Geographic distribution of commercial catches of cartilaginous fishes in New Zealand waters, 2008–13

New Zealand Aquatic Environment and Biodiversity Report No. 156.

Malcolm P. Francis

ISSN 1179-6480 (online) ISBN 978-1-77665-040-8 (online)

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: brand@mpi.govt.nz
Telephone: 0800 00 83 33
Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at:

http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports

© Crown Copyright - Ministry for Primary Industries

TABLE OF CONTENTS

EXE	ECUTIVE SUMMARY	1
1.	INTRODUCTION	2
2.	METHODS	2
3.	RESULTS	5
4.	DISCUSSION	5
5.	ACKNOWLEDGMENTS	6
6.	REFERENCES	6
APP	PENDIX 1. List of shark (chondrichthyan) species found in New Zealand waters	7
APP	PENDIX 2. Numbers of records of shark species caught by method, 2008–2013	9
APP	PENDIX 3. Numbers of records and reported catch weights by species, 2008–2013	3 10
APP	PENDIX 4. Examples of distributional maps of fishing effort	12
APP	PENDIX 5. Examples of distributional maps of catch	13
APP	PENDIX 6. Examples of distributional maps of CPUE	15

EXECUTIVE SUMMARY

Francis, M.P. (2015). Geographic distribution of commercial catches of cartilaginous fishes in New Zealand waters, 2008–13.

New Zealand Aquatic Environment and Biodiversity Report No. 156. 15 p.

The first objective of the National Plan of Action for the Conservation and Management of Sharks is to "Develop and implement a risk assessment framework to identify the nature and extent of risks to shark populations". The Ministry for Primary Industries (MPI) intends to develop that framework progressively through expert-based and quantitative methods. The first step in that process was the convening by MPI in November 2014 of an expert panel to conduct a qualitative risk assessment of New Zealand shark species (defined as all cartilaginous fishes). In preparation for the risk assessment workshop, a number of resources were collated, including information on commercial catches and catch rates, biological productivity, and trends in stock biomass and status of each species. This report documents the collation, summarising and plotting on distributional maps of information on commercial catches, fishing effort, and catchper-unit effort (CPUE).

The five-year period October 2008 to September 2013 was used to quantify the geographic distribution of 'recent' commercial catches of sharks. For a longer term perspective, data were also summarised for 'old' commercial trawl catches made during the previous 19-year period (fishing years 1989–90 to 2007–08). Commercial fishing, observer and protected species bycatch reports were analysed. Distribution maps of fishing effort, and shark catch and CPUE were generated by species, data resolution (latitude/longitude, statistical area), data source (commercial, observer and protected species bycatch) and fishery. Fisheries were defined based on fishing method, length of vessel and target species. Maps were also produced by species for all methods combined, and for groupings of fisheries using the same method (trawl, surface longline, bottom longline and purse seine).

In 877 020 fishing events reported during 2008–13, there were 662 391 shark species records (75.5% incidence). A 'record' was defined as a row of data representing the catch in weight of a single species in a single fishing event. The highest incidence rates were found for the following methods (in descending order): surface longline, bottom longline, bottom trawl, set net, and Danish seine. The greatest absolute numbers of shark records came from (in descending order) bottom trawl, bottom longline, set net and surface longline. Estimated catches were dominated by spiny dogfish (23 900 t) followed by school shark (13 300 t), and dark ghost shark, elephantfish, blue shark, rough skate and rig (5000–7000 t). A total of 2024 recent and old distribution maps were generated. Examples of the maps are shown, and the full set of maps and R code are available on request from MPI.

1. INTRODUCTION

One of the goals of the National Plan of Action for the Conservation and Management of Sharks (NPOA-Sharks) is to "Maintain the biodiversity and longterm viability of New Zealand shark populations based on a risk assessment framework with assessment of stock status, measures to ensure any mortality is at appropriate levels, and protection of critical habitat" (Ministry for Primary Industries 2013). Objective 1.1 to achieve this goal during the five-year term of the NPOA-Sharks is to "Develop and implement a risk assessment framework to identify the nature and extent of risks to shark populations". The Ministry for Primary Industries (MPI) intends to develop that framework progressively through expert-based and quantitative methods. The first step in that process was in November 2014 when MPI convened an expert panel to conduct a qualitative risk assessment of all New Zealand cartilaginous fishes (Ford et al. 2015). In preparation for the risk assessment workshop, a number of resources were collated, including information on commercial catches and catch rates, biological productivity, and trends in stock biomass and the status of each species. This report documents the collation, summarising and plotting on distributional maps of information on commercial catches, fishing effort, and catchper-unit effort (CPUE).

2. METHODS

In this report, and for consistency with the definition in the NPOA-Sharks, the term 'sharks' is used to mean all species of cartilaginous fishes (chondrichthyans – including sharks, skates, rays and ghost sharks) present in New Zealand's Exclusive Economic Zone (EEZ).

The five-year period October 2008 to September 2013 (i.e. fishing years 2008–09 to 2012–13) was used to quantify the geographic distribution of 'recent' commercial catches of sharks. For a longer term perspective on catches, data were also summarised for 'old' commercial trawl catches made during the previous 19-year period (fishing years 1989–90 to 2007–08).

A data extract covering the recent period was obtained from the MPI commercial catch-effort database *warehou* on 22 July 2014 (rep log 9590), and an analogous extract covering the old period was obtained on 2 October 2014 (rep log 9694). These extracts contained information on date, fishing effort for all vessels (not just those catching sharks), location (latitude and longitude for most form types, but New Zealand statistical area for most Catch Effort Landing Returns (CELRs)), length of vessel, target species, and estimated catch weight of sharks (including sharks reported discarded at sea). Estimated catches are provided by fishers, and they are often not weighed. However, estimated catches often provide better coverage of catches of minor or unwanted species than do landed catches. MPI fishing return forms typically include estimated catches for only the top five or eight species caught (depending on the form type). Furthermore, estimated catches are meant to be whole (green) weight but some fishers incorrectly report processed weight. These factors will introduce unquantified errors into our results. Form types used to report catches from outside the EEZ were removed from the dataset before analysis.

Observer data collected aboard commercial fishing vessels were obtained from the MPI database *COD* on 21 September 2014. The data fields extracted were similar to those for commercial fishing returns above. The most intensive observer coverage is on offshore trawlers and tuna longliners, with little coverage of small inshore vessels.

Shark catches were also extracted from the MPI Non-Fish/Protected Species Catch Return forms (NFPSCR) on 22 July 2014 (rep log 9590). These forms are used by commercial fishers to report captures of all protected species (including fishes and sharks as well as seabirds, marine mammals and turtles). Only three shark species were reported on NFPSCR forms (basking shark, spinetail devilray and white shark).

Fishing methods that never reported shark catch in 2008–13 were omitted from further analysis. For all form types, a 'record' was defined as a row of data representing the catch in weight of a single species in a single fishing event. A 'fishing event' was defined as the deployment of a unit of fishing gear (e.g. a trawl tow, a longline set, a set of pots). If more than one <u>species</u> of shark was caught in the same fishing event, there were multiple records per event. Information on the number of individual sharks caught in fishing events is not available (except on recent NFPSCR forms), so the number of records is used here as a proxy for the frequency of species encounters.

All records of manta ray (RMB, MNT) were converted to spinetail devilray (MJA), because there are no confirmed records of manta rays being caught by New Zealand commercial fisheries (Jones & Francis 2012). Records of Greenland shark (SMI) were converted to southern sleeper shark (SOP) in accordance with current taxonomic knowledge. Records of silky shark (CAF) are dubious because silky sharks have not been confirmed to occur in New Zealand (C. Duffy, Department of Conservation, pers. comm.). In this report, such records were converted to unspecified carcharhinid sharks (RSH), but the maps generated for the risk assessment workshop in 2014 were labelled CAF. The two species of blind electric ray (TTY, TAY) were combined under the single code BER.

For recent data, distribution maps were generated by species, data resolution (latitude/longitude, statistical area), data source (commercial, observer and NFPSCR) and fishery. Fisheries were defined based on fishing method, length of vessel and target species (Table 1). Maps were also produced by species for all methods combined, and for groupings of fisheries using the same method (trawl, surface longline, bottom longline and purse seine). Maps were produced only for combinations of species, fisheries and spatial data resolution having non-trivial numbers of catch records. Three data types were plotted on the maps:

- 1. Fishing effort expressed as the aggregated number of records
- 2. Aggregated estimated catch weight
- 3. CPUE, expressed as aggregated catch divided by aggregated effort using the following effort measures:
 - a. Thousands of hooks for lining methods;
 - b. Thousands of metres of net for static nets and purse seine;
 - c. Number of tows/lifts for mobile methods (trawling, dredging) and pots.

Fishing effort and CPUE were not plotted for observer and NFPSCR data, as these sources were not considered representative of the entire fishery. However, catches from these sources were plotted as they provide useful information on the distribution of taxa that are not often reported on commercial fishing returns. For fishing events having locations specified in latitude and longitude, data were summarised for plotting in half-degree rectangles. The remaining fishing events were summarised by statistical areas. A log10 scale, scaled to the maximum aggregated value, was used for plotting effort, and for plotting catches and CPUE available at latitude/longitude precision. A linear scale was used for plotting catches and CPUE having statistical area precision.

Table 1: Classification of commercial and observer records into fisheries (last column) based on fishing method, vessel length and target species. Species codes are defined in Appendix 1.

Method	Method code	Vessel length	Target species	Fishery
Beach seine	BS	All	All	BS
Bottom longline	BLL	>= 40 m	All	BLL_GT40
Bottom longline	BLL	< 40 m	BCO, TRU	BLL_LT40_BCO
Bottom longline	BLL	< 40 m	BNS, HPB, HAP, BAS, BYX, SKI, SPE	BLL LT40 BNS
Bottom longline	BLL	< 40 m	LIN, RIB, HAK	BLL_LT40_LIN
Bottom longline	BLL	< 40 m	SCH, SPO, ELE, SPD, RSK	BLL_LT40_SCH
			SNA, GUR, TRE, TAR, RSN, RRC,	
Bottom longline	BLL	< 40 m	KIN, KAH, JDO, BRA	BLL_LT40_SNA
Bottom longline	BLL	< 40 m	Other BLL targets	BLL_LT40_OTH
Bottom longline	BLL	Length N/A	All	BLL_OTH
Danish seine	DS	All	All	DS
Diving	DI	All	All	DI
Inshore drift net	DN	All	All	DN
Dredge	D	All	All	D
Drop line	DL, TL	All	All	DL
Fish pot	FP	All	All	FP
Fyke net	FN	All	All	FN
Hand line	HL	All	All	HL
Pole and line	PL	All	All	PL
Pot	CP, CRP, RLP	All	All	POT
Purse seine	PS	All	SKJ, ALB	PS_SKJ
Purse seine	PS	All	Other PS targets	PS_OTH
Ring net	RN	All	All	RN
Set net	SN	All	All	SN
Surface long line	SLL	>= 48 m	All	SLL_GT48
Surface long line	SLL	< 48 m	All	SLL_LT48
Surface long line	SLL	Length N/A	All	SLL_OTH
Trawl	MW, BT, BPT	All	JMA, EMA	MW_JMA
Tiuwi	1,1,1,1,1,1,1	7 111	ORH, OEO, CDL, SSO, BOE, SOR,	11111 _011111
Trawl	MW, BT	All	SND	TWL_DW
			FLA, FLO, LSO, SFL, ESO, YBF, TUR,	
Trawl	BT, BPT	All	GFL, BRI, BFL	TWL_FLA
			TAR, GUR, RCO, SNA, BAR, TRE,	
			STA, JDO, ELE, WAR, SPD, SPO,	
			LEA, SKI, SCH, QSC, MOK, RSK,	
			HPB, HAP, PAD, BCO, KAH, CAR,	
			BOA, THR, SPZ, KIN, BRA, WRA,	
			WHE, TRU, SCA, MAK, BWS, ALB,	
Trawl	MW, BT, BPT	All	SFI	TWL IN
	<u> </u>		RAT, CDO, JAV, TRA, SCO, RBM,	_
			FRO, SDO, SBO, SSK, MDO, RBT,	
			BNS, LDO, RBY, WWA, SPE, BYX,	
Trawl	MW, BT	All	HAK, SWA, LIN, GSH, HOK, GSC	TWL_MD
Trawl	MW, BT	All	SBW	TWL_SBW
Trawl	BT	All	SCI	TWL_SCI
Trawl	MW, BT	All	SQU	TWL_SQU
Trawl	BT, BPT	All	Other trawl targets	BT_OTH
			vanna van ge vo	

For old data, maps of effort and catch (but not CPUE) were generated for commercial trawl fishing only. Data were processed and plotted using purpose-written R code (R Development Core Team 2008).

The half-degree rectangles used for plotting results are not the same size throughout the EEZ because lines of longitude converge towards the south. The area of a half-degree rectangle at 30 °S (near the northern limit of fishing effort) is 1.51 times the area of a half-degree rectangle at 55 °S. Consequently, the aggregated effort and estimated catch in southern rectangles are biased low relative to the values for northern rectangles. This bias is ameliorated considerably by use of a log10 scale for plotting. Graphs of the distribution of CPUE are not affected by the bias because they present a ratio of catch and effort.

3. RESULTS

About 117 species of sharks occur in New Zealand waters (Appendix 1). The exact number is uncertain because of ongoing changes in the taxonomic understanding of the species, and new discoveries. Commercial fishers or observers reported that 77 of these species were caught during 2008–2013 (Appendix 2). However, fishers also used 15 generic reporting codes (Appendix 2), so the real number of species caught may have been larger.

In 877 020 fishing events reported during 2008–13 (excluding methods that never reported shark catch), there were 662 391 shark species records (75.5% incidence) (Appendix 2). The highest incidence rates were found for the following methods (in descending order): surface longline, bottom longline, bottom trawl, set net, and Danish seine. The greatest absolute numbers of shark records came from (in descending order) bottom trawl, bottom longline, set net and surface longline. Estimated catches were dominated by spiny dogfish (23 900 t) followed by school shark (13 300 t), and dark ghost shark, elephantfish, blue shark, rough skate and rig (5000–7000 t) (Appendix 3).

A total of 2024 recent and old distribution maps were generated. Effort distributional maps are shown for the main fishing methods in Appendix 4. Examples of catch and CPUE maps for both latitude/longitude data and statistical area data are shown in Appendices 5 and 6 respectively. The full set of maps (as jpg files) and R code are available on request from MPI.

4. DISCUSSION

The maps generated by this project were used as an important input into the workshop of experts convened by MPI to develop qualitative risk assessments for all New Zealand sharks (Ford et al. 2015). Data used here have not been groomed (except for a few obvious coding mistakes mentioned on page 3). The distribution maps produced here were used as a broad guide, in conjunction with other information, by an expert group who were able to interpret the reliability of these data. Any detailed analysis of catch and CPUE for individual species may require data grooming before they are accurate enough to be interpreted without such specialist expertise. Future mapping of catch and effort data at the spatial scale of the EEZ should also account for the latitudinal variation in the area covered by half-degree rectangles.

5. ACKNOWLEDGMENTS

I thank David Fisher and the MPI Research Data Manager for providing the data extracts required for this study. This work was completed under Ministry for Primary Industries projects SEA2013-16 and SEA2014-01. Thanks to Rich Ford for coordinating the projects.

6. REFERENCES

- Ford, R.B.; Galland, A.; Clark, M.R.; Crozier, P.; Duffy, C.A.J.; Dunn, M.; Francis, M.P.; Wells, R. (2015). Qualitative (Level 1) risk assessment of the impact of commercial fishing on New Zealand chondrichthyans. *New Zealand Aquatic Environment and Biodiversity Report No. 157.* 111 p,
- Jones, E.; Francis, M.P. (2012). Protected rays occurrence and development of mitigation methods in the New Zealand tuna purse seine fishery. NIWA client report prepared for the Department of Conservation. WLG2012-49. 35 p. Available from http://www.doc.govt.nz/Documents/conservation/marine-and-coastal/marine-conservation-services/mit2011-01-protected-rays-final-report.pdf (accessed 1 July 2015).
- Ministry for Primary Industries. (2013). National plan of action for the conservation and management of sharks 2013. Ministry for Primary Industries, Wellington. 32 p.
- R Development Core Team. (2008). R: A language and environment for statistical computing. http://www.R-project.org. R Foundation for Statistical Computing, Vienna, Austria. p.

APPENDIX 1: List of shark (chondrichthyan) species found in New Zealand waters

Also included (at the bottom of the table on next page) are 'generic' categories and codes used for recording catch not reported to species level.

Group	Family	Species	Common name	Code
_	Callorhinchidae	Callorhinchus milii Bory de St Vincent 1823	Elephantfish	ELE
	Rhinochimaeridae	Harriotta haeckeli Karrer 1972	Smallspine spookfish	HHA
	Rhinochimaeridae	Harriotta raleighana Goode & Bean 1895	Longnose spookfish	LCH
	Rhinochimaeridae	Rhinochimaera pacifica (Mitsukuri 1895)	Pacific spookfish	RCH
	Chimaeridae	Chimaera carophila Kemper et al. 2014	Brown chimaera	CHP
Chimaera	Chimaeridae	Chimaera lignaria Didier 2002	Purple chimaera	CHG
Chimaera	Chimaeridae	Chimaera panthera Didier 1998	Leopard chimaera	CPN
Chimaera	Chimaeridae	Hydrolagus bemisi Didier 2002	Pale ghost shark	GSP
Chimaera	Chimaeridae	Hydrolagus homonycteris Didier 2008	Black ghost shark	HYB
Chimaera	Chimaeridae	Hydrolagus novaezealandiae (Fowler 1910)	Dark ghost shark	GSH
Chimaera	Chimaeridae	Hydrolagus trolli Didier and Seret 2002	Pointynose blue ghost shark	HYP
Chimaera	Chimaeridae	Hydrolagus sp. D [Didier]	Giant black ghost shark	HGB
Shark	Chlamydoselachidae	Chlamydoselachus anguineus Garman 1884	Frill shark	FRS
Shark	Hexanchidae	Heptranchias perlo (Bonnaterre 1788)	Sharpnose sevengill shark	HEP
Shark	Hexanchidae	Hexanchus griseus (Bonnaterre 1788)	Sixgill shark	HEX
Shark	Hexanchidae	Notorynchus cepedianus (Peron 1807)	Broadnose sevengill shark	SEV
Shark	Echinorhinidae	Echinorhinus brucus (Bonnaterre 1788)	Bramble shark	BRS
Shark	Echinorhinidae	Echinorhinus cookei Pietschmann 1928	Prickly shark	ECO
Shark	Squalidae	Cirrhigaleus australis White Last & Stevens 2007	Southern mandarin dogfish	MSH
Shark	Squalidae	Squalus acanthias Linnaeus 1758	Spiny dogfish	SPD
Shark	Squalidae	Squalus griffini Phillipps 1931	Northern spiny dogfish	NSD
Shark	Squalidae	Squalus raoulensis Duffy & Last 2007	Kermadec spiny dogfish	SQA
Shark	Squalidae	Squalus sp. 5	Green-eye dogfish	SQA
Shark	Centrophoridae	Centrophorus harrissoni McCulloch 1915	Harrissons dogfish	
Shark	Centrophoridae	Centrophorus squamosus (Bonnaterre 1788)	Leafscale gulper shark	CSQ
Shark	Centrophoridae	Deania calcea (Lowe 1839)	Shovelnose dogfish	SND
Shark	Centrophoridae	Deania histricosa (Garman 1906)	Rough longnose dogfish	SNR
Shark	Centrophoridae	Deania quadrispinosa (McCulloch 1915)	Longsnout dogfish	DEQ
Shark	Etmopteridae	Centroscyllium sp. cf. kamoharai	Fragile dogfish	
Shark	Etmopteridae	Etmopterus granulosus (Günther 1880)	Baxters dogfish	ETB
Shark	Etmopteridae	Etmopterus lucifer Jordan & Snyder 1902	Lucifers dogfish	ETL
Shark	Etmopteridae	Etmopterus molleri (Whitley 1939)	Moller's lantern shark	EMO
Shark	Etmopteridae	Etmopterus pusillus (Lowe 1839)	Smooth lantern shark	ETP
Shark	Etmopteridae	Etmopterus cf. unicolor	Bristled lantern shark	Eva
Shark	Etmopteridae	Etmopterus viator Straube 2012	Blue-eye lantern shark	EVI
Shark	Somniosidae	Centroscymnus coelolepis Bocage & Capello 1864	Portuguese dogfish	CYL CYO
Shark Shark	Somniosidae Somniosidae	Centroscymnus owstonii Garman 1906	Owston's dogfish	CYP
Shark	Somniosidae	Centroselachus crepidater (Bocage & Capello 1864) Scymnodalatias albicauda Taniuchi & Garrick 1986	Longnose velvet dogfish	SLB
Shark	Somniosidae	Scymnodalatias sherwoodi (Archey 1921)	Whitetail dogfish Sherwood's dogfish	SHE
Shark	Somniosidae	Scymnodon macracanthus Regan 1906	Largespine velvet dogfish	SCM
Shark	Somniosidae	Scymnodon plunketi (Waite 1910)	Plunket's shark	PLS
Shark	Somniosidae	Scymnodon ringens Bocage & Capello 1864	Knifetooth dogfish	SRI
Shark	Somniosidae	Somniosus antarcticus Whitley 1939	Southern sleeper shark	SOP
Shark	Somniosidae	Somniosus longus (Tanaka 1912)	Little sleeper shark	SOM
Shark	Somniosidae	Zameus squamulosus (Günther 1877)	Velvet dogfish	ZAS
Shark	Oxynotidae	Oxynotus bruniensis (Ogilby 1893)	Prickly dogfish	PDG
Shark	Dalatiidae	Dalatias licha (Bonnaterre 1788)	Seal shark black shark	BSH
Shark	Dalatiidae	Euprotomicrus bispinatus (Quoy & Gaimard 1824)	Pygmy shark	EBI
Shark	Dalatiidae	Isistius brasiliensis (Quoy & Gaimard 1824)	Cookie cutter shark	IBR
Shark	Heterodontidae	Heterodontus portusjacksoni (Meyer 1793)	Port Jackson shark	PJS
Shark	Rhincodontidae	Rhincodon typus (Smith 1828)	Whale shark	WSH
Shark	Odontaspidae	Odontaspis ferox (Risso 1810)	Deepwater sand tiger shark	ODO
Shark	Pseudocarchariidae	Pseudocarcharias kamoharai (Matsubara 1936)	Crocodile shark	CRC
Shark	Mitsukurinidae	Mitsukurina owstoni Jordan 1898	Goblin shark	GOB
Shark	Alopiidae	Alopias superciliosus (Lowe 1839)	Bigeye thresher	BET
Shark	Alopiidae	Alopias vulpinus (Bonnaterre 1788)	Thresher shark	THR
Shark	Cetorhinidae	Cetorhinus maximus (Gunnerus 1765)	Basking shark	BSK
Shark	Lamnidae	Carcharodon carcharias (Linnaeus 1758)	White shark white pointer	WPS
Shark	Lamnidae	Isurus oxyrinchus Rafinesque 1810	Mako shark shortfin mako	MAK
Shark	Lamnidae	Lamna nasus (Bonnaterre 1788)	Porbeagle shark	POS

APPENDIX 1 (continued).

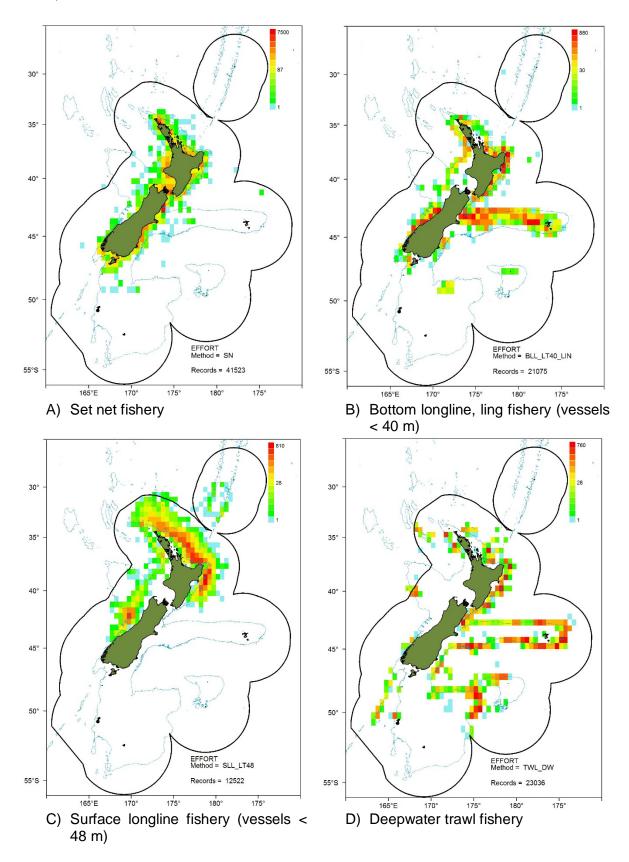
Shark	Scyliorhinidae	Apristurus ampliceps Sasahara Sato & Nakaya 2008	Roughskin cat shark	APR
Shark	Scyliorhinidae	Apristurus cf. australis Sato Nakaya & Yorozu 2008	Pinocchio cat shark	APR
Shark	Scyliorhinidae	Apristurus exsanguis Sato Nakaya and Stewart 1999	Pale catshark	APR
Shark	Scyliorhinidae	Apristurus melanoasper Iglésias Nakaya & Stehmann 2004	Fleshynose cat shark	APR
Shark	Scyliorhinidae	Apristurus pinguis Deng Xiong & Zhan 1983	Cat shark	APR
Shark	Scyliorhinidae	Apristurus sinensis Chu & Hu 1981	Freckled cat shark	APR
Shark	Scyliorhinidae	Apristurus sp.	Cat shark	APR
Shark	Scyliorhinidae	Bythaelurus dawsoni (Springer 1971)	Dawsons cat shark	DCS
Shark	Scyliorhinidae	Cephaloscyllium isabellum (Bonnaterre 1788)	Carpet shark	CAR
Shark	Scyliorhinidae	Cephaloscyllium sp.	Swellshark	
Shark	Scyliorhinidae	Parmaturus bigus Seret & Last 2007	Shorttail cat shark	
Shark	Scyliorhinidae	Parmaturus macmillani Hardy 1985	McMillan's cat shark	PCS
Shark	Scyliorhinidae	Parmaturus sp.	Rough-backed cat shark	
Shark	Scyliorhinidae	Parmaturus sp.		
Shark	Pseudotriakidae	Gollum attenuatus (Garrick 1954)	Slender smooth hound	SSH
Shark	Pseudotriakidae	Pseudotriakis microdon Capello 1868	False cat shark	PMI
Shark	Triakidae	Galeorhinus galeus (Linnaeus 1758)	School shark	SCH
Shark	Triakidae	Mustelus lenticulatus Phillipps 1932	Rig	SPO
Shark	Triakidae	Mustelus sp.	Kermadec Rig	
Shark	Carcharhinidae	Carcharhinus brachyurus (Günther 1870)	Bronze whaler	BWH
Shark	Carcharhinidae	Carcharhinus galapagensis (Snodgrass & Heller 1905)	Galapagos shark	CGA
Shark	Carcharhinidae	Carcharhinus longimanus (Poey 1861)	Oceanic whitetip shark	OWS
Shark	Carcharhinidae	Carcharhinus obscurus (Le Sueur 1818)	Dusky shark	DSH
Shark	Carcharhinidae	Galeocerdo cuvier (Peron & Le Sueur 1822)	Tiger shark	TIS
Shark	Carcharhinidae	Prionace glauca (Linnaeus 1758)	Blue shark	BWS
Shark	Sphyrnidae	Sphyrna zygaena (Linnaeus 1758)	Hammerhead shark	HHS
Batoid	Narkidae	Typhlonarke aysoni (Hamilton 1902)	Blind electric ray	TAY
Batoid	Narkidae	Typhlonarke tarakea Phillipps 1929	Oval electric ray	TTA
Batoid	Torpedinidae	Torpedo fairchildi Hutton 1872	Electric ray	ERA
Batoid	Arhynchobatidae	Arhynchobatis asperrimus Waite 1909	Longtail skate	LSK
Batoid	Arhynchobatidae	Bathyraja richardsoni (Garrick 1961)	Richardson's skate	RIS
Batoid	Arhynchobatidae	Bathyraja shuntovi Dolganov 1985	Longnose deepsea skate	PSK
Batoid	Arhynchobatidae	Bathyraja sp.	Blonde skate	
Batoid	Arhynchobatidae	Brochiraja albilabiata Last & McEachran 2006		
Batoid	Arhynchobatidae	Brochiraja asperula (Garrick & Paul 1974)	Smooth deepsea skate	BTA
Batoid	Arhynchobatidae	Brochiraja leviveneta Last & McEachran 2006		
Batoid	Arhynchobatidae	Brochiraja microspinifera Last & McEachran 2006		
Batoid	Arhynchobatidae	Brochiraja spinifera (Garrick & Paul 1974)	Prickly deepsea skate	BTS
Batoid	Arhynchobatidae	Notoraja sapphira Seret & Last 2009	Sapphire skate	ВТН
Batoid	Arhynchobatidae	Notoraja [subgenus C] sp. A [Last & McEachran]		ВТН
Batoid	Arhynchobatidae	Notoraja [subgenus C] sp. B [Last & McEachran]		BTH
Batoid	Arhynchobatidae	Notoraja [subgenus C] sp. C [Last & McEachran]		BTH
Batoid	Arhynchobatidae	Notoraja [subgenus D] sp. A [Last & McEachran]		ВТН
Batoid	Rajidae	Amblyraja cf. hyperborea (Collette 1879)	Arctic skate	DSK
Batoid	Rajidae	Dipturus innominatus (Garrick & Paul 1974)	Smooth skate	SSK
Batoid	Rajidae	Zearaja nasuta (Banks in Müller & Henle 1841)	Rough skate	RSK
Batoid	Dasyatidae	Dasyatis brevicaudata (Hutton 1875)	Shorttail stingray	BRA
Batoid	Dasyatidae	Dasyatis thetidis Ogilby in Waite 1899	Longtail stingray	WRA
Batoid	Dasyatidae	Pteroplatytrygon violacea (Bonaparte 1832)	Pelagic stingray	DAS
Batoid	Myliobatidae	Myliobatis tenuicaudatus Hector 1877	Eagle ray	EGR
Batoid	Mobulidae	Manta birostris (Donndorff 1798)	Manta ray	RMB
Batoid	Mobulidae	Mobula japanica (Müller & Henle 1841)	Spinetail devilray	MJA
	Chimaeridae	Chimaera spp.	Cimaeras	CHI
	Chimaeridae	Hydrolagus spp.	Ghost sharks	HYD
Shark		Shark	Deepsea sharks	CEN
Shark		Shark	Deepwater dogfish	DWD
Shark		Shark	Other sharks and dogs	OSD
Shark		Shark	Sharks	SHA
Shark	Etmopteridae	Etmopterus spp.	Lantern sharks	ETM
Shark	Scyliorhinidae	Scyliorhinidae	Catsharks	CSH
		Carcharhinidae		RSH
Shark Batoid	Carcharhinidae	Batoids Batoids	Whaler sharks Other skates	OSK
		Batoids		
Batoid			Rays	RAY
		Batoids	Skates	SKA
Batoid Batoid		Batoids	Stingrays	STR

APPENDIX 2: Numbers of records of shark species caught by method, 2008–2013

Species are sorted in descending order of the total catch records (last column), and methods are sorted (left to right) in descending order of the number of shark records per fishing event (last row). For species and method codes, see Appendix 1 and Table 1 respectively.

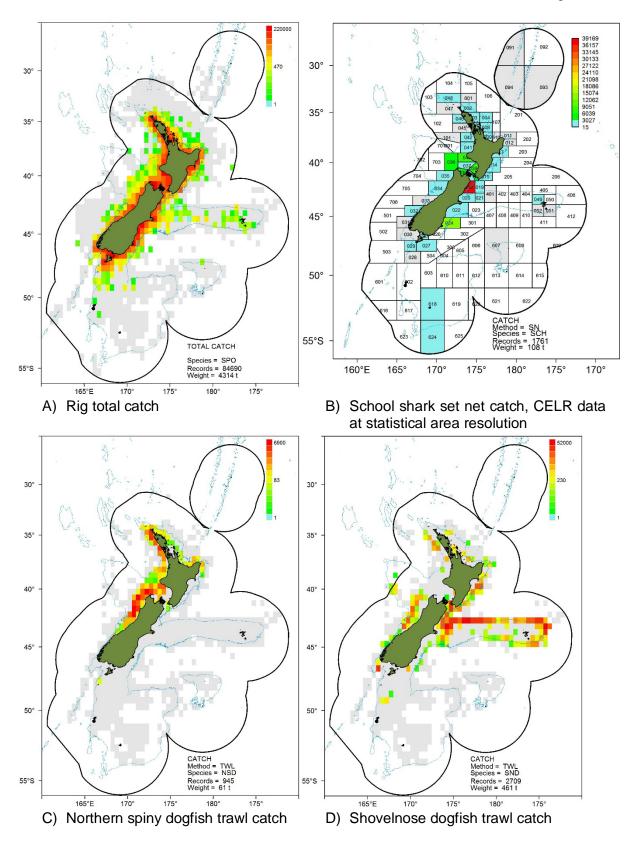
SCH SPO RSK SPD ELE EAR	254 0 0	28021 4778 4021	51931 59839	19535 31456	767	606	61	1627	454	9	2	0	157		110	0	0	1.0	0			0		0	
RSK SPD ELE CAR	0		59839	31456	2214						_	U	157	0	119	0	0	16	0	0	0	0	4	U	
SPD ELE CAR	-	4021			3314	470	1	24	51	1165	18	4	67	6	4	14	2	4	0	0	0	_	1	0	
ELE CAR	0		91827	3437	1165	49	0	83	45	0	144	0	2	0	4	0	2	0	0	0	0		0	0	
CAR	0	19030 27	59475 36612	11473 5182	450 730	23	49	240	6975 4	0	72	0	39	0	11	0	2	3	0	0	0	0	0	0	97844 42570
	2	3187	25282	5656	188	106	4	26	2	0	272	0	6 11	192	584	0	0	1667	0	0	8		0	0	37187
	0	3126	26619	5520	221	11	0	11	162	0		0	0	0	0	0	1	1	0	0	0		2	0	35678
SSK	0	8431	15142	960	148	14	0	48	62	2	29	0	0	0	0	0	3	0	0	0	0		0	0	24839
OSD	13	6622	12285	302	1	2	2	13	1236	3	0	0	1	0	3	0	0	20	0	0	0		1	0	20504
3WS	15049	1019	32	169	0	0	0	11	53	1	0	0	4	0	0	0	9	0	0	0	0	0	31	0	16378
BSH	9	4507	5586	3410	0	0	3	109	459	0	0	0	1	59	1	0	0	0	0	0	0	0	0	0	14144
GSP	2	3691	7552	53	0	0	0	0	36	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	11337
MAK	6951	469	56	227	19	0	2	15	84	0		0	3	0	0	0	35	0	0	0	0	_	35	0	7896
EGR	0	496	3280	2883	102	118	0	0	10	345	3	2	1	1	0	15	0	0	1	0	0		0	2	7259
SND	0	4032	2423	312	0	0	0	96	286	1	0	0	0	0	0	0	0	0	0	0	0	-	0	0	7150
ERA	4290	242	6269	61	89	18	0	0	18	4	20	0	0	0	0	0	4	0	0	0	0	_	0	0	6487
POS	4380	342 2630	39 840	51	8	99	0	0	325	0		0	0	0	0	0	2	0	0	0	0	_	2	0	5141
OWD	0	2030	3760	1029	0	0	0	21	6 44	0		0	0	0	0	0	0	0	0	0	0		0	0	4634 3804
THR	767	35	944	463	11	81	0	0	145	2	0	0	0	0	0	0	5	0	0	0	0		2	0	2455
HS	10	713	135	872	37	10	0	0	0	8	0	0	2	0	0	1	1	0	0	0	0	_	0	0	1789
SEV	0	339	312	788	0	5	0	6	1	0		0	0	0	1	0	0	0	0	0	0		1	0	1453
BWH	73	113	45	949	4	3	0	0	1	19	0	0	0	0	1	1	2	0	0	0	0	_	0	0	1211
3RA	5	96	925	90	5	57	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1180
.CH	0	1	988	1	0	0	0	0	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1011
WRA	0	181	368	119	141	90	0	0	0	0	0	0	0	0	0	0	2	0	0	1	0	0	0	0	902
DAS	894	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	894
RAY	786	2	42	1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	_	0	0	831
CYO	523	0	3	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	526
STR CHI	0	44 96	283 196	31	10	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0		0	0	376 293
PSK	0	0	200	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	_	0	0	200
ETB	0	46	112	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0		0	0	159
CHG	0	141	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	154
SSH	1	10	101	4	0	0	0	1	2	0		0	0	0	0	0	0	0	0	0	0	_	0	0	119
OSK	0	103	9	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	113
ETL	1	9	47	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	59
CSQ	0	0	25	0	0	0	0	0	23	0	0	0	0	0	0	0	0	0	0	0	0		0	0	48
HYD	0	42	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	_	0	0	42
ECO	0	0	25	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	-	0	0	25
BSK	0	5	10	1	0	0	0	0	1	0		0	0	0	0	0	1	0	0	0	0		0	0	18
CYP	7	5	11	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	_	0	0	18
MJA	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	15	0	0	0	0		0	0	15 15
IEX	1	2	4	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	10
SHE	0	0	8	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	8
ΠS	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	8
BET	5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
OSK	0	0	5	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
PDG	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	6
PLS	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	5
APR	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	4
SOP	0	0	2	2	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	4
CSH	1	0	2	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	_	0	0	3
DSH BER	0	0	3	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		0		0	0	3 2
HEP	0	0	2	0	0	0	0	0	0	0			0	0	0		0	0	0				0	0	
CYL	0	0	1	0	0	0	0	0	0	0			0	0	0		0	0	0		0	_	0	0	
DCS	0	0	1	0	0	0	0	0	0	0			0	0	0		0	0	0				0	0	
EMO	0	0	0	1	0		0	0	0	0			0	0	0		0	0	0				0	0	
HYB	0	1	0	0	0	0	0	0	0	0			0	0	0		0	0	0				0	0	
RCH	0	0	1	0	0	0	0	0	0	0	0		0	0	0		0	0	0			_	0	0	
ТΑ	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
																						Ш			
Shark records						1764				1559		7		258			94	1711	1		8		79		662391
Fishing events																							22648		877020
Shark records per event (%)	215.4	110.5	107.2	80.8	67.3	45.7	45.5	41.6	24.4	12.7	5.5	4.5	4.4	3.5	2.9	2.4	2.0	1.6	1.6	1.0	0.5	0.3	0.3	0.0	75.5

APPENDIX 3: Numbers of records and reported catch weights by species, 2008–2013 Data from MPI commercial fishing returns, the observer database, and NFPSCR forms (NFB). Species are sorted in descending order of commercial weight.

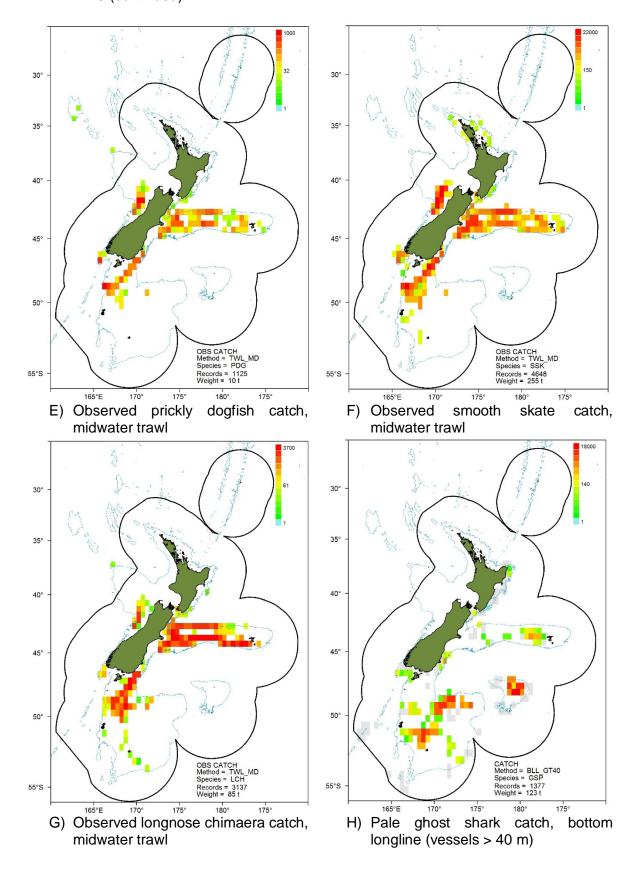

		Comm.	Comm.	Obs.	Obs.	NFB
Species	Code	records	weight (t)	records	weight (t)	records
Spiny dogfish	SPD	97845	23865.7	22186	6314.2	0
School shark	SCH	103567	13447.5	5659	306.9	0
Dark ghost shark	GSH	35678	6898.9	7389	997.8	0
Elephantfish	ELE	42572	6429.6	243	12.0	0
Blue shark	BWS	16378	6284.2	39959	192.7	0
Rough skate	RSK	100786	5511.2	7149	262.8	0
Rig	SPO	101219	5329.4	387	19.8	0
Other sharks and dogs	OSD	20504	1837.5	3052	277.5	0
Pale ghost shark	GSP	11337	1537.8	9574	716.0	0
Seal shark	BSH	14144	1156.6	3782	172.4	0
Carpet shark	CAR	37187	1122.3	2953	75.6	0
Smooth skate	SSK	24839	1021.0	7566	350.7	0
Mako shark shortfin mako	MAK	7896	753.8	2374	70.9	0
Shovelnose dogfish	SND	7150	713.5	5525	412.7	0
Porbeagle shark	POS	5141	435.2	3603	90.5	0
Deepwater dogfish	DWD	3804	380.9	1672	152.5	0
Northern spiny dogfish	NSD	4634	366.7	812	40.7	0
Eagle ray	EGR	7259	248.8	412	7.5	0
Thresher shark	THR	2455	192.8	569	44.1	0
Electric ray	ERA	6487	89.8	2150	21.3	0
Longnose spookfish	LCH	1011	81.8	5042	130.2	0
Purple chimaera	CHG	154	57.7	270	4.6	0
Broadnose sevengill shark	SEV	1453	50.6	132	3.7	0
Bronze whaler	BWH	1211	43.7	64	6.6	0
Shorttail stingray	BRA	1180	38.6	70	3.6	0
Longtail stingray	WRA	902	32.9	96	4.5	0
Stingrays	STR	376	31.9	85	2.7	0
Hammerhead shark	HHS	1789	31.3	48	0.8	0
Baxters dogfish	ETB	159	27.8	7810	554.7	0
Cimaeras	CHI	293	26.7	351	24.2	0
Rays	RAY	831	24.0	78	2.8	0
Slender smooth hound	SSH	119	16.1	834	36.3	0
Basking shark	BSK	18	14.8	28	138.0	23
Pelagic stingray	DAS	894	14.0	645	0.1	0
Ghost sharks	HYD	42	11.2	141	1.2	0
Longnose deepsea skate	PSK	200	9.0	422	11.6	0
Leafscale gulper shark	CSQ	48	8.4	2410	169.2	0
Lucifers dogfish	ETL	59	8.4	4904	54.0	0
Owston's dogfish	CYO	526	8.2	2990	20.6	0
Other skates	OSK	113	7.9	901	10.5	0
Portuguese dogfish	CYL	1	6.6	328	10.0	0
Spinetail devilray	MJA	15	5.5	56	6.4	53
Southern sleeper shark	SOP	4	1.9	13	7.5	0
Prickly dogfish	PDG	6	1.5	1455	11.8	0
Tiger shark	TIS	8	1.2	0	0.0	0
i iget stiatk	119	0	1.2	U	0.0	U

APPENDIX 3 (continued).

		Comm.	Comm.	Obs.	Obs.	NFB
Species	Code	records	weight (t)	records	weight (t)	records
Roughskin cat shark	APR	4	1.1	722	10.0	0
Longnose velvet dogfish	CYP	18	1.1	2111	60.9	0
Bigeye thresher	BET	6	1.0	23	0.3	0
Prickly shark	ECO	25	0.8	1	0.2	0
Sixgill shark	HEX	10	0.7	194	12.3	0
Brown chimaera	CHP	15	0.3	316	7.8	0
Sherwood's dogfish	SHE	8	0.3	0	0.0	0
Dusky shark	DSH	3	0.2	0	0.0	0
Plunket's shark	PLS	5	0.2	1095	48.0	0
Arctic skate	DSK	6	0.1	1629	13.3	0
Black ghost shark	HYB	1	0.1	7	0.0	0
Blind electric rays	BER	2	0.0	589	4.3	0
Bramble shark	BRS	0	0.0	2	0.1	0
Smooth deepsea skate	BTA	0	0.0	366	2.6	0
Sapphire skate	BTH	0	0.0	399	2.1	0
Prickly deepsea skate	BTS	0	0.0	311	3.7	0
Leopard chimaera	CPN	0	0.0	1	0.0	0
Catsharks	CSH	3	0.0	534	11.1	0
Dawsons cat shark	DCS	1	0.0	544	1.9	0
Moller's lantern shark	EMO	1	0.0	108	1.1	0
Lantern sharks	ETM	0	0.0	90	7.9	0
Smooth lantern shark	ETP	0	0.0	47	0.3	0
Frill shark	FRS	0	0.0	27	0.1	0
Goblin shark	GOB	0	0.0	5	0.1	0
Sharpnose sevengill shark	HEP	2	0.0	115	2.2	0
Giant black ghost shark	HGB	0	0.0	41	9.7	0
Pointynose blue ghost shark	HYP	0	0.0	7	0.0	0
Cookie cutter shark	IBR	0	0.0	47	2.0	0
Longtail skate	LSK	0	0.0	564	4.2	0
Southern mandarin dogfish	MSH	0	0.0	2	0.0	0
Deepwater sand tiger shark	ODO	0	0.0	6	0.3	0
Oceanic whitetip shark	OWS	0	0.0	1	0.0	0
False cat shark	PMI	0	0.0	2	0.2	0
Pacific spookfish	RCH	1	0.0	229	2.5	0
Richardson's skate	RIS	0	0.0	205	1.4	0
Whaler sharks	RSH	0	0.0	8	0.2	0
Largespine velvet dogfish	SCM	0	0.0	251	9.5	0
Sharks	SHA	0	0.0	140	3.3	0
Skates	SKA	0	0.0	14	0.2	0
Whitetail dogfish	SLB	0	0.0	2	0.0	0
Rough longnose dogfish	SNR	0	0.0	32	0.8	0
Little sleeper shark	SOM	0	0.0	16	0.4	0
Kermadec spiny dogfish	SQA	0	0.0	53	4.0	0
Blind electric ray	TAY	0	0.0	293	1.1	0
Oval electric ray	TTA	1	0.0	100	0.7	0
White shark white pointer	WPS	0	0.0	3	0.0	21
Velvet dogfish	ZAS	0	0.0	43	1.1	0

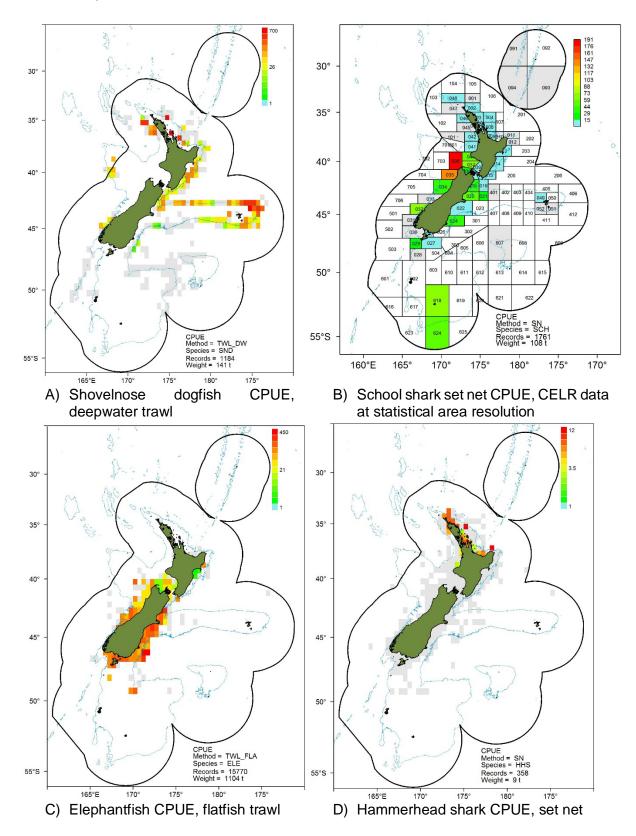

APPENDIX 4: Examples of distributional maps of fishing effort

Scale bars are on a log scale, but numerals show untransformed values (number of fishing events).



APPENDIX 5: Examples of distributional maps of catch

Grey pixels indicate fishing effort that produced no catch. Scale bars are on a log scale (except for B which is on a linear scale), but numerals show untransformed values (catch in kg).



APPENDIX 5 (continued).

APPENDIX 6: Examples of distributional maps of CPUE

Grey pixels indicate fishing effort that produced no catch. Scale bars are on a log scale (except for B which is on a linear scale), but numerals show untransformed values (CPUE in kg per unit of effort).

