced most by sea surface temperature, hook number, hook 
depth and start longitude (Figure 179). 

The sea surface temperature effect of the Binomial models and Poisson models suggested that STN 
were most likely when the sea surface temperature was less than about 19oC (Figure 180). 

The start latitude effect of the Binomial models and Poisson models suggested that STN were most 
likely south of about -35o latitude (Figure 181). 
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Figure 179: Relative influence of variables in STN Binomial (left) and Poisson (right) models.
	

Figure 180: Variable effect of sea surface temperature in the STN 2012 Binomial model (left) and RBM 
2012 Poisson model (right). 

Figure 181: Variable effect of start latitude in the STN 2012 Binomial model (left) and STN 2012 Poisson 
model (right). 
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4.11 SWO 
Subarea, sea surface temperature and start latitude were the most influential variables for the Binomial 
models (Figure 182). Time haul, sea surface temperature and start latitude were the most influential 
variables in the Poisson models (Figure 182). 

The sea surface temperature effect in the Binomial and Poisson models suggested that SWO were 
most likely to be caught when the sea surface temperature was greater than about 14oC (Figure 183). 

The start latitude effect in the Binomial and Poisson models suggested that SWO were most likely 
north of -42o latitude (Figure 181). 

The subarea effect in the Binomial models suggested SWO were most likely to be caught in subareas 
KR2, NE1, NE2 and NE3 (Figure 185). 

The time haul effect in the Poisson models suggested that the numbers of SWO caught decreased 
throughout the day (Figure 186). 

Figure 182: Relative influence of variables in SWO Binomial (left) and Poisson (right) models. 


Figure 183: Variable effect of sea surface temperature in the SWO 2012 Binomial model (left) and SOW 
2012 Poisson model (right). 
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Figure 184: Variable effect of start latitude in the SWO 2012 Binomial model (left) and SOW 2012 
Poisson model (right). 

Figure 185: Variable effect of subarea in the SWO 2012 Binomial model. 


Figure 186: Variable effect of subarea in the SWO 2012 Poisson model.
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4.12 YFN 
Sea surface temperature was the most influential variable for the Binomial models followed by start 
latitude (Figure 187). Start latitude was the most influential variable for the Poisson models, followed 
by subarea then sea surface temperature (Figure 187).  

The sea surface temperature effect in the Binomial and Poisson models suggested that YFN were most 
likely when the sea surface temperature was greater than about 17oC (Figure 188). 

The start latitude effect in the Binomial and Poisson models suggested that YFN were most likely 
north of about -32o latitude (Figure 189). 

The subarea effect in the Poisson models suggested that YFN were most likely to be caught in 
subareas KR2 and KR1 (Figure 190). 

Figure 187: Relative influence of variables in YFN Binomial (left) and Poisson (right) models. 


Figure 188: Variable effect of sea surface temperature in the YFN 2012 Binomial model (left) and YFN 
2012 Poisson model (right). 
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Figure 189: Variable effect of sea surface temperature in the YFN 2012 Binomial model (left) and YFN 
2012 Poisson model (right). 

Figure 190: Variable effect of subarea in the YFN 2012 Poisson model. 

5. DISCUSSION 

It has often been suggested that the schooling and migration of large pelagic fishes, primarily tunas, is 
related to environmental cues, particularly water temperature (e.g., Humston et al. 2000), and often to 
the presence of thermal fronts (e.g., Lutcavage et al. 2000). However, some studies suggest that 
temperature is not a determining factor in the distribution of tuna, and that areas of high biological 
productivity are more important (De Anda-Montañez et al. 2004). In addition, parameters such as the 
levels of chlorophyll-a and dissolved oxygen, and distance from thermal fronts have also been found 
to explain much of the variation in distribution and abundance of these species (e.g., Schick et al. 
2004, Song & Zhou 2010). For large sharks, spatial and temporal factors were generally the most 
influential on distribution and abundance (e.g., Carvalho et al. 2011), and while temperature at depth 
could be a significant modifier of catch rate, SST was a poor predictor (Campana& Joyce 2004). 

For the current work, temporal and spatial variables were available, as was sea surface temperature. 
However, temperature at capture depth, chlorophyll-a, dissolved oxygen, and distance from a thermal 
front were not available. Consequently, the conclusions drawn from these analyses probably comprise 
an incomplete explanation of what influences the species distributions. For example, available 
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variables like sea surface temperature or latitude could be acting as proxies for water temperature at 
capture depth as there is likely to be reasonable correlation between them. So although a spatial 
variable (e.g., latitude) may provide the greatest predictive power, the variable that is actually 
paramount may be an environmental one (e.g., temperature at capture depth). Determining the factors 
that truly influence distribution and abundance is clearly a complex process. 

Generally the Binomial models had greater predictive power than the Poisson models. The Binomial 
models only needed to predict the probability a species was present for each data point. The Poisson 
models needed to predict not only presence, but also the number caught for each data point.  

The species that generally had less than 100 presences per year (ABR, BIG and YFN) had the least 
predictive power in the Poisson models, and in the case of ABR, in the Binomial models as well. 
These three species were all caught from around the North Island (Figur) and they had low numbers 
caught in each year (Figure A2). Species BTU and LAT also had fairly low numbers of presences 
(generally less than 150 per year (Figure )), and BTU had low numbers caught (Figure A2), but the 
spatial distribution of presences for both these species extended to around both North and South 
Islands (Figur), and the predictive power of the Poisson models for these species was much better than 
that of ABR, BIG and YFN. It seems that the combination of low numbers of presences, low numbers 
caught, and the limited spatial distribution of the presences contributed to the poor predictive power 
of the Poisson models.  

The models with best predictive power across both model types were the Binomial models for species 
ALB, BIG, BTU and LAT. BIG was interesting as it had a small number of presences in each year, 
small numbers caught in each year, more limited spatial distribution than most other species, and was 
one of the poorest performers in terms of predictive power in the Poisson models, yet its Binomial 
model had relatively good predictive power. In contrast, ALB was one of the biggest datasets in 
numbers of presences and numbers caught, extensive spatial distribution (Figures Figure , Figure A2 
and Figur) and fair predictive power in the Poisson models.  

The predictive power of the models was vulnerable to shifts in the data to a new area. This was 
evident when predicting the 2003 data which had a lot more data in subarea KR1 than any of the other 
years. Many of the models had difficulty predicting presence/absence or number caught in subarea 
KR1 in 2003. This area effect was evident here as the predictive performances were analysed in terms 
of the spatial distributions. It is likely that the predictive power of these models is also sensitive to 
shifts in the data with respect to any of the main influential variables, such as sea surface temperature 
start latitude, or month. It is therefore recommended that the models are only used for predictions 
where the influential variables fall within the ranges of those the models have been fitted to.  

The Binomial models were more consistent in terms of most influential variables, as these models 
were only fitting to where the fish were, not how many there were. The Poisson models required 
influence from variables to determine where the fish were, and also what quantities they were in.  

In the Binomial models, the variables contributing to most of the influence were fairly consistent and 
generally included sea surface temperature, start latitude and subarea. Hook number also contributed 
in the MOO and POS Binomial models, and sea surface height in the LAT Binomial models.  

The Poisson models tended to have more variables influencing the models, and the order of the 
variables in terms of relative influence varied a lot between species. The influence of the variables did 
not vary for the models within any one species. Hence, the variables selected for each species are 
helpful, but it is not as clear what the effects are when there are so many influencing the model.  

In the Binomial and Poisson models the variable effects were generally consistent for all models for 
each species. The 2003 model was sometimes an exception, highlighting the concern in using these 
models to predict outside their fitted range.  
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A limitation of these models is that they lack a run where only the main variables are offered as 
predictors. It is possible that the predictive ability of these models would be almost as good as the full 
models, and the effects of the variable may be clearer, as well as establishing whether the minor 
variables are required.  
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APPENDIX A: Fishery data 


Figure A1: Number of presences by year for each species.
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 Figure A2: Number of fish caught by year for each species. 
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Figure A3: Spatial distribution of presences for each species for years 1994–2012. Black dots are the set 

positions of all longline sets, blue dots are the set positions of the longline sets that caught each species. 
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APPENDIX B: Variable effects 


Figure B1: Mean influence of each variable for ABR Poisson (left) and Binomial (right) models.
	

Figure B2: Mean influence of each variable for ALB Poisson (left) and Binomial (right) models.
	

Figure B3: Mean influence of each variable for BIG Poisson (left) and Binomial (right) models. 
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Figure B4: Mean influence of each variable for BTU Poisson (left) and Binomial (right) models.
	

Figure B5: Mean influence of each variable for BWS Poisson (left) and Binomial (right) models.
	

Figure B6: Mean influence of each variable for LAT Poisson (left) and Binomial (right) models.
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Figure B7: Mean influence of each variable for MAK Poisson (left) and Binomial (right) models.
	

Figure B8: Mean influence of each variable for MOO Poisson (left) and Binomial (right) models.
	

Figure B9: Mean influence of each variable for POS Poisson (left) and Binomial (right) models. 
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Figure B10: Mean influence of each variable for RBM Poisson (left) and Binomial (right) models. 


Figure B11: Mean influence of each variable for STN Poisson (left) and Binomial (right) models. 


Figure B12: Mean influence of each variable for SWO Poisson (left) and Binomial (right) models. 
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Figure B13: Mean influence of each variable for YFN Poisson (left) and Binomial (right) models. 
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